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Resumo

Nesta tese, apresenta-se uma nova formulação para o problema das correspondências no caso de objectos

ŕıgidos e lambertianos, no contexto de problemas de“Structure from Motion”. O objectivo trata-se, portanto,

de estimar as correspondências e o movimento da câmara de uma forma integrada, sem nenhuma informação

outra que um par de imagens.

A solução aqui apresentada toma como entradas conjuntos de coordenadas de pontos, ou mais especi-

ficamente um conjunto de pontos na primeira imagem, a cada um dos quais corresponde um conjunto de

coordenadas de potenciais correspondências na segunda, obtidas como tendo o mesmo valor de intensidade.

Com estes dados, estima-se o movimento relativo entre ambas as câmaras e selecciona-se um número de

candidatos mais prováveis para cada ponto na primeira imagem (o que, em particular, pode tomar o caso de

correspondência 1-para-1).

Para cumprir este objectivo, codifica-se a informação imbúıda na intensidade dos pontos na imagem com

um modelo que restringe as trajectórias destes segundo um modelo ŕıgido e dependente das profundidades do

objecto num único problema de optimização. Nestas condiçoes, é posśıvel descrever-se o conjunto de todos

movimentos posśıveis como uma variedade de Stiefel, cujas propriedades permitem a resolução deste problema

através de uma minimização sobre uma grelha de pesquisa em dois parâmeteros. O algoritmo resultante —

Correspondence Estimation using Rigidity and local Descriptors, ou CERD — permite, portanto, uma resolução

com complexidade polinomial de um problema de natureza tipicamente combinatórica, exibindo propriedades

óptimas no caso em que os parâmetros da câmara são conhecidos.

As experiências efectuadas com dados sintéticos e reais mostram que o CERD consegue estimar correcta-

mente as correspondências e movimento, quando sujeito a um grande número de outliers e oclusão leve. Para

além disso, a vantagem de poder ser conjugado com qualquer algoritmo de extração de features (e.g., SIFT)

providencia um ńıvel adicional de versatilidade, alargando a sua aplicabilidade a uma vasta gama de posśıveis

cenários.

Palavras-chave: Visão estéreo; Correspondência entre imagens; Problema das correspondências; Permuta-

ções; estimação de forma a partir do movimento; Visão por Computador; Percepção de profundidade; Brilho

do pixel; Intensidade do pixel; Objecto ŕıgido; Objecto Lambertiano.



Abstract

In this thesis we present a new approach to the modeling of the correspondence problem for rigid and

Lambertian objects within a Structure from Motion framework. Our goal is to solve for correspondences and

camera motion altogether, using only a pair of images with no additional information.

The approach presented takes as input sets of point coordinates, specifically a set of points in the first

image, each with a set of correspondence candidates in the second image presenting the same intensity value.

With this data, we estimate motion between both cameras and select a number of most likely candidates for

each point in the first image (which, in particular, can be the case of 1-to-1 correspondence).

To fulfill this goal, our work merges information from brightness cues available in image points extracted

using local descriptor algorithms with a model that constrains point trajectories due to the rigidity of the object.

The use of both these constraints allows us to formulate the estimation of correspondences, motion and depth

within a single optimization problem. We describe the set of possible motions as a Stiefel manifold, whose

properties allow us to solve the optimization problem by minimizing a cost function over a two-parameter

search grid The resulting algorithm — Correspondence Estimation using Rigidity and local Descriptors, or

CERD — has polynomial complexity, therefore bypassing the combinatorial explosion typically associated with

the correspondence problem, and has optimal properties when the camera parameters are known.

Our experiments with synthetic and real data show that CERD is able to accurately estimate correspondence

and motion, being able to cope with a large number of outliers and light occlusion. Additionally, it’s ability

to be coupled with any feature extraction algorithm (e.g., SIFT) allows for extra versatility and broadens it’s

applicability to a wide range of scenarios.

Keywords: Stereo Vision; Image Matching; Correspondence problem; Permutations; Structure from Motion;

Computer Vision; Depth Perception; Pixel brightness; Pixel intensity; Rigid object; Lambertian object.
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Notation

R Set of Real Numbers.

{a, . . . , z} ∈ R Scalars.

{a, . . . , z} ∈ Rn n-dimension vectors with real entries.

1n n-dimension vector of ones.

When dimension can be easily inferred from the context, the n is dropped.

{A, . . . ,Z} ∈ Rn×m n×m matrices with real entries.

In n-by-n Identity matrix.

When dimension can be easily inferred from the context, the n is dropped.

0n n-by-n matrix of zeros.

When dimension can be easily inferred from the context, the n is dropped.

||.||1 `1 Norm.

||.||2 `2 Norm.
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Chapter 1

Introduction

1.1 Context and motivation

Symmetry presents itself in almost every aspect of nature, but one remarkable example of it is the fact that

natural selection has geared the majority of animals towards having no less than two eyes [1].

The evolution of the eyes or, in a more abstract sense, light sensing organs, is of utter importance for

survival, as it allows both predators and preys to perceive their surroundings, detect motion and ultimately

identify its origin as a friend or foe; the redundancy of the eyes not only helps secure this purpose, but allows

the gathering of additional information, extending the field of view or pinpointing positions more accurately in

a 3D space.

Many problems in the area of computer vision intend to endow electronic systems with such kind of

information extraction mechanisms and are, alike, solved by using redundancy. Whether obtained from multiple

cameras or from a single camera over time and in different positions, systems rely on the existence of multiple

images (frames) to infer additional information: depth — referred to in the literature as Structure from

Motion (SfM) [2, 3, 4] — panoramic vision (or image stitching) [5], resolution enhancement [5], object

tracking [6] or face recognition [7, 8] are all examples of what can be done today using a computer no different

than the ones already present in a modern household (for a review of the various existing mechanisms for the

referred applications, we refer the reader to [9, 10]).

However, most of the solutions for these problems require the position of a set of points to be known in

various images. The answer as to why this information is needed as an input for these methods can be inferred

from simple visual explanations: in Fig. 1.1, where an example of image stitching is depicted, the presence

of a number of points in more than one projection acts, similarly to the edges in puzzle pieces, as cues on

how both images are positioned in the plane relative to each other; for the case of SfM, which we exemplify

in Fig. 1.2, the puzzle analogy still holds, with the exception that now the pieces are put together in a 3D

space and each piece correspondence bears information about the way the remainder of the pieces exhibiting

the same points are positioned in space.

The task of finding the coordinates (or trajectories) of a set of points in various images, known as the

correspondence problem, is often relegated to manual labor due to its intrinsic combinatoric nature: to each

point in the first image corresponds a high cardinality set of respective candidates in subsequent images, caused

by the scarcity of criteria (features) available in the images — typically, intensity value and position — to

distinguish between candidates, when no additional information is present.

The lack of features, together with the existence of noise in captured images — e.g., from the image

acquisition system itself or changes of lighting — and the possible occlusion of points in some frames makes

it challenging to obtain correct matches automatically, using a computer, in an efficient manner.

In this thesis, we tackle the correspondence problem for the case where the depicted objects are Lambertian

2



Figure 1.1: Panorama obtained from 2 images. The stitching is made by overlapping the images according to features common
to both frames.

Figure 1.2: Partial reconstruction of a cube from 3 images. The process can be seen as a generalization of image stitching (see
Fig. 1.1) into 3D space, as the correspondence information embeds the information on the camera positions and the 3D

coordinates of the object. N.B.: without knowing the distance of the camera to the object, the real scale of the object is not
known.

3



(such that the camera’s observed brightness is the same regardless of its point of view) and rigid, i.e., a body

with no deformable surfaces; we also assume an orthographic projection model is valid, which is the case, for

instance, of a picture taken from a considerable distance (such that the variation of the object depths is very

small when compared to the distance between the camera and the object) with a large focal length. While

these assumptions may seem restrictive, they cover a significant amount of real life cases and we tolerate

small deviations from the Lambertian and orthogonality conditions. This method is therefore of interest to a

number of application domains ranging from architecture — where it may facilitate the acquisition of existing

buildings into 3D models for e.g., planning future interventions — to industrial applications — such as the

rapid reproduction of a prototype design — and 3D mapping.

1.2 State of the art

In this thesis, we look at the correspondence information from a holistic point of view, as it is not our ultimate

goal but rather a mere part of a system that also comprises motion and shape. Our work, therefore, lies

at the intersection of two fertile research fields in computer vision — the correspondence problem and the

reconstruction of 3D scene geometry and camera motion — obviating the need for a detailed description of

both frameworks.

A plethora of methods are available for reconstruction, and can be categorized by the key assumptions

they make [11]: 1) Known Camera methods [12], where we wish to infer the shape of an object based on

calibrated images from known camera viewpoints; 2) Known Shape methods [13], which aim to determine

camera viewpoints given the 3D model and one or more images of it; 3) Known Correspondence methods

[2, 14, 15], which solve, as mentioned in Sec. 1.1, for camera motion and 3D object shape simultaneously,

assuming as known a set of image point trajectories over various images.

Methods that obtain point trajectories in a set of images [16], on the other hand, range from dense to

sparse and feature-based. Within this last category, the majority of the existing methods [5, 17, 18, 19, 20]

tackle the problem by searching for candidates along a direction specified by the Optical Flow (OF), a measure

of apparent movement of objects (see Sec. 2.1). However, due to its non-linearity, these methods use, for

simplicity purposes, a first (sometimes second) order approximation of OF rather than the quantity itself; since

this approximation is built around the origin point, methods based on OF are thus plagued by the aperture

problem, the inadequacy in handling large motions. This poses as somewhat of a paradox for the purpose

of SfM algorithms insofar as while small motions allow for the reliable determination of feature positions

between frames, known correspondence methods require motion to be considerable between frames in order

for the estimation to be robust, due to its estimation being based on a Singular Value Decomposition (SVD).

Moreover, these methods, with the exception of [5, 20], disregard the information available in the object’s

rigidity or on the camera model, which reduce the number of possible matches as each point is not able to

move independently from the others.

Recently, methods [21, 22] were discovered that extract local descriptors in images which not only possess

interesting properties — such as invariance to scale and rotation — but ease the correspondence of these

features in a pair of images, formulating it as a nearest neighbor problem. The success of these techniques

within the frameworks in which they are currently used — e.g., object recognition — motivates its use in a

reconstruction setting.

To the best of the author’s knowledge, little work has been done on solving for correspondences simulta-

neously with motion and shape: Mota et al. [23] propose optimal algorithms for solving the permutation case,

where one has N points in every image and only their correct assignment is not known, assuming that the

camera orientation is either known or easy to infer from camera calibration techniques; Oliveira et al. [24],

under the same assumption, formulate a more general case where a multitude of candidates (outliers) are

available for each of the points in the first image by reducing it to a linear optimization problem. Dellaert et

4



al. [11] bypass the correspondence problem entirely by introducing virtual measurements and then formulating

SfM as a maximum likelihood problem which is solved using the EM Algorithm, due to the intractability of

the likelihood function. Also worthy of note is [25, 26], who formulate structure from motion as a Bayesian

inference problem, which results in iterative methods that may converge to local minima depending on the

initialization.

1.3 Proposed approach

The goal in this thesis is to solve for correspondences, camera motion and object depth altogether, using

only a pair of images with no additional information. The approach presented takes as input sets of point

coordinates, specifically a set of points in the first image, each with a bag of correspondence candidates in the

second image presenting the same intensity value. With this data, we estimate motion between both cameras

and select a number of most likely candidates for each point in the first image according to a threshold defined

by the user (which, in particular, can be the case of 1-to-1 correspondence).

To fulfill this goal, our work proposes a unified approach, one that merges information from brightness

cues available in the images with a model that constrains point trajectories due to the rigidity of the object.

For rigid objects, the influential Factorization approach [2] asserts that the matrix obtained by stacking

point trajectories along multiple frames can also be obtained as a product of a matrix comprising cameras

responsible for each frame by a matrix enclosing the depicted object’s 3D coordinates. The rank deficiency

of this matrix allows us to obtain an estimate of the camera and object matrices as the result of its SVD

decomposition, a solution which provides the optimal approximation of a given rank matrix in the least squares

sense.

We build up on this result, in the sense that we exploit this formulation (albeit not making use of its rank

deficiency) to further constrain and select candidates found using feature extraction algorithms such as the

ones described in Sec. 1.2. Using constraints on the structure of each frame’s camera matrix, we obtain a

subspace in which motion is independent from the object depths. Hence, our problem is split in two phases:

first, the estimation of correspondence and motion parameters within this subspace; then, the estimation of

object depths.

Since this subspace is entirely specified by two parameters, we travel through all subspace possibilities by

performing a grid search on the parameters mentioned. In each case, we look for the explanation that best

concurs with the available candidates according to a specific cost function. By forcing a given physical motion

model in the candidates, we are able to check which points are coherent with each other and dismiss other

candidates in a natural way, therefore bypassing the combinatorial explosion inherent to this problem.

Note that this method, unlike many others, is able to cope with large motions and can be used in a combined

effort with any feature extraction technique. Specifically, it enables us to merge cues from brightness and color

without being prone to the aperture problem.

1.4 Summary of original contributions

In this section, we emphasize the contributions introduced by this work:

New formulation of the correspondence problem for rigid objects We reduce a problem that is plagued

by a combinatorial explosion to an equivalent optimization problem by relying on the rank deficient formu-

lation of SfM problems to constrain the orbits for each point. This formulation couples the estimation of

correspondences, motion and depth within a single optimization problem.
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CERD — Correspondence Estimation using Rigidity and local Descriptors We describe the set of pos-

sible motions as a Stiefel manifold, whose properties allow us to solve the optimization problem by minimizing

a cost function over a search grid in two parameters. The resulting algorithm — CERD — has polynomial

complexity and when the camera parameters are known, it degenerates in an algorithm that is able to find the

optimal solution, with a O
(
N2N2

i

)
complexity, where Ni is the number of correspondence candidates in the

second image for each of the N points in the first image.

The use of color cues for finding correspondence candidates We propose a simple technique to endow

tracking systems to use color as a discriminative feature. This information allows an extra degree of distinction

between features, which results in a reduction of the possible correspondence feature set.

1.5 Thesis outline

This thesis is organized as follows. Chapter 2 formulates our goal within an optimization framework, after

presenting preliminary notions necessary to understand the problem. Chapter 3 describes the steps taken

in order to derive the solution to the problem described in Chapter 2, presents the algorithms derived and

discusses some technical aspects concerning the implementation on a computer system using matlab. Chapter

4 describes results of the experiments performed to assess the performance of the algorithms devised. Finally,

Chapter 5 presents closing comments and provides possible future work directions.
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Chapter 2

Problem formulation

We start by considering an image as an application

I : R2 7→ R3

that maps pixel coordinates (within a bound given by the image length and width) into a certain intensity

value in three color components: red, green and blue. We distinguish the frame f from an image sequence of

the same object by using the notation If , where f corresponds to the frame index in the sequence. We also

refer to the i-th feature point present in the frame f by the coordinate vector ui and to its intensity on frame

f by If (ui).

2.1 Motion

Provided points have the same intensity value in different frames, i.e., the object is Lambertian, the motion of

the i-th pixel between two frames I1 and I2 can be defined as a space shift of the image function along both

of its axis as

I1(xi, yi) = I2(xi + ∆xi, yi + ∆yi),

in which coefficients ∆x and ∆y respectively account for movement along the x and y axis, as represented in

Fig. 2.1.

x

y
I(xn, yn)

Figure 2.1: Orientation of the x and y axis in an image.
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2.2 Cameras

A camera image can be viewed as a two-dimensional (2D) representation of a 3D world. Thus, we model

cameras as projection operators that transform points in 3D space onto an image. While various models exist,

we consider in this thesis that images are obtained according to an orthographic camera model. This particular

model is valid when the variation of the object depths is very small when compared to the distance between

the camera and the object. This happens, for instance, if we consider the camera’s focal length at infinity [9].

Mathematically, it can be written as

u = H


x

y

z

1

 , (2.1)

where u ∈ R2 corresponds to the point coordinates in the image coordinate system, (x, y, z) corresponds to

the coordinates of the same point in the object coordinate system and H ∈ R2×4 is the camera matrix that

maps points from the latter into the former.

In this model, motions are obtained by the composition of a matrix R ∈ R2×3 and a translation vector t

about the object coordinate system, comprising a total of 5 degrees of freedom, as

H =
[

R t
]
. (2.2)

With R being an Euclidean coordinate change, it follows that its rows are orthogonal and have unit norm.

Therefore, all possible matrices R constitute a Stiefel Manifold O(2, 3) [27], the set of R2×3 matrices whose

rows are orthonormal:

O(2, 3) = {R ∈ R2×3 : RR> = I2}. (2.3)

Due to the fact that both vectors have unit norm and are linearly independent, we assert every matrix in

this manifold as having rank 2. Moreover, since the singular values are the square roots of the eigenvalues of

RR>, each of the singular values of R is equal to 1 [28].

2.3 Structure from Motion

In SfM problems, the intent is to estimate the shape of an unknown 3D object from 2D images depicting

different perspectives.

Using the camera definition on (2.1), we write the position of N feature points along F image frames as

the product of a matrix M ∈ R2F×4 (obtained by stacking all camera matrices H responsible for each frame)

by a matrix S> ∈ R4×N , containing the 3D coordinates of the N points tracked in the object coordinate

system, as

W = MS>. (2.4)

Equation (2.4) strongly constrains the rank of W: rankW ≤ 4. The factorization method [2] exploits

this fact to obtain the camera motions M and shape S from an assumed known matrix W by obtaining its

SVD and dismissing all but the first four singular values — the best rank 4 approximation of the matrix in the

least squares sense — and subsequent normalization of the obtained matrices by imposing the the structure

given by (2.2) on each of camera matrices in M .

We consider the case of two sets W1 and W2, containing the coordinates of N points on a pair of images

(F = 2). Assuming the first camera coordinate system is aligned with the object coordinate system and
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perpendicular to the z axis [14], we can write M as

M =

[
I2 02

R t

]
,

where R ∈ R2×3 models the orientation of camera 2 relative to the object coordinate system and t ∈ R2

describes the translation between the camera’s and object’s points of origin.

By splitting R in the matrix A ∈ R2×2 and vector b ∈ R2 as

R =
[

A b
]
, (2.5)

the transformation between images W1 and W2 can be decomposed as

W2 = AW1 + bz> + t1>, (2.6)

allowing the interpretation of a transformation comprised by three steps as in Fig. 2.2: the one applied by the

operator A (that performs a 2D rotation followed by an asymmetrical scaling of the axis and another rotation)

and the addition of components along the axis b (according to the respective point depths z) and t (common

to all points).
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Figure 2.2: Image motion decomposed in three sub-transformations: the one applied by the operator A (left), translation along
the vector b according to each point depth zi (center) and translation t applied commonly to all points (right).

According to this formulation, in the SfM with correspondences case, one wishes to find, given a set of

point trajectories along two frames, the unknowns A, b and t that define the camera motion, as well as the

unknown object depths z, such that (2.6) holds.

2.4 SfM without correspondences as an optimization problem

However, equations (2.4) and (2.6) are only valid for the case where correspondences are known. The problem

we formulate, on the other hand, makes no such assumption, and is thus plagued with a large number of

outliers in the form of candidate matches. This fact alone is what constitutes the main challenge of this

problem, due to the combinatoric explosion arising from the existence of several possible matches.

We are, however, able to surpass this curse of dimensionality and achieve an accurate solution with

polynomial complexity, by making use of the fact that the intensity is independent from the object’s point

of view (we assume a Lambertian object) and, as such, point correspondences between images must display
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the same intensity value. For the aforementioned case of two image frames W1 and W2, this yields

I2(AW1 + bz> + t1>) = I1(W1),

a formulation that restricts the possible destinations of each of the i ∈ 1, . . . , N points present in the image

can take by unifying rigidity and intensity constraints. We now have everything set to formulate our goal of

joint correspondence, motion and shape estimation in more detail.

Problem Statement Given I2, I1,W1 = [u1 . . . uN ], find A,b, t, z such that

I2(Aui + bzi + t) = I1(ui), ∀i ∈ 1, . . . , N. (2.7)

Each constraint specified in (2.7) can be interpreted as a restriction on the point trajectory to candidates

that match the point intensity specified in image I1 as

I2(Aui + bzi + t) ∈ Si, ∀i ∈ 1, . . . , N,

where Si represents the level curve of I2 with value given by the point ui’s intensity in image I1. In practice,

we have small variations due to illumination and shading, so we consider all points whose intensities are in the

small polyhedron centered in I1(ui), as

Si = {v ∈ R2 : ||I1(ui)− I2(v)||1 ≤ ξ}. (2.8)

This formulation suggests the optimization problem of finding correspondences such that the distance d of

each point Aui + bzi + t to its respective intensity level set Si is minimized, or

minimize Φ(A,b)
subject to AA> + bb> = I2,

(2.9)

where

Φ(A,b) = inf
t∈R2,z∈RN

N∑
i=1

d(Aui + bzi + t,Si), (2.10)

the set distance d(·, ·) is defined as

d(xi,Si) = min
v∈Si

||xi − v||2

and the restriction AA> + bb> = I2 follows from (2.3) and (2.5).

In words, we wish to find the transformation of type (2.6) that best repositions points ui obtained using

any given feature extraction method in the first image with their respective level sets Si in the second image.

By doing this, we are not only able to assess the goodness of a camera model given image intensity data, but

obtain from the level sets Si the correspondence candidates that best fit that model.
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Chapter 3

CERD — Correspondence Estimation

using Rigidity and local Descriptors

So far we have formulated the problem of finding correspondences, motion and depth within a unified op-

timization problem. In this chapter, we deepen our formulation to a level where we can propose a solution

(Sec. 3.1 to Sec. 3.2) and describe the resulting implementation (Sec. 3.3).

An important remark should be made at this point: for each given A,b, the value of the cost function in

(2.10) is itself an optimization problem. Thus, the question naturally following is as to how this value should

then be calculated, given these matrices.

Let us start by decomposing t in two components

t = αb + γb⊥, ||b⊥||2 = 1,

where b⊥ stands for the orthogonal complement of b. In doing this, we implicitly assume that b 6= 0,

a condition equivalent to not having a pure planar motion, as the influence of object depths in motion is

confined within that subspace. Provided this condition is met, we are able to rewrite (2.10) as

Φ(A,b) = inf
α∈R,γ∈R,z∈RN

N∑
i=1

d(Aui + b(zi + α) + γb⊥,Si). (3.1)

There is an intrinsic ambiguity to finding the value of the factors zi + α from its sum alone. Thus, we

collapse these two variables in zi (i.e., we assume α = 0 for simplicity), rendering (3.1) as the optimization

problem

Φ(A,b) = inf
γ∈R,z∈RN

N∑
i=1

d(Aui + bzi + γb⊥,Si),

which we further simplify by using the fact that the infimum over two variables can be decoupled as

Φ(A,b) = inf
γ∈R

[
inf

z∈RN

N∑
i=1

d(Aui + bzi + γb⊥,Si)

]
. (3.2)

When A,b, γ are known, we have a clear geometric interpretation of the problem formulated in (3.2). As

can be seen in Fig. 3.1, the effect of not knowing the object depths zi is that every point in I2 belonging to

the line with direction given by the vector b that intersects the point Aui +t is considered valid by the motion

model. All points in this line intersecting the level curve Si are, therefore, considered correct correspondences.

Having said this, we are interested in minimizing the distance of the level curve Si to the line passing through
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the point Aui + γb⊥ with direction b. In Appendix A, we show that the cost function in (3.2) becomes

Φ(A,b) = inf
γ∈R

N∑
i=1

d
(
(b⊥)>Aui + γ, (b⊥)>Si

)
.

y

x

b

b⊥

{Au1 + t + bz1 : z1 ∈ R}

{Au2 + t + bz2 : z2 ∈ R}

{Au3 + t + bz3 : z3 ∈ R}

S1

S2

S3

Au1 + t

Au2 + t
Au3 + t

Figure 3.1: Ambiguity of correspondence for known H and unknown object depths z. The dashed lines represent the variation of
object depth z, making each intersection of the lines passing along Aui with direction given by the vector b and level curves Si

a valid correspondence.

This new measure corresponds to projecting every point in Si and Aui onto the subspace defined by b⊥,

the orthogonal complement of b. In this subspace, the entire line passing through the point Aui with direction

b collapses in a single point, allowing a representation that is independent of the object depth zi.

In practice, since the image has a finite resolution, and therefore a finite number of points, the level sets

Si degenerate into discrete sets

Si = {vi,1, . . . ,vi,Ni},

where Ni represents the number of points in the second image in the level set Si. Hence, the set distance

operator d(·, ·) is naturally defined as the minimum distance between the point (b⊥)>Aui + γ and every

element in the set (b⊥)>Si

d
(
(b⊥)>Aui + γ, (b⊥)>Si

)
= min

k∈{1,··· ,Ni}

∣∣(b⊥)>Aui + γ − (b⊥)>vi,k

∣∣ . (3.3)

Since R is in the O(2, 3) manifold, we are able to fully parameterize its components A and b (see

Appendix B for a detailed derivation) as

A =

[
cos θ − sin θ

sin θ cos θ

][
1 0
0 r

][
cos φ ± sinφ

∓ sinφ cos φ

]
, (3.4)
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b = ±

[
− sin θ

cos θ

]√
1− r2. (3.5)

This result allows us to span the entire manifold O(2, 3) using only three parameters. It is worth noticing

that the family of motion matrices with r = 1 corresponds to motion patterns that are entirely independent of

the unknown depths z of the object. This, as mentioned before, corresponds to motion matrices representing

planar motions, since the object depths z have no influence on point trajectories.

For the purposes of this discussion, we shall discard the signal ambiguity present in V>, forcing it to the

form

V> =

[
cos φ sinφ

− sinφ cos φ

]
and restrict φ to the interval [−π

2 , π
2 ], the minimum interval necessary to span all possible matrices without

repetitions.

Taking into account (3.5), we can write b⊥ as

b⊥ = ±

[
cos θ

sin θ

]
. (3.6)

Using the definition of A in (3.4) and the expression for b⊥ in (3.6), the product (b⊥)>A in (3.3) is

simplified, yielding

d
(
(b⊥)>Aui + γ, (b⊥)>Si

)
= min

k∈{1,··· ,Ni}

∣∣∣∣∣u>i
[

cos φ

sinφ

]
+ γ − v>i,k

[
cos θ

sin θ

]∣∣∣∣∣ (3.7)

where we have factored out the sign indetermination in b⊥.

Note that despite R being defined univocally by the parameters (r, θ, φ), (3.7) only depends on the last

two and translation component γ. Besides that, the orthonormality constraint in (2.9) is embedded within

this equation. This allows us to reformulate the optimization problem in (2.9) as

minimize Φ(A,b) = infγ∈R
∑N

i=1 d
(
(b⊥)>Aui + γ, (b⊥)>Si

)
(3.8)

where the set distance d(·, ·) is defined as in (3.7).

3.1 Solving for translation

Since now we have defined how to calculate the value of Φ(A,b) given A,b, let us assume that the camera

parameters are available, such as in the case where camera calibration techniques are easy to apply [23]. Since

the parameters θ and φ are known, the problem formulated in (3.8) is reduced to

inf
γ∈R

C(γ) (3.9)

where the cost function C(γ) is

C(γ) =
N∑

i=1

min
k∈{1,··· ,Ni}

∣∣∣∣∣u>i
[

cos φ

sinφ

]
+ γ − v>i,k

[
cos θ

sin θ

]∣∣∣∣∣ (3.10)

According to this formulation, we wish to obtain from a set of i ∈ {1, . . . , N} points in the first image

and respective sets of candidates Si (each with Ni prospective matches) in the second image, a candidate

vi,k ∈ Si for each point that corroborates best the motion given by the camera parameters A,b and the
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translation component γ.

The solution we propose relies on the key observation that, in the absence of noise, γ is common to every

correct correspondence, i.e., it is given by the difference between the point in the first image and it’s correct

match in the second image, when projected onto the subspace defined by b⊥. According to this rationale,

we restrict γ to forced correspondences between points in the first image and every possible candidates in the

second, as

γm,n = v>m,n

[
cos θ

sin θ

]
− u>m

[
cos φ

sinφ

]
, (3.11)

where um stands for the coordinates of the m-th point (m ∈ {1, . . . , N}) in image W1 and vm,n for the

position of the n-th correspondence candidate for point n in the level set Sm.

This results in the confinement of (3.9) to a search in the finite set of possible correspondences

min
m∈{1,··· ,N}
n∈{1,··· ,Nm}

C(γm,n) (3.12)

Note that this problem is equivalent to (3.9) in the absence of noise, with the set of forced matches including

the optimal solution.

For the problem presented in (3.12), we offer the solution presented in Algorithm 1: For each of the possible

forced correspondences γi,j , we select from the level sets Si the best match for each of remaining N−1 points

in image 1 as the candidate with the least distance (i.e., the nearest neighbor) according to the set distance

d(·, ·). We could have restricted the search to one point in the first image and its respective level set, but we

chose to make use of the redundancy present in the data in order to account for scenarios that might occlude

some of the points in the image.

Algorithm 1 Solution for γ.

Initialize Global Cost C = ∞
for all (m ∈ {1, . . . , N}) do

for all (n ∈ {1, . . . , Nm}) do

Take γm,n as in (3.11)

for all (i ∈ {1, . . . , N} \m) do

Select ui’s nearest neighbor from Si according to distance (3.7)

end for

if C(γm,n) calculated as in (3.10) better than current estimate C then

Update Global Cost C = C(γm,n)
end if

end for

end for

In doing this, we have reduced a problem with a number of possible assignments that is combinatoric(
N×Ni

Ni

)
to polynomial, with an algorithm that has a number of operations that approximates O

(
N2N2

i

)
.

To illustrate the clear distinction between the two orders of magnitude, consider the case of N = 10 points

in the first image, each with Ni = 15 candidates: the polynomial approach finds the solution with a mere

22500 operations, whereas a combinatoric approach explodes to approximately 1.1696 × 1015 (!) operations.

Besides, this method is capable of dealing with outliers since for a given forced correspondence γm,n, the set

distance operator d(·, ·) selects candidates by how much they match a given physical camera model given by

A,b.

In the case where the camera parameters are known and the candidates available in the second image differ
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from W2 only by a permutation matrix Π, such as in [23, 24], Algorithm 1 can be modified to find the optimal

solution with a complexity of O
(
N log N

)
, where N is the number of points considered in each image.

Theorem 1 (Optimality of Algorithm 1). Given a set of images W1, Si = W2Π,∀i = 1, . . . , N and known

camera parameters (θ, φ), if there exists a pair (γ,Π) such that (2.6) holds, Algorithm 1 is able to determine

it. Moreover, this solution is unique if the projections of W1 and W2 in the b⊥ axis (resp., constellations 1
and 2) are injective.

Proof. Based on (3.11), we can interpret the translation component γ to be the difference between the

position of the same point in both constellations 1 and 2. For the correct values of (θ, φ), which in this case

are assumed known, finding a value of γ such that (2.6) holds has the geometric interpretation of finding a

common translation that superimposes all points from constellation 2 with their homologous in constellation

1. In order for both constellations to overlap, the only possible correspondence is the same found by the

natural order of the points along the axis as any permutation would imply either of two cases: 1) the solution

requires a γ value that is not common to equation of the system, a contradiction of (2.6), which states that

the translation component is common to all points in the constellation or 2) a common translation other than

the one obtained with the natural order is used, which necessarily renders at least one equation of the system

impossible, as at least one point — the upper or lower bound of the set — of the constellation 2 will not

overlap with any of the points in constellation 1.

It should be noted that if the transformations that obtain constellations 1 and 2 from W1 and W2 are

not injective, two points will have the same projection on the b⊥ axis; in this case, the set order makes no

distinction between the two, therefore making it impossible to distinguish between the possible correspondence

solutions.

3.2 Solving for rotation

Without any additional information other than the pair of images per se, it may be hard to obtain a constellation

differing from the correct one by a permutation matrix or prior knowledge the camera parameters. In this case,

we only dispose of a finite set of possible matches for each point in W1, obtained from features embedded in

the images such as, e.g., color, brightness.

We know from the beginning of this Chapter that the entire manifold O(2, 3) can be spanned by varying the

parameters (θ, φ, r) within the cube [0, 2π[×[−π
2 , π

2 ]× [0, 1]. The cost function introduced in (3.10) assesses

the extent to which correspondences can be explained by a rigid, orthographic motion, allowing us to select

the best candidates for a motion given by a specific pair (θ, φ). Hence, Algorithm 1 can be subsumed under a

broader algorithm that performs a discretized search on the parameter grid (θ, φ) and calculates for each tuple

the candidates that best agree with the given motion. This method, which we call Correspondence Estimation

using Rigidity and local Descriptors (CERD), is summarized in Algorithm 2.
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Algorithm 2 CERD — Correspondence Estimation using Rigidity and local Descriptors.

Initialize Global Cost C = ∞
for all −π

2 ≤ φ ≤ π
2 do

for all 0 ≤ θ < 2π do

Calculate Φ(A,b) for current (θ, φ) using Algorithm 1

if Φ(A,b) better than current estimate C then

Update Global Cost C = Φ(A,b)
end if

end for

end for

Since we perform a search throughout O(2, 3), this method finds the global minimum of (3.12) up to a

specified grid resolution, giving as a byproduct the motion model and point correspondences that generate it.

It should be noted that this algorithm can be categorized as having a polynomial complexity ofO
(
NpN

2N2
c

)
,

where Np stands for the number of points the grid is discretized in. Therefore, a clear trade-off exists between

the accuracy of the motion estimation (and consequently, candidate selection) and computation time.

3.3 Implementation

In the following paragraphs, we describe what we believe to be the most relevant technical aspects of the

matlab implementation we developed of the algorithm presented in Sec. 3.2:

Candidate Retrieval Although CERD is able to take as input sets of candidates resulting from any feature

extraction algorithm, we have implemented a simple algorithm that allows candidate retrieval based on pixel

color. Regarding this implementation, a few comments should be made:

• When selecting both points and match candidate, we only consider corners, as large color surfaces lead

to a candidate explosion. We use the corner detector in [29, 30];

• An RGB color model is assumed. In this model, a pixel color is represented by three integers representing

the red, green and blue channels that take value between 0 and 255. The effect on color pixel with the

variation of these values is depicted in Fig. 3.2.

• The candidates obtained need not be a perfect color match for the selected pixel in the first image.

Instead, they are only required to be within an bounded cube centered around this color as in (2.8). We

do this in order to account for changes of lighting or camera white balance;

Candidate and Global Cost calculation In order to optimize the calculation of each candidate and iteration

cost, we resorted to the use of a tensor of order 3 to collect each bag of candidates. This representation allows

us to find the best candidates and cost using matlab’s built-in functions min and sum. According to [31, 32],

these functions contain memory optimization techniques which provide a speedup relative to a regular for

cycle, resulting in faster overall execution. For the same reasons, we have used the function bsxfun to perform

operations and matrix replications simultaneously.
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Figure 3.2: RGB color space. The axis represent channels Red, Green and Blue, with integers varying between the values 0 and
255.
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Chapter 4

Experiments

In this chapter, we perform experiments in order to assess the performance of the method presented in this

thesis. We have divided this chapter in sections, each describing a set of experiments exploring a specific topic:

in Sec. 4.2, we evaluate the algorithms devised in Chapter 3 with synthetic data, measuring the correctness

of the obtained results and the behavior of the cost function minimized by the algorithms. In Sec. 4.3, we

simulate, also with synthetic data, an entirely automatic SfM scenario by making the camera parameters

unknown. Sec. 4.4 extends the results obtained in the previous sections using real data. Finally, in Sec. 4.5

we couple our method with existing state of the art feature extracting algorithms, such as SIFT.

4.1 Methodology and setup

In this section, we describe the methodology used to synthesize images according to the model presented in

Chapter 2.

For each test case, we obtain a pair of random images, as follows: we generate parameters t, r, θ, φ

and the shape matrix S according to a uniform distribution, the latter bound to the interval [0, ws]. We then

specify points in the first image (the set W1) as the first and second rows of S> and obtain W2 according to

the model in (2.6). We obtain each of the level sets Si as the union of each point in W2 with an additional

Nc candidates, also generated from a uniform distribution with window size ws. Additionally, if occlusion is to

be tested, we remove from a number 0 ≤ No ≤ N of randomly selected level sets the original match in W2.

A few constraints are placed on the tests made: first, we truncate the values of (θ, φ) to the square

[0, 2π[×[−π
2 , π

2 ]; second, we perform a sweep of the the variable in test (grid resolution or number of occlusions)

before generating a new set of points and motion. These constraints allow the comparability of the cost

function and mismatches throughout the parameter variation space and ease the calculation of the error in the

estimation of the parameters θ and φ without losing, as mentioned in Chapter 3, the generality of spanning

the entire manifold.

All experiments were performed on a laptop with a 2.4 GHz Intel Core 2 Duo processor and 4 GB of RAM

running Matlab R2008a.

4.2 Known θ, φ

In this section, we present a few illustrative examples of the behavior of Algorithm 1, namely on the optimality

of its results. The experiences presented here are related to evaluating the function Φ(A,b) for a given pair

θ, φ, as described in Sec. 3.1.
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Points frame 1
Correspondences frame 2
Outliers frame 2

(a)

 
Points frame 1
Correspondences frame 2
Obtained results frame 2

(b)

Figure 4.1: Points in a pair of synthesized images for N = 5 and Nc = 10. The colors represent points with equal intensity
value: (a) input data; (b) results obtained.

Constellations on both image and on the projected axis. In this experiment, we generated a pair of

images with N = 5 points in the first frame and N level sets in the second, each with Nc = 10 candidates, as

described in Sec. 4.1. Fig. 4.1 shows an example of the pair of images used in this experiment and the results

obtained by our method.

We feed the algorithm with points W1 and level sets Si, as well as the camera parameters θ and φ, leaving

the correct matching between points in both images to be obtained. Fig. 4.2 shows the variation of the cost

function C(γm,n) for each of the forced correspondences, with minima occurring when each of the N points

is matched with its correct pair.
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Figure 4.2: Behavior of C(γm,n) for N = 5 and Nc = 10.

It is worth noticing that, despite the considerable point distances between images 1 and 2 (Fig. 4.1), the

inliers in both constellations fully overlap (Fig. 4.3) after being projected in the subspace defined by b⊥ and

subtracting the translation component γm,n obtained in the minimization process. These results demonstrate

the usability of this subspace not only for its dimensionality reduction but for its independence from unknown

variables r and z.

Robustness to outliers. In this paragraph, we assess the behavior of the algorithm with the variation of the

number of points and cardinality of the level sets Si. For this purpose, we introduce the concept of average

point disparity, which we define as the average of the `1 norm of the distance between ground truth (with

noise) and the algorithm’s output, for each of the N correspondences, or
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1
N × ws

N∑
i=1

||v̂i − vi||1

where v̂i,vi stand respectively for each correct (ground truth) and calculated match for point ui and ws is the

normalization constant that factors in the window size bounding generated data (for simplicity sake, however

we select ws = 1). Note that by making this a distance measure rather than a binary (match, mismatch)

decision, the average point disparity takes into account the case where the points obtained are not the original

candidate but a neighboring point.

We performed 500 tests for each combination of points N and candidates Nc in the square [1, 20]× [1, 40].
A typical correspondence scenario for N = 20 points and Nc = 40 match candidates is depicted in Fig. 4.4.

On every test we made, we obtained exact matches for all of the points. These results show that the

knowledge of camera motion heavily constrains possible assignments and the result neither depends on the

number of points N nor candidates Nc. This allows us to conjecture that the optimality conditions present

in Theorem 1 may be generalized to the case where one has more candidates than the ones arising from a

permutation case. In the absence of noise, our method is therefore able to find the optimal solution

while bypassing the combinatoric nature of the problem.

Sensitivity to noise. In practice, images are subject to errors inherent not only to sensor noise but to a

discretization in pixels. To illustrate the robustness to noise of our method, we now generate data with a fixed

number of points of N = 5 and candidate matches of Nc = 10. We apply to the each of the point inliers in

the second constellation Additive White Gaussian Noise (AWGN) with standard deviation σ as a fraction of

the window size ws. Then, we feed these points to Algorithm 1 and measure the variation of cost C(γm,n)
(Fig. 4.5) and average point disparity (Fig. 4.6) with the standard deviation of noise σ.

The results present in Fig. 4.6 show that the algorithm’s ability to make correct matches decreases with

the presence of noise, being able to estimate correspondences within a 5% disparity bound while subject to

noise levels around σ = 1 × 10−3. Translating to a real case scenario, our method is able to withstand noise

levels corresponding to having a measurement error greater than 6 pixels in approximately 32 % of all points

registered in a 4000× 4000 pixels (a 16 Megapixel image), a value by far greater than what is obtained with

today’s cameras.

On the other hand, the value of C(γm,n) increases with σ, allowing us to conclude that an increase in

noise levels incurs in a fading of the separation between minima and the remaining values for the cost function,

making the matching process more strenuous. In fact, Fig. 4.7, which shows the variation of the cost function

!1 !0.8 !0.6 !0.4 !0.2 0 0.2

1

2

Projection on b
!

Fr
am

e

 

 
Points in frame 1
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Outliers in frame 2

Figure 4.3: Image points after projection in b⊥ and subtraction of component γ for N = 5 and Nc = 10. The colors represent
points with equal intensity value.
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(b) Frame 2, level set S1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) Frame 1, u2
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(d) Frame 2, level set S2
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(f) Frame 1, u20
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(g) Frame 2, level set S20

Figure 4.4: Point and candidate distribution throughout the images for a typical scenario of N = 20 points and Nc = 40 match
candidates. The existence of a large number of candidate matches makes the correspondence estimation hard, even for a human.
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C(γm,n) for σ = 1 × 10−3, illustrates this trend; while still showing 5 points with minimum cost, the value

at these points is several orders of magnitude higher, when compared with the noiseless case presented in

Fig. 4.2.
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Figure 4.5: Variation of C(γm,n) with AWGN of standard deviation σ averaged over 6000 tests.
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Figure 4.6: Variation of average point disparity with AWGN of standard deviation σ averaged over 6000 tests.
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Figure 4.7: Variation of C(γm,n) for known camera parameters for N = 5 and Nc = 10 for noise with standard deviation of

1 × 10−3.
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Figure 4.8: Variation of cost function Φ(A,b), average point displacement and camera parameters θ and φ estimation errors
with the number N of points and number Nc of candidate matches for a grid resolution of 2500 points: (a) variation of Φ(A,b);

(b) variation of average point disparity; (c) variation of estimation error for θ; and, (d) variation of estimation error for φ.

4.3 Fully automatic SfM

Building up on the experiments of Sec. 4.2, we now test our algorithm as an automatic SfM recovery system.

For this purpose, we only feed the algorithm the inputs W1 and level sets Si generated as before, leaving the

camera parameters to be estimated.

Variation with number of points and candidates. In this experiment, we assess how the behavior of the

cost function Φ(A,b) and the average point disparity change when the algorithm is subject to a variation on

the number of points N and the cardinality Nc of the level sets Si. Results are present in Fig. 4.8.

Several conclusions can be drawn from this experiment:

• The cost function Φ(A,b) values are small, indicating a solution that respects both constraints is found

for all cases;

• Although Φ(A,b) values grow with the number of points N , this phenomena is due to the fact that the

cost function is made of a larger set of residuals. This is a consequence of having grid discretization,

and should therefore lose its importance as resolution is increased;

• Having more points in the first frame adds information on the shape and possibly confines motion

estimation, allowing for better estimation of correspondence and camera parameters θ and φ;

• On the other hand, an increase in the number of candidates Nc allows for a lower value of Φ(A,b),
since with more outliers, there are more possibilities of rearranging data into explanations other than the

one given by ground truth, as can be inferred from the fact that the considerable average point disparity;
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Figure 4.9: Variation of cost function Φ(A,b) with camera parameters θ and φ for N = 5 points and Nc = 10 candidates for a
grid resolution of 2500 points (the cross in the contours represents parameters θ, φ used to generate data): (a) surface obtained

with multiple candidates; (b) surface obtained with ground truth; (c) contour obtained with multiple candidates; and, (d)
contour obtained with ground truth.

• The fact that the estimation of motion parameters θ and φ worsens as a the number of candidates Nc

increases can be attributed to the same reasons.

These results allow us to define a region for this grid resolution of Nc ≤ N candidates to N points where

the number of outliers is such that they are not easily coupled into an alternative valid motion model, thus

encouraging the use of the proposed search on all possible motion matrices present in the Stiefel manifold.

Within this region, our method is able to successfully estimate motion and correspondences from

images alone in a non-combinatoric fashion. To get a sense of what the cost function Φ(A,b) profile is

in this region, we show in Fig. 4.9 the cost function obtained for N = 20 points and Nc = 10 candidates

and the cost function obtained by feeding only ground truth to Algorithm 2. This figure shows that both cost

functions exhibit their global minimum in the same neighborhood, which coincides with the values of (θ, φ)
used to generate data.

It should be noted, in this context, that the algorithm selecting candidate matches, i.e., the feature

extractor, is the sole responsible for the value of Nc. The choice of local descriptors and their ability to

discriminate between possible matches is, therefore, important when it comes to avoiding multiple explanations

for the data.

Grid resolution variation. For each of the test cases, we now vary the resolution of the grid and measure

the results of the obtained camera parameters φ and θ against ground truth, as well as the value of the cost

function Φ(A,b) and the average point disparity, for different values of the number of candidates Nc.

Results on the parameter estimation error for φ (Fig. 4.13) and θ (Fig. 4.12) restate the algorithm as a

good motion estimator, even in the presence of a number of outliers that exceeds the number of points by a
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Figure 4.10: Variation of Φ(A,b) with grid resolution and number of candidates Nc for N = 10 points, averaged over 200 tests.
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Figure 4.11: Variation of average point disparity with grid resolution and number of candidates Nc for a set of N = 10 points,
averaged over 200 tests.
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Figure 4.12: Error on the estimation of θ with variation of grid resolution and number of candidates Nc for N = 10 points,
averaged over 200 tests.
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significant margin. The estimation is enhanced by an increase of the total number of points in the parameter

grid, achieving the best results for the same grid resolution when a smaller number of candidates is present.

A comparison of the cost function variation Φ(A,b) (Fig. 4.10) with the average point disparity (Fig. 4.11)

shows the existent correlation between the average point disparity and the cost value. As the number of

candidates increases, however, this correlation becomes less evident for smaller scales.

From this experiment, we conclude that the grid resolution should be chosen according to the cardinality

of the level sets Si, therefore allowing the use of coarser resolutions without degrading the results of

motion and correspondence estimation, something to consider as a trade-off exists between using a finer

resolution and computational effort. It should be noted, however, that while a finer scale allows a clearer

distinction between some outlier arrangements and the correct match, multiple arrangements that respect

rigidity constraints can still exist. In these cases, we are not able to do anything but accept all explanations

within these conditions as correct.

Occlusion tests. To evaluate the susceptibility of the algorithm to occlusions, we measure the same metrics

described in the previous test, only now instead of sweeping possible grid resolutions, we use a fixed grid of

2500 points and perform, for each test case, a variation of the number of occlusions in the level sets Si fed to

Algorithm 2.

Results on the variation of cost Φ(A,b) (Fig. 4.14), average point disparity (Fig. 4.15) and parameter

estimation error (Fig. 4.16 and Fig. 4.17) show, in par with the ones obtained in the previous experiment,

that a correlation exists between the cost function and the average point disparity. When the number of

original points occluded increases, the cost function exhibits a larger value as a result of it not being able to

accommodate data as well into the original motion model and not having alternative explanations.

The variation of the measures tested in this experience allows us to conclude that, for the resolution tested,

our algorithm is resilient to mild occlusion.

4.4 Real images

In this section, we exemplify the use of our algorithm to find correspondences in real case scenarios.

Feature selection. For the system to be automatic, we have used a corner detector [29, 30] (as mentioned

in Sec. 3.3) as our feature extraction algorithm to find prospective points in both images. We randomly select,

according to the user input for the number of points, N points to be processed. Care is taken so as to avoid
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Figure 4.13: Error on the estimation of φ with variation of grid resolution and number of candidates Nc for N = 10 points,
averaged over 200 tests.
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Figure 4.14: Variation of Φ(A,b) with number of occlusions No and number of candidates Nc for N = 30 points averaged over
200 tests.
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Figure 4.15: Variation of average point disparity with number of occlusions No and number of candidates Nc for N = 30 points
averaged over 200 tests.
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Figure 4.16: Error on the estimation of θ with variation of number of occlusions No and number of candidates Nc for N = 30
points averaged over 200 tests.
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using the same point more than once, as is to discard points with a very small number of candidates in the

second frame. For each of these points, we then collect the level sets Si by selecting from the detected corners

in image 2 according to intensity restrictions. We restrict both points and candidate matches to corners in

order to avoid the dimensionality explosion inherent to considering entire surfaces as possible matches.

Lego blocks. In this experiment, we test our method against the 768× 576 pixel image pair depicting Lego

blocks in different poses present in Figure 4.18. This stereo pair is a courtesy of the SYNTIM project database

[33] and was captured with a calibrated setup, whose calibration data is present in Table 4.1.

Table 4.1: Camera calibration parameters for Lego blocks pair.

Parameter Value
r 0.9753
φ 1.5610
θ 1.6052

For this pair, the corner detector extracted 57 and 69 points from Frames 1 and 2, respectively. The

distribution of these features through the images can be seen in Fig. 4.19.

In this experiment, we used a grid with a total of 2500 points. The whole process of detecting corner

features, finding candidates and solving for correspondences took 108 seconds, with approximately 51 seconds

of these (47 %) being used by the correspondence estimation algorithm. The resulting camera estimated

parameters and a comparison between these and ground truth is present in Tab. 4.2. It should be noted that

Table 4.2: Error between calibration parameters obtained and ground truth for Lego blocks pair.

Parameter Value Estimated Error
r 0.9753 N/A N/A
φ 1.5610 1.5080 0.0531
θ 1.6052 1.5708 0.0344

the error values obtained are similar to the error due to grid discretization

π√
2500

= 0.0628 rad.

The matching results present in Fig. 4.20 show correct matches for 23 out of a total of 24 points selected

(a match rate of 95.8%). Note that our method does not resort to downsampling or scale pyramids [5],
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Figure 4.17: Error on the estimation of φ with variation of number of occlusions No and number of candidates Nc for N = 30
points averaged over 200 tests.
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(a) Frame 1 (b) Frame 2

Figure 4.18: Lego blocks pair, INRIA c© copyright.

(a) Frame 1 (b) Frame 2

Figure 4.19: Corners detected by the algorithm in Lego blocks pair for use in correspondence estimation.
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instead handling images in their native resolution, therefore avoiding the computational price associated with

these techniques.

Figure 4.20: Matching results for Lego blocks pair. Red lines represent mismatches.

Lego blocks with occlusion. In this experiment, we take the points selected in the previous experiment

and remove the ground truth match from level set S1. In these circumstances, we obtain the same parameter

estimation errors as before (Tab. 4.2) and attain the matching results present in Fig. 4.21. The matching

Figure 4.21: Matching results for Lego blocks pair with occluded points. Blue line represents correspondence obtained for
occluded point. Red lines represent mismatches.

results still show correct matches for 18 out of a total of 24 points (a match rate of 75%). These results

show that the existence of mild occlusion does not seem to perturb the matching process for the majority

of remaining points, allowing us to conclude that our method is able to estimate correspondences and

motion in a robust manner while being subject to a high number of outliers and light occlusion.

Rubik’s cube. In this experiment, we test our method against the 512 × 384 pixel image pair present in

Figure 4.22, depicting a Rubik’s cube with slight perspective effects captured by the author with an uncalibrated

camera across different poses. We have digitally edited the pictures to remove light reflections in the black

grid of the cube and to harmonize face colors between frames. For this pair, the corner detector extracted 214
features in first frame and 210 in the second (Fig. 4.23).

In this experiment, we selected 20 points in frame 1 and obtained level sets in frame 2 with between 5
to 19 candidate matches. Since the corner detector didn’t detect some correct points in frame 2 as possible

matches, we added them to their respective level sets by hand. We used a grid with a total of 2500 points.
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(a) Frame 1 (b) Frame 2

Figure 4.22: Rubik’s cube pair.

(a) Frame 1 (b) Frame 2

Figure 4.23: Corners detected by the algorithm in Rubik’s cube pair for use in correspondence estimation.
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The results are present in Fig. 4.24, and they show correct matches for 15 out of a total of 20 points

selected (a match rate of 75 %). Note that in this case, we have a larger number of candidates than the ones

in the previous experiment, which allows for various explanations of the data by different physical models.

If we consider the direction of b defined by the parameter θ as in (3.5), we notice that the candidates

chosen differ from the correct matches only by small increments.

As mentioned in Sec. 4.3, this might be solved by using a finer grid resolution, albeit incurring in a very

high computational time.

Figure 4.24: Matching results for Rubik’s cube pair. Red lines represent mismatches.

Despite that fact, if we extend the results in Fig. 4.24 to include the 5 point correspondences with the

least cost and consider these good correspondences, as shown in Fig. 4.25, we note that they now include the

majority (4 out of the 5) of the correct matches not found previously. If we consider the best 8 matches, the

remaining correct match is included.

Figure 4.25: Results for best 5 matches in Rubik’s cube pair. Green lines represent ground truth explanation.

This experiment comes to show that, in cases where correspondence estimation is hard, our method is

still able to drastically reduce the cardinality of the set of possible correspondence matches between

frames obtained using brightness constraints. Since all the obtained correspondence possibilities are

validated by a physical model, we are not able (nor other methods, for that matter) to further disambiguate

between these cases.
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4.5 Coupling with existing feature extraction methods

In this section, we present a joint utilization of our method with existing state-of-the-art feature extractors.

The purpose of this usage is to illustrate the versatility inherent to having our method’s input consist simply

of sets of point coordinates, regardless of whence they were obtained from. This characteristic lets us benefit

from the advantages of each feature extraction algorithm, selecting the more appropriate method for each

scenario.

For this purpose, we revisit the Rubik’s cube image pair, this time in its original condition (Fig. 4.26). Note

that in this case corner detection is not appropriate, since it detects features in the cube grid and faces due to

lighting variations (Fig. 4.27). This leads to a large amount of features (663 for the first frame and 1590 for

the second) and consequently, as mentioned in Sec. 4.3, to a poor correspondence estimation (Fig. 4.28) with

no correct matches in the set of 5 least cost matches. Also, the periodic structure (chirping) of the image

makes the disposition of candidates extracted with the corner detector such that they live in the lines defined

by the edges of the faces. This allows for multiple explanations of the data, if the direction of the vector b⊥

is aligned with any of these lines.

(a) Frame 1 (b) Frame 2

Figure 4.26: Original Rubik’s cube pair.

In this experiment, we proceed as follows: we start by extracting from each of the frames image descriptors

using the SIFT implementation in [34] (Fig. 4.29); then, we randomly select N = 20 points from the features

(a) Frame 1 (b) Frame 2

Figure 4.27: Corners detected by the algorithm in original Rubik’s cube pair for use in correspondence estimation.
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Figure 4.28: Correspondence results for original Rubik’s cube pair using corners as features for a grid resolution of 2500 points.

(a) Frame 1 (b) Frame 2

Figure 4.29: Features detected by SIFT in the original Rubik’s cube pair for use in correspondence estimation.

detected in the first frame and form for each of these points their respective level sets Si from the features

detected in the second frame. Note that in this process, we have only used the features image coordinates,

having dismissed the scale and orientation information, since having considerable 3D motion does not allow

us to robustly match points based on these cues. Results are present in Fig. 4.30, and they show a significant

improvement over the corner feature experiment. Out of a total of 20 points, 13 (63%) are included in the

selection of 5 matches with least cost.
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Figure 4.30: Correspondence results for original Rubik’s cube pair using SIFT features for a grid resolution of 2500 points.
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Chapter 5

Conclusions and future work

In this thesis, we have successfully designed and demonstrated through experimentation a method — CERD

— to estimate motion and correspondence between a pair of images by imposing global rigidity constraints

to points and correspondence candidates found using local descriptors. The resulting algorithm has optimal

properties when the camera parameters are known. When they are not, it performs a grid search on the

motion space (a Stiefel manifold) to find the globally best possible explanations for the data. The grid search

nature of our method allows its computational effort to be easily distributed around multiple computers/cores,

by dividing the grid. Also, extensions that provide refinement iterations around discovered minima should be

straightforward to implement. This algorithm has polynomial complexity, therefore bypassing the combinatorial

explosion typically associated with the correspondence problem.

The intrinsic ambiguity of having various possible explanations for the data prevents the distinction of a

specific configuration as the“correct”one. This can be avoided by using more discriminative local descriptors

to find points and correspondence candidates, as was shown by using SIFT features.

In our opinion, further investigation is needed in the following areas:

Polishing. Our experiments show that the algorithm presented in this thesis, despite estimating correctly the

camera motion parameters, is sensitive to occlusion, due to the fact that a correspondence is forced for each

point in the first image. Additional information in the model exists that may leave space for match improvement

as a polishing phase after running the algorithm. For instance, the estimated C(γ) can be checked for an

existence of multiple global minima, allowing us to detect occlusion or reject motion explanations that do

not have this function behavior or rejecting point classes that don’t exhibit the minima at the same order of

magnitude as all others. Alternatively, one could use the assumption that z>1 = 0 and compare the difference

in the average of the points projected on b⊥ between both frames with γ as a measure of confidence;

Extension to multi-frame. The method presented in this thesis has a linear growth on the number of

frames, since we can, for each point in the grid, process every frame. Hence, multi-frame analysis poses as

a natural evolution for the algorithms presented in this thesis, with which the Affine indetermination in the

reconstruction can be disambiguated (see Appendix C for details). Moreover, the multi-frame scenario yields

an interesting optimization problem, which could help further distinguish between the candidates obtained by

this algorithm in more general settings.

Extension to scaled orthography. In this thesis, we have shown that the nature of our method’s input

allows for an efficient coupling with feature extraction methods, which can be used to find interesting points

for correspondence estimation. Although in this thesis, we have dismissed SIFT’s information on scale and

orientation, one might use this to extend our method to work in a scaled orthography case.
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Appendix A

Set distance

In this appendix, we define the operator

d(p + ak,S)

that calculates the distance of the line passing through p with the direction given by a to a given set S.

Mathematically, this corresponds to

d(p + ak,S) = inf
k∈R,s∈S

||p + ak − s|| ,

or, equivalently, to

d(p + ak,S) = inf
s∈S

inf
k∈R

||p + ak − s|| . (A.1)

As can be seen Fig. A.1, the solution of

inf
k∈R

||p + ak − s||

is the projection of the difference between points p and s in the subspace defined by a,

k =
< p− s,a >

||a||2

or, in matrix notation

k =
a>

||a||2
(p− s). (A.2)

Replacing (A.2) into (A.1) gives

d(p + ak,S) = inf
s∈S

∣∣∣∣∣∣∣∣p + a
a>

||a||2
(p− s)− s

∣∣∣∣∣∣∣∣ ,
which can be rearranged into

d(p + ak,S) = inf
s∈S

∣∣∣∣∣∣∣∣(I − aa>

||a||2

)
(p− s)

∣∣∣∣∣∣∣∣ . (A.3)

By noting that (
I − aa>

||a||2

)
=

a⊥(a⊥)>

||a⊥||2

37



p

s

a

p− s

ka

infk∈R ||p + ak − s||

Figure A.1: Visual explanation of distance operator d(p + ak,S).

where a⊥ represents the vector orthogonal to a, (A.3) becomes

d(p + ak,S) = inf
s∈S

∣∣∣∣∣∣∣∣a⊥(a⊥)>

||a⊥||2
(p− s)

∣∣∣∣∣∣∣∣
or the distance

d (p + ak,S) = inf
s∈S

∣∣∣∣ (a⊥)>

||a⊥||2
p− (a⊥)>

||a⊥||2
s
∣∣∣∣ ,

which we define as

d

(
(a⊥)>

||a⊥||2
p,

(a⊥)>

||a⊥||2
S
)

.

It should be noted that, in this context, we consider the set projection (a⊥)>

||a⊥||2S as the set obtained by

projecting each of the points in the original set S individually.
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Appendix B

Parameterization of the Stiefel manifold

O(2, 3)

In this appendix, we derive a general result on the parameterization of matrices that belong to the Stiefel

manifold O(2, 3), the set of R2×3 matrices whose rows are orthonormal:

O(2, 3) = {R ∈ R2×3 : RR> = I2}.

We start by splitting R in the matrix A ∈ R2×2 and vector b ∈ R2 as

R =
[

A b
]
.

Let us now consider the Singular Value Decomposition of the matrix A in (2.5)

A = UΣV>, (B.1)

where U and V> are unitary matrices and Σ is a diagonal matrix comprising its two singular values σ1 and

σ2. The matrix A can be considered a compression of the matrix R0

R0 =

[
R

0 0 0

]

as it can be obtained from the latter using the expression

A = PR0P>

where the orthogonal projection P is simply the operator that discards the last column of R

P =

[
1 0 0
0 1 0

]
.

Let α1, α2, α3 be the singular values of the matrix R0. We know for a fact [35], due to the Cauchy

Interlacing theorem, that

α1 ≤ σ1 ≤ α2

α2 ≤ σ2 ≤ α3 .
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Using the fact that the matrix R0 is a concatenation of a Stiefel Manifold with a row of zeros and, as

such, inherits the rank of the former, we can write α1 = α2 = 1 and α3 = 0. Also, given that U and V> are

unknown rotation matrices, we can write them as

U =

[
cos θ ± sin θ

∓ sin θ cos θ

]
, V> =

[
cos φ ± sinφ

∓ sinφ cos φ

]
.

This allows us to write A as[
cos θ − sin θ

sin θ cos θ

][
1 0
0 r

][
cos φ ± sinφ

∓ sinφ cos φ

]
,

with 0 ≤ r ≤ 1. It should be noted that we have dropped the sign indetermination present in the matrix U

due to the fact that it can be merged with the indetermination present in the matrix V.

Using the definition of Stiefel Manifold presented in (2.3), we can write

RR> = AA> + bb> = I2. (B.2)

Replacing the matrix A in (B.2) by its parameterization in (B.1), we get

UΣV>VΣ>U> + bb> = I2

which can be further simplified, given the fact that rotation matrices are orthogonal matrices, into the form

UΣ2U> + bb> = I2.

By noting that UI2U> = I2, we are able to write bb> as

bb> = U(I2 −Σ2)U>

and, consequently, the vector b as

b = ±

[
− sin θ

cos θ

]√
1− r2,

where the sign indetermination results from the factorization of 1− r2 into two equal parts.
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Appendix C

Depth as a byproduct of CERD

Since the solution to the system expressed in (2.6), repeated here for readability purposes,

W2 = AW1 + bz> + t1>, (C.1)

is equivalent to having a solution that satisfies the systems arising from the projection of the former on a

given subspace and its orthogonal complement, we shall now assume the correct correspondence and unknown

parameters θ, φ, t have been determined and proceed to projecting (C.1) on the axis b

b>W2

||b||
=

b>AW1 + b>bz> + b>t1>

||b||
. (C.2)

Using the parameterization of the matrix A in (3.4) and the form of the vector b present in (3.5), we can

simplify the product b>A, leaving (C.2) as

±
[
− sin θ cos θ

]
W2 = ±

[
−r sinφ r cos φ

]
W1 +

b>bz> + b>t1>√
1− r2

(C.3)

By noting that the inner product of a unit norm vector with itself is 1, transposing and rearranging (C.3),

we get

W>
2

[
− sin θ

cos θ

]
= rW>

1

[
− sinφ

cos φ

]
± z
√

1− r2 + 1t>
[
− sin θ

cos θ

]
, (C.4)

where we have used the distributive property to concentrate the sign in the term z
√

1− r2. From (C.4), we

can conclude that, having the correspondence information and motion parameters θ and φ, the i-th depth

component zi is only determinable up to a transformation

zi =
α− βr

±
√

1− r2
.

dependent on the unknown parameter r.

To understand the implications of not knowing the parameter r, we provide a concrete example. We start

by considering the model present in Fig. C.1, centered in what we shall designate the world coordinate system,

and two cameras positioned relative to the object as in Fig. C.2: the first with its principal ray perpendicular

to the z axis w.r.t. (with respect to) the world coordinate system and the second as a rotation of π
4 radians

about the y axis and no translation relative to the former. For simplicity sake, we will only consider the points

in the edges of the object, whose coordinates w.r.t. the world coordinate system are specified in Table C.1.
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B

CD

A

FE

GH

Figure C.1: Object in 3D coordinate system.

Point (x, y, z) Coordinates

A ( 1,−1, 1)
B ( 1, 1, 1)
C ( 1, 1,−1)
D ( 1,−1,−1)
E (−1,−1, 1)
F (−1, 1, 1)
G (−1, 1,−1)
H (−1,−1,−1)

Table C.1: Coordinates of the points in Fig. C.1 w.r.t. the world
coordinate system.

B

CD

A

FE

GH

B

CD

A

F

H G

E

Figure C.2: Relative position of the cameras w.r.t. the world coordinate system. Left: Camera 1. Right: Camera 2.
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Cameras 1 and 2 correspond, therefore, to the projections

[
u1 . . . uH

]
=

[
1 0 0 0
0 1 0 0

]
xA . . . xH

yA . . . yH

zA . . . zH

1 . . . 1


and

[
v1 . . . vH

]
=

[
cos π

4 0 − sin π
4 0

0 1 0 0

]
xA . . . xH

yA . . . yH

zA . . . zH

1 . . . 1


respectively, obtaining the images depicted in Fig. C.3, for camera 1, and Fig. C.4, for camera 2, with respective

coordinates w.r.t. to each camera coordinate system listed in Table C.2 and Table C.3.

x

y
B

FE

A

Figure C.3: Image obtained by camera 1. The remainder of the
points is invisible due having overlapping projection coordinates

with the points represented.

Point (x, y, z) Coordinates

A ( 1,−1)
B ( 1, 1)
E (−1,−1)
F (−1, 1)

Table C.2: Coordinates of the points in Fig. C.3 w.r.t. camera
1’s coordinate system.

x

y

B

CD

A

FE

Figure C.4: Image obtained by camera 2. The remainder of the
points is invisible due to having overlapping projected

coordinates with the points represented.

Point (x, y, z) Coordinates

A ( 0,−1)
B ( 0, 1)
E (−

√
2,−1)

F (−
√

2, 1)
Table C.3: Coordinates of the points in Fig. C.4 w.r.t. camera

2’s coordinate system.

Performing a SVD on the sub-stiefel component of camera 2’s projection matrix and relating it with the

definition in (3.4) gives

θ =
π

2
φ =

π

2

r =
√

2
2

.

Let us now take W1 and W2 as the coordinates of the points visible in both images, points A,B, E, F .
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By solving (C.4) for each of the 4 points, we get equations
zA

zB

zE

zF

 = ± 1√
1− r2

(
0
0

−
√

2
−
√

2

− r


1
1
−1
−1


)

.

A representation obtained using admissible values for r is present in Fig. C.5 and shows the effect of this

parameter on the object reconstruction. From this image, we can conclude the model is only reconstructed

up to an Affine transformation [9] and different projections are needed to disambiguate this scenario. Note

that when a value of r = 1 is used, the depths of the object cannot be inferred from (C.4). This is coherent

with the fact that transformations with such a value for this parameter are not influenced by the depths of the

object the motion whatsoever, as the vector b becomes the null vector.

B

CD

A

FE

G

H

B

CD

A FE

GH

Figure C.5: Partial reconstruction of the cube (points A, B, E, F ) according to the coordinates obtained in (C) using different
values for the parameter r. Left: r = 0. Right: r = 0.9. All the other points are plotted with the original coordinates for

comparison purposes.
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