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ABSTRACT

We propose new algorithms for computing linear discrimi-
nants to perform data dimensionality reduction from Rn to
Rp, with p < n. We propose alternatives to the classical
Fisher’s Distance criterion, namely, we investigate new cri-
terions based on the: Chernoff-Distance, J-Divergence and
Kullback-Leibler Divergence. The optimization problems
that emerge of using these alternative criteria are non-convex
and thus hard to solve. However, despite the non-convexity
our algorithms guarantee global optimality for the linear dis-
criminant when p = 1. This is possible due to problem
reformulations and recent developments in optimization the-
ory [8],[9]. A greedy suboptimal approach is developed for
1 < p < n.

Index Terms— Linear Discriminants, Data Dimension-
ality Reduction, Fisher’s Distance, Chernoff-Distance, Non-
convex strong duality results, Kullback-Leibler Divergence.

1. INTRODUCTION

Linear Discriminant Analysis (LDA) is a very important tool
in a wide variety of problems. It is commonly used in ma-
chine learning problems like pattern recognition [1],[2], face
recognition [4], feature extraction [3] and data dimensionality
reduction.

A problem that is treated in LDA is the binary class as-
signing problem: given one sample in a high-dimensional
space Rn, say x εRn, decide to which class C0 or C1 it be-
longs to. Usually the two classes C0 and C1 represent two
random sources. The classification process can be made in
high dimension, i.e. in Rn, using all information available.
However this might be computationally heavy for certain real
time applications. So, instead of using all the n entries of the
sample x directly, an appropriate linear combination of them
is made. With this linear combination, we try to capture some
data features (hopefully those where C0 and C1 differ most),
and then perform the data classification. Making these lin-
ear combinations, leads generically to information loss, and
consequently increases the probability of erroneous classifi-
cations. This problem can be attenuated, by making more
than one linear combination, and collect them in a vector y,
to perform the classification. The number of linear combina-
tions is denoted by p, where p < n. That is

y = Qx (1)

where QεRp×n is called the linear discriminant, y εRp is the
vector that collects the p linear combinations, and x εRn is
the sample to be classified. The classification process is made
trough the low-dimensional vector y εRp, which works like a
signature of the sample x.

The key issue here is the design of the linear discrimi-
nant Q. This design process is generically formulated as an
optimization problem, where the objective function measures
class separability in the projected space Rp, i.e.

max f(Q).
Q εRp×n (2)

The choice of the cost function in (2) plays a critical role.
An obvious proposal for such cost function, would be f(Q) =
−P (e)(Q), where P (e)(Q) stands for the probability of error
of the optimum detector in Rp, for the given setup, the minus
sign has to do with the fact, that the optimization problem in
(2), has been written as a maximization problem. However, in
general there is no closed form expression for P (e)(Q). This
motivates the introduction of alternative suboptimum choices,
which are nonetheless tractable.

2. PREVIOUS WORK

We now give a precise formulation of the problem to be
solved and review previous works in this area.

In what follows, the two classes C0 and C1 introduced in
section 1 are identified with two random sources, that are here
denoted by S0 for source 0, and by S1 for source 1. We focus
on the Gaussian case.

Given the two independent n-dimensional Gaussian dis-
tributed sources

S0 : x ∼ F0 = N(µ0,Σ0)
S1 : x ∼ F1 = N(µ1,Σ1) (3)

we wish to find the linear discriminant Q, for data dimen-
sionality reduction, minimizing erroneous classification of the
samples generated by these sources in low dimension.

Being x εRn a sample generated by one of the n-dimensional
sources S0 or S1 that are considered to be equally probable,



a linear mapping from Rn to Rp is made with the linear
discriminant QεRp×n, i.e.

y = Qx.

Due to this linear mapping, we have

s0 : y ∼ f0 = N(Qµ0, QΣ0Q
T )

s1 : y ∼ f1 = N(Qµ1, QΣ1Q
T ) (4)

where s0 and s1 denote the p-dimensional sources that result
from the dimensionality reduction induced by the linear dis-
criminant QεRp×n.

Whenever a sample x is available, it has to be classi-
fied. The classification is made with the maximum like-
lihood criteria, that is more well known in this context as
the Neyman-Pearson detector. The linear map Q is applied
to the sample x, forming y = Qx, and then the maximum
likelihood criterion is applied to the random variable y. If
N(Qµ0, QΣ0Q

T )(y) > N(Qµ1, QΣ1Q
T )(y), y is consid-

ered to have been generated by the p-dimensional source s0

and x is therefore considered to have been generated by the
n-dimensional source S0 and vice-versa.

In the following, we discuss, several proposals for the cost
function f(Q) in (2), and we analyze the strengths and weak-
nesses of previous works, that utilize such cost functions.

A popular choice for f(Q) is the Fisher’s Distance which
is now reviewed.

We wish to optimally separate in Fisher’s sense, the signa-
tures y from S0, from the signatures from S1. Intuitively this
is equivalent, to separate as much as possible the probability
density functions f0 and f1 of the signatures as in (4).

The general optimization problem in (2) under Fisher’s
Distance Maximization criterion [6] is

max tr{(Q(Σ0 + Σ1)QT )−1

(Q(µ0 − µ1)(µ0 − µ1)TQT )}
QεRp×n

(5)

where the objective function is the Fisher’s Distance between
the p-dimensional distributions f0 and f1.

In order to better understand what Fisher’s Distance mea-
sures, the case where QεR1×n is presented. Putting Q =
[qT ], where q εRn, (5) boils down to:

max qT (µ0 − µ1)(µ0 − µ1)T q
qT (Σ0 + Σ1)q

q εRn
(6)

Now, it’s easy to understand that, the outer class variance
qT (µ0 − µ1)(µ0 − µ1)T q = [qTµ0 − qTµ1]2 is being max-
imized while the total inner class variance qT (Σ0 + Σ1)q, is
being minimized.

The solution Q for (5), can be obtained by doing the
eigenvalue decomposition of (Σ0 + Σ1)−

1
2 (µ0 − µ1)(µ0 −

µ1)T (Σ0 + Σ1)−
1
2 , and taking for its p rows, the p eigenvec-

tors associated to the p largest eingenvalues, (see [6]). How-
ever, since (Σ0 + Σ1)−

1
2 (µ0 − µ1)(µ0 − µ1)T (Σ0 + Σ1)−

1
2

has rank 1, it is easy to see that the optimum discriminant for
p > 1 achieves the same performance, as measured by (5), as
the optimum discriminant for p = 1. That is, there is no gain
in projecting to spaces whose dimension p > 1. For p = 1,
the optimum descriminant is Q = [qT ] where q is a solution
of (6), that is

q = (Σ0 + Σ1)−1(µ0 − µ1). (7)

In sum, Fisher’s Distance Maximization criterion enjoys a
closed form solution and a very intuitive interpretation. How-
ever, it only allows dimensionality reduction to p = 1.

It was said previously that in general there is no closed
form expression for the classification error rate. This leads to
the utilization of suboptimal measures for it. The theoretical
basis for the cost functions or measures used in [6] and [7] is
now presented.

Stein’s Lemma. [10] Suppose we have k statically in-
dependent samples from the same source, and the classifica-
tion is made trough the maximum-likelihood detector, then
we have

lim
k→+∞

logPF (k)
k

= −DKL(f0||f1) for fixed PM (8)

lim
k→+∞

logPe(k)
k

= −C(f0, f1) (9)

lim
k→+∞

logPe(k)
k

≥ −JD(f0, f1) (10)

where PF (k) is the probability of false alarm, Pe(k) is clas-
sification error probability and PM is the missing probability,
when k samples from the same source are used to make the
classification. Note that f0 and f1 are the p-dimensional prob-
ability density functions of the signatures y.

The exponents DKL(f0||f1), JD(f0, f1), C(f0, f1) in
(8), are the Kullback-Leibler Divergence, the J-Divergence
and the Chernoff Distance, whose definitions for generic p-
dimensional probability density functions f0, f1 are

DKL(f0||f1) =
∫

Rp

f0(y) log
f0(y)
f1(y)

dy (11)

JD(f0, f1) =
DKL(f0||f1) +DKL(f1||f0)

2
(12)

C(f0, f1) = max − log
(∫

Rp f0(y)tf1(y)1−tdy
)

0 ≤ t ≤ 1
(13)

respectively.
Stein’s Lemma gives asymptotic expressions for PF (k)

and Pe(k). Here, the motivation to use the error exponents as
cost functions is that, hopefully, for small k these asymptotic
expressions already represent good approximations of PF and



Pe. Stein’s Lemma fills heuristically the lack of closed form
expression for these probabilities.

Looking at Stein’s Lemma statement in (8), it can be seen
that in order to minimize PF (k) and Pe(k), DKL(f0||f1),
JD(f0, f1),C(f0, f1) must be maximized. TheDKL(f0||f1),
JD(f0, f1), C(f0, f1) are measures of the dissimilarity
of the two probability density functions f0 and f1. This
is the approach taken in [7] with the utilization of the J-
Divergence, and in [6] with the Chernoff Distance. In [7] the
J-Divergence is maximized for the case where the means of
f0 and f1 are equal, and in [6] the Chernoff Distance is max-
imized, but it is not guaranteed that the linear discriminant Q
found by their iterative algorithm is globally optimal.

3. KULLBACK-LEIBLER DIVERGENCE
MAXIMIZATION

Inserting the probability density functions f0 = N(Qµ0, QΣ0Q
T )

and f1 = N(Qµ1, QΣ1Q
T ) of the signatures y defined in

(4),in the Kullback-Leibler definition in (11), yields

DKL(f0||f1)(q) = 1
2 ( q

T Σ0q
qT Σ1q

− log qT Σ0q
qT Σ1q

+ [qT (µ0−µ1)]2

qT Σ1q
− 1)

(14)

The goal is to find the global maximizer q of (14), i.e.

q = arg max 1
2 ( q

T Σ0q
qT Σ1q

− log qT Σ0q
qT Σ1q

.

q 6= 0 + [qT (µ0−µ1)]2

qT Σ1q
− 1)

(15)

It’s easy to verify, that (14) doesn’t depend on the norm
of q. So a restriction that doesn’t eliminate any direction for
q, is admissible.

In order to simplify the objective function of the optimiza-
tion problem in (15), and without eliminating any direction
for q, the restriction qTΣ1q = 1 is chosen. Applying the re-
striction, the optimization problem in (15) becomes

q = arg max qT [Σ0 + (µ0 − µ1)(µ0 − µ1)T ]q.
qTΣ1q = 1 − log qTΣ0q

(16)
In what follows, Σ0 + (µ0−µ1)(µ0−µ1)T is substituted

by R, resulting

q = arg max qTRq − log qTΣ0q.
qTΣ1q = 1 (17)

The optimization problem in (17) is non-convex. In order
to deal with the non-convexity, a reformulation of the problem
is made by introducing the variables x and y

x = qTRq (18)
y = qTΣ0q (19)

resulting for (17) in

max x− log y.
(x, y) εC = {(qTRq, qTΣ0q) : qTΣ1q = 1}

(20)

Reformulating the optimization problem this way, the opti-
mization is just made in two variables (x, y) εC. However,
the complexity of the original problem is hidden in the def-
inition of the set C. The strategy to solve (17) consists in
finding the solution (x∗, y∗) for (20), and then computing a
corresponding q, i.e, a q that solves the following system of
quadratic equations:

q : qTRq = x∗

qTΣ0q = y∗

qTΣ1q = 1
. (21)

The set C is compact and connected, because it’s the im-
age of an ellipsoid by a continuous map. This implies that if
(x, y) εC, then x and y belong to closed and bounded inter-
vals on R.

The variable x lies in the interval [xmin, xmax] where

xmin = min qTRq
qTΣ1q = 1 (22)

xmax = max qTRq
qTΣ1q = 1 (23)

The solutions to (22) and (23) are xmin = λmin(Σ−
1
2

1 RΣ−
1
2

1 )

and xmax = λmax(Σ−
1
2

1 RΣ−
1
2

1 ) respectively.
Knowing this, the strategy to solve (20) consists in dis-

cretizing the above interval fixing a value for x, and optimiz-
ing over the y variable. Given the objective function in (20),
this corresponds to minimize y.

This procedure has to be done for all points x of the dis-
cretization of [xmin, xmax]. Once this procedure is finished,
the best pair (x∗, y∗) is chosen and the corresponding q de-
fined in (21), is the one that solves (17).

Fixing a value for x ε [xmin, xmax] and attending to (18),
the problem related with the y variable optimization is

min qTΣ0q
qTRq = x
qTΣ1q = 1

(24)

This problem is non-convex and is solved trough duality
theory.

In the process of finding the pair (x∗, y∗) that solves the
optimization problem in (20), for a fixed value of x, it is just
needed to know the value of the best attainable value of y
(calculated in (24)). It can be shown that strong duality exists
for (24) when x ε ]xmin, xmax[. The values of y variable are
calculated trough the dual problem, that is:

max −λ1x− λ21
Σ0 + λ1R+ λ2Σ1 ≥ 0

var : (λ1, λ2) εR2
(25)

In order to obtain the solution q for (17) and knowing that
it verifies qTRq = x∗, the bi-dual problem of (24) is used



where the restriction tr(RQ) = x∗ is the bi-dual equivalent
of qTRq = x∗

min tr(Σ0Q)
tr(RQ) = x∗

tr(Σ1Q) = 1
Q � 0

(26)

Provided Slater conditions are verified for (26) that can be
shown to be equivalent to x∗ ε ]xmin, xmax[ , its solutionQ is a
rank-1 semidefinite positive matrix, and its only eigenvector is
the solution q for the problem i.e., it is the linear discriminant
that optimizes the Kullback-Leibler Divergence criterion.

Similar approaches can be followed to solve for the J-
Divergence in (12) and the Chernoff Distance in (13).

4. GREEDY ALGORITHMS

The algorithms to be developed here perform a dimension-
ality reduction from n dimensions to p dimensions, where
p > 1, through the linear discriminant matrix QεRp×n, i.e.

y = Qx (27)

where x is the n-dimensional sample, Q is the linear discrim-
inant matrix, and y εRp is the signature of the sample x, used
in the classification procedure. The algorithms operate in a
greedy manner. We focus on theKullback-Leibler Divergence
criterion. For the other criteria the algorithms follow a similar
pattern, which will not be repeated here.

The optimal linear discriminantQεRp×n, that maximizes
the Kullback-Leibler Divergence between the p-dimensional
probability density functions f0(Q) = N(Qµ0, QΣ0Q

T ) and
f1(Q) = N(Qµ1, QΣ1Q

T ), is found by solving the opti-
mization problem

max DKL(f0||f1)(Q)
QεRp×n (28)

where

DKL(f0||f1)(Q) =
1
2 (log |QΣ1Q

T |
|QΣ0QT | − tr((QΣ1Q

T )−1(QΣ0Q
T ))

+(µ0 − µ1)TQT (QΣ1Q
T )−1Q(µ0 − µ1)− p).

(29)

The main problem with this approach is the non-convexity of
the objective function. Although, the case p = 1 could be
treated trough a series of reformulations and simplifications
which made possible finding the solution efficiently, we were
not able to extend this procedure for p > 1. So a sub-optimal
approach to solve (28) is taken. This approach consists in
compute the p rows of QεRp×n one by one, by solving p 1-
dimensional optimization problems, like the one in (15) for
the case of the Kullback-Leibler Divergence.

It can be shown that without loss of optimality, the matrix
Q in (28) can be taken to be Stiefel, i.e., with orthonormal

rows. The fact that Q can be a Stiefel matrix motivates the
following procedure to compute its p rows.

Q =

 − q
T
1 −
...

− qTp −


The first row qT1 coincides with the linear discriminant q trans-
posed, for the 1-dimension problem (see 15), i.e.

q1 = q = arg max 1
2(q

TΣ0q
qTΣ1q

− log q
TΣ0q
qTΣ1q

q 6= 0 +[qT (η0 − η1)]2

qTΣ1q
− 1)

(30)

The second row is computed by running again the algo-
rithm, but now imposing that such row is orthogonal to the
first, i.e:

q2 = O1g (31)

where O1 εRn×(n−1) is a matrix, whose columns generate
the orthogonal complement of the subspace generated by q1,
and g εRn−1 is the vector that collects the coefficients of the
linear combination of the columns of O1.

In order to compute q2, a modified version of (30) is
solved, i.e.

g = arg max 1
2(g

TOT1 Σ0O1g
gTOT1 Σ1O1g

− log g
TOT1 Σ0O1g
gTOT1 Σ1O1g

g 6= 0 +[gTOT1 (η0 − η1)]2

gTOT1 Σ1O1g
− 1)

.

(32)
The modification introduced, was the substitution of the q in
(30), by O1g. This imposes orthogonality condition. Note
that this optimization problem has exactly the same form of
the 1-dimensional problem in (30), being therefore solved in
exactly the same way. Note that q2 = O1g.

To solve for row i, it’s just a matter of substituting O1

by Oi−1, being Oi−1, the matrix that generates the orthogo-
nal complement to the subspace generated by the i− 1 rows,
previously calculated.

It’s important to note, that the complexity of the sub-
problems solved to compute the p rows is decreasing. This
is due to the fact that the optimization is being made in
subspaces whose dimensions are decreasing.

5. COMPUTER SIMULATIONS: DIMENSIONALITY
REDUCTION TO R

As an illustration of the superiority of these new methods
compared to the classical Fisher’s Distance criterion, we
show the results for the case of projecting the n-dimensional
samples to R. The results of the simulations are presented for
three distinct cases concerning the parameters of the sources:
distinct means and distinct covariance matrices (table 1),



equal means and distinct covariance matrices (table 2), dis-
tinct means and equal covariance matrices (table 3), with
increasing data dimensionality n = 10, 20, 30, 40, 50.

Table 1. Distinct Means and Distinct Covariance Matrices
JD KLD CHF FLDA

n=10 0.8508 0.8309 0.8607 0.5969
n=20 0.9870 0.9870 0.9415 0.6412
n=30 0.9010 0.9013 0.9376 0.7056
n=40 0.9935 0.9936 0.9426 0.6931
n=50 0.9891 0.9893 0.9430 0.7088

Table 2. Equal Means and Distinct Covariance Matrices
JD KLD CHF FLDA

n=10 0.9852 0.9853 0.9404 0.6006
n=20 0.9827 0.9830 0.9411 0.5159
n=30 0.9820 0.9821 0.9400 0.5255
n=40 0.9867 0.9868 0.9403 0.5243
n=50 0.9583 0.9586 0.9376 0.5053

Table 3. Distinct Means and Equal Covariance Matrices
JD KLD CHF FLDA

n=10 0.6740 0.6743 0.6743 0.6737
n=20 0.9255 0.9254 0.9253 0.9253
n=30 0.9203 0.9202 0.9204 0.9206
n=40 0.9665 0.9667 0.9666 0.9668
n=50 1.0000 1.0000 1.0000 1.0000

As we can see from tables 1 and 2, the FLDA always cor-
respond to the worst performance.

6. CONCLUSIONS AND FUTURE WORK

In this thesis we proposed new criteria for designing linear
discriminants for data dimensionality reduction prior to the
application of a binary detector. We also developed algo-
rithms to solve the non-convex optimization problems cor-
responding to the design of these new linear discriminants.
These algorithms compute the linear discriminants that max-
imize the Chernoff Distance, the J-Divergence and Kullback-
Leibler Divergence between the probability density functions
that characterize the low-dimensional signatures of the origi-
nal data.

The optimization problems that result from maximizing
these measures of dissimilarity of the two sources are non-
convex. However it was possible to solve them efficiently
(global optimality), through reformulations and the use of du-
ality theory, for the case where the n-dimensional samples

are mapped to R. A suboptimal strategy was proposed for the
case of mapping the samples to Rp, with p greater than one.

The results obtained proved uniquivocally that the new
techniques outperform the Fisher’s Distance Criteria. This
is due to the fact that the new criteria can discriminate the
probability density functions through their variance. It’s im-
portant to note that a Gaussian probability density function is
characterized by its two first moments, the covariance matrix
and the mean. Thus a good discriminator should use both to
distinguish them. This is secured in the Chernoff Distance,
J-Divergence and Kullback-Leibler Divergence criteria.
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