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1.a) From the table of ZT pairs and using the linearity of the ZT,

X(z) =
5

1− 1
2z
−1

, |z| > 1
2
, Y (z) =

1
1− 1

2z
−1︸ ︷︷ ︸

|z|> 1
2

+
4

1 + 2z−1︸ ︷︷ ︸
|z|>2

=
5(

1− 1
2z
−1
)

(1 + 2z−1)
, |z| > 2 .

H(z) =
Y (z)
X(z)

=
1

1 + 2z−1
, |z| > 2

(
the ROC is such that, when intersected with the
ROC of X(z), results in the ROC of Y (z) .

)
1.b) The ROC of the system function does not include the unit-circle =⇒ its impulse response is not absolutely
summable =⇒ the system is unstable.

1.c) Y (z) = X(z)H(z) ⇐⇒ Y (Z) = X(z)/(1 + 2z−1) ⇐⇒ Y (z) + 2z−1Y (z) = X(z). Computing the inverse
ZT and using its linearity and shifting properties, y[n] + 2y[n− 1] = x[n].

2.a) From the definition of 20-point DFT,

Y [k] =
19∑

n=0

y[n]e−j 2π
20 kn =

19∑
n=0

y[n]e−j π10 kn .

Since Y [k] = e−j π10 k3, we immediately see that y[3] = 1 and y[n] = 0 for n 6= 3, i.e., y[n] = δ[n− 3].

2.b) X[k]Y [k] is the DFT of the 20-point circular convolution of x[n] and y[n]. Since x[n] and y[n] are of length,
at most, 10, their 20-point circular convolution coincides with the linear convolution (because this is of length,
at most, 10 + 10− 1 = 19 < 20). Thus, the signal with DFT X[k]Y [k] is

x[n] ∗ y[n] = x[n] ∗ δ[n− 3] = x[n− 3] =
{

2 if 3 ≤ n ≤ 12
0 otherwise .

2.c) The signal with DFT X[k]Y [k] is the 10-point circular convolution of x[n] and y[n]:

9∑
k=0

y[k]x[((n− k))9] =
9∑

k=0

δ[k − 3]x[((n− k))9] = x[((n− 3))9] = 2 .

3.a) As requested by the sampling theorem, the sampling frequency should be larger than twice the highest
frequency of the continuous signal, i.e., fs > 2KHz, e.g., fs = 10KHz ⇐⇒ T = 1/fs = 10−4s.

3.b) X[n, 0] = 0⇐⇒
∑99

m=0 x[n+m] = 0, which means the signal x[n] is zero mean (when averaged within any
100-point window). As a consequence, the DC component of the signal xc(t) is also zero (within any window
of size 100T = 0.01s).

3.c) X[400, k] =
∑99

m=0 x[400 +m]e−j 2π
100 km is the 100-point DFT of y[n] = x[400 + n], 0 ≤ n ≤ 99. Thus,

y[n] =
1

100

99∑
k=0

Y [k]ej 2π
100 kn =

1
100

99∑
k=0

X[400, k]ej 2π
100 kn =

1
100

99∑
k=0

(50δ[k − 10] + 50δ[k − 90]) ej 2π
100 kn

=
1
2
ej 2π

100 10n +
1
2
ej 2π

100 90n =
1
2
ej π5 n +

1
2
ej 9π

5 n =
1
2
ej π5 n +

1
2
e−j π5 n = cos

(π
5
n
)

= x[400 + n] .

We conclude that x[n] is sinusoidal, with frequency ω = π/5, for 400 ≤ n ≤ 499. Thus, for 400T ≤ t ≤
499T ⇐⇒ 0.04s ≤ t ≤ 0.05s, xc(t) is also sinusoidal, with angular frequency Ω = ω/T = 2π×103 rad s−1, i.e.,
with frequency Ω/2π = 1KHz.



4.a) Since w is WGN, the 8 samples are independent, thus

p(x;A) =
7∏

n=0

p(x[n];A) =
7∏

n=0

1√
2π
e−

1
2 (x[n]−A sin(π4 n))2

=
1

(2π)4
e−

1
2

∑7

n=0(x[n]−A sin(π4 n))2

,

ln p(x;A) = −4 ln 2π − 1
2

7∑
n=0

(
x[n]−A sin

(π
4
n
))2

,
∂ ln p(x;A)

∂A
=

7∑
n=0

sin
(π

4
n
)(

x[n]−A sin
(π

4
n
))

,

∂2 ln p
∂A2

= −
7∑

n=0

sin2
(π

4
n
)

= −
(

0+
1
2

+1+
1
2

+0+
1
2

+1+
1
2

)
= −4 , CRB(A) =

1

−E
{

∂2 ln p(x;A)
∂A2

} =
1
4
.

4.b) E
{
Â
}

= 1
2E{x[2]−x[6]}= 1

2E{A1+w[2]−A(−1)−w[6]}= 1
2 (2A+E{w[2]}−E{w[6]})=A⇔ Â is unbiased.

4.c) Var
{
Â
}

= Var
{

1
2 (x[2]−x[6])

}
= 1

4Var {2A+w[2]−w[6]} = 1
4 (Var {2A}+Var {w[2]}+Var {w[6]}) =

= 1
4 (0+1+1) = 1

2 > CRB(A) =⇒ Â is not efficient.

5.a) Since w is WGN, the 2N + 1 observations are independent, thus, as in 4.a), we have

p(x;A,B) =
1

(2πσ2)
2N+1

2

e−
1

2σ2

∑
n
(x[n]−An−B)2 , ln p(x;A,B) = const.− 1

2σ2

N∑
n=−N

(x[n]−An−B)2 .

∂ ln p(x;A,B)
∂A

=
N∑

n=−N

n (x[n]−An−B) =
N∑

n=−N

nx[n]−A
N∑

n=−N

n2 −B
N∑

n=−N

n =
N∑

n=−N

nx[n]−A
N∑

n=−N

n2 ,

∂ ln p(x;A,B)
∂B

=
N∑

n=−N

(x[n]−An−B) =
N∑

n=−N

x[n]−A
N∑

n=−N

n−B
N∑

n=−N

1 =
N∑

n=−N

x[n]− (2N + 1)B .


∂ ln p(x;A,B)

∂A
= 0

∂ ln p(x;A,B)
∂B

= 0

⇐⇒


ÂML =

∑N
n=−N nx[n]∑N

n=−N n2

B̂ML =
∑N

n=−N x[n]
2N + 1

5.b) The ML estimate is asymptotically unbiased and efficient, which means that, when the number of inde-
pendent observations grows, its expected value approaches the true value of the parameter and its variance
approaches the CRB. This is case of this problem because the observations are independent. Thus, although
this may also happen for finite N , we have at least the guarantee that, when N →∞,

E
{
ÂML

}
→ A , E

{
B̂ML

}
→ B , Var

{
ÂML

}
→ CRB(A) , Var

{
B̂ML

}
→ CRB(B) .

5.c) According to the ML invariance property, the ML estimate of a function of a parameter vector is just the
function evaluated at the ML estimate of the parameter vector. Thus, the estimate of the noiseless signal at
n = −1, i.e., of C = B −A, is

ĈML = B̂ML − ÂML =
0 + 6 + 6
2× 1 + 1

− (−1)× 0 + 0× 6 + 1× 6
(−1)2 + 02 + 12

= 1 .

6.a) Using the Bayes law for conditional densities,

p(A|x) =
p(A, x)
p(x)

=
p(A, x)∫ +∞

−∞ p(A, x) dA
=

p(x|A)p(A)∫ +∞
−∞ p(x|A)p(A) dA

.

x = A+ w. Given A, x has the same distribution of w, with a different mean, p(x|A) = e−(x−A)u(x−A).

p(A) =
{

1/2 if 1 ≤ A ≤ 3;
0 otherwise , p(x = 2|A)p(A) = e−(2−A)u(2−A)p(A) =

{
eA−2/2 if 1 ≤ A ≤ 2;
0 otherwise .∫ +∞

−∞
p(x = 2|A)p(A) dA =

∫ 2

1

eA−2

2
dA =

e−2

2

∫ 2

1

eA dA =
e−2

2
(
eA
)∣∣2

1
=
e−2

2
(
e2 − e1

)
=

1− e−1

2
.



p(A|x = 2) =
p(x = 2|A)p(A)∫
p(x = 2|A)p(A) dA

=
{
eA−2/(1− e−1) if 1 ≤ A ≤ 2;
0 otherwise .

6.b) ÂMMSE = E{A|x = 2} =
∫ +∞

−∞
Ap(A|x = 2) dA =

∫ 2

1

A
eA−2

1− e−1
dA

=
e−2

1− e−1

∫ 2

1

AeA dA =
e−2

1− e−1

(
AeA − eA

)∣∣2
1

=
e−2

1− e−1

(
2e2 − e2 − 1e1 + e

)
=

1
1− e−1

' 1.58

6.c) ÂMAP = arg max
A

p(A|x = 2) = 2, as it is clear from the expression of p(A|x = 2) or its sketch in 6.a). The

MAP estimate is optimal in the sense of minimizing the risk given by the expected value of the hit-or-miss cost,
which penalizes erroneous estimates with a positive constant, i.e., independent of the magnitude of the error.

7.a) The model xi ' c1φ1(ti) + c2φ2(ti) + c3φ3(ti) is x ' Φc, with

x =


1
3
3
2

, Φ =


φ1(0.5) φ2(0.5) φ3(0.5)
φ1(1) φ2(1) φ3(1)
φ1(2) φ2(2) φ3(2)
φ1(3) φ2(3) φ3(3)

=


0.5 0 0
1 0 0
0 1 0
0 0 1

, and c =

 c1c2
c3

 .
ĉLS = arg minc(x−Φc)T (x−Φc) = (ΦT Φ)−1ΦT x (which exists and is unique if and only if ΦT Φ is nonsingular).

ΦT Φ =

 1.25 0 0
0 1 0
0 0 1

, ΦT x =

 3.5
3
2

, ĉLS =

 3.5/1.25
3
2

=

 2.8
3
2

 .
To sketch f(t)=c1φ(t−1)+c2φ(t−2)+c3φ(t−3), we just note that f is
continuous, f(1)=c1, f(2)=c2, f(3)=c3, f(n)=0 for other integers
n, and, for n < t < n+1, f(t) is linear. The total approximation error
is ε2 = (1−1.4)2 + (3−2.8)2 + (3−3)2 + (2−2)2 = 0.42 + 0.22 = 0.2.

7.b)

x =


1
3
2
1

, Φ =


0.5 0 0
1 0 0
0 0 1
0 0 0.5

, ΦT Φ =

 1.25 0 0
0 0 0
0 0 1.25

, ΦT Φ is singular =⇒ ĉLS is not unique.

x ' Φc = Φ̃
[
c1
c3

]
=⇒

[
ĉ1LS

ĉ3LS

]
= (Φ̃T Φ̃)−1Φ̃T x and ĉ2LS is arbitrary. Φ̃ contains 1st and 3rd columns of Φ,

Φ̃T Φ̃ =
[

1.25 0
0 1.25

]
, Φ̃T x =

[
3.5
2.5

]
,[

ĉ1LS

ĉ3LS

]
=
[

3.5/1.25
2.5/1.25

]
=
[

2.8
2

]
.

Sketches for ĉ2LS = 0 and ĉ2LS = 2.4.
The error is ε2 = 0.2 for any solution.

7.c)

x =

 1
3
2

, Φ =

 0.5 0 0
0 0.5 0.5
0 0 1

 .
The model is exact (ε2 = 0) and with an unique solution:

x = Φc ⇐⇒

 1 = 0.5c1
3 = 0.5c1 + 0.5c2
2 = c3

⇐⇒

 c1 = 2
c2 = 4
c3 = 2 .


