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ABSTRACT

The analytic signature is a recently proposed 2D shape representa-
tion scheme. It is tailored to the representation of shapes described
by arbitrary sets of unlabeled points, or landmarks, because its most
distinctive feature is the maximal invariance to a permutation of
those points. The shape similarity of two point clouds can then be
obtained from a direct comparison of their representations. How-
ever, since the analytic signature is a continuous function, perform-
ing the comparison of their densely sampled versions may result ex-
cessively time-consuming, e.g., when dealing with large databases,
even of simple shapes. In this paper we address the problem of ef-
ficiently storing and comparing such powerful representations. We
start by showing that their frequency spectrum is related to partic-
ular complex moments of the shape. From this relation, we derive
the bandwidth of the representation in terms of the shape complex-
ity. Using this result, we show that the analytic signature can be
described by a small set of complex moments. We call this compact
description the Principal Moments (PMs) of a shape and show how
to efficiently compare shapes using PMs. Our experiments illustrate
that the gain in efficiency comes at no cost in performance.

Index Terms— Object recognition, Image shape analysis, Mo-
ment methods, Frequency domain analysis, Signal sampling

1. INTRODUCTION

Representing shape is a challenging task. In fact, unlike local char-
acteristics like color, which can be uniquely determined by a small
set of parameters, or texture, which has been successfully captured
by using statistical descriptors, the visual information conveyed by
shape, of more global nature and easily perceived by humans, is
hard to represent in an appropriate way. This paper deals with two-
dimensional (2D) shape representation.

When the 2D shapes to describe are simply connected regions,
researchers have used contour-based descriptions, e.g., [1]. Natu-
rally, for more general shapes, usually consisting in arbitrary sets of
points, or landmarks, these descriptors are not adequate. If the points
describing the shape are labeled, i.e., if the correspondences between
the landmarks of two shapes to compare are known, the problem re-
duces to the impact of geometrical transformations and disturbances,
elegantly addressed through the statistical theory of shape [2]. How-
ever, in many practical scenarios, the shape points are obtained from
an automatic process, e.g., edge or corner detection, thus come with-
out labels or natural ordering.

Estimating the above mentioned correspondences leads to a
combinatorial problem, which requires prohibitively time-consuming
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algorithms, even for shapes described by a moderate number of land-
marks. To circumvent this problem, the analytic signature (ANSIG)
of a 2D shape was recently introduced. This signature exhibits not
only invariance to the point labels but also fully discrimination, in
the sense that different shapes lead to different signatures (being
then maximally invariant to the permutation of shape points) [3, 4].
Under this framework, the hard task of comparing the shapes of
two sets of unlabeled points reduces to the direct comparison of the
corresponding ANSIGs. However, since these signatures are contin-
uous (analytic functions), they are compared through their densely
sampled versions, which results computationally demanding when
dealing with large databases, even if the shapes are simple.

In this paper, we address the problem of combining the need to
work with compact descriptions of 2D shape, for computational ef-
ficiency, with the invariance and discriminative power of maximally
invariant representations. We start by studying the frequency spec-
trum of the restriction of the ANSIG to the unit-circle, which, from
Cauchy’s integral formula, univocally determines the shape signa-
ture. We obtain a closed-form expression for the coefficients of the
corresponding Fourier series, in terms of particular complex mo-
ments of the shape. Then, we derive an upper bound for the magni-
tude of these coefficients, in terms of the shape complexity, i.e., the
number of landmarks. Using these results, we propose a compact
representation, which we call the Principal Moments (PMs) of the
shape, whose length depends on the shape complexity.

While moments of image patterns have been extensively used
due to their invariance properties (since at least the early sixties [5]),
their discriminative properties have not been studied even in more
recent related work, e.g., [6, 7, 8, 9]. In opposition, our PMs have the
distinguishing feature of inheriting the discriminative characteristic
of ANSIG (due to its maximal invariance). In fact, as it will become
clear below, the usage of PMs can also be seen as the adoption of a
guided choice for the sampling interval of the ANSIG, in terms of
the shape complexity. Since, under the proposed framework, shapes
of distinct complexities are described by vectors of different lengths,
we also describe how to efficiently compare them.

2. THE ANALYTIC SIGNATURE OF A SHAPE

Consider a 2D shape described by a set of P (unlabeled) points,
or landmarks, {(xi, yi), 1 ≤ i ≤ P}. The shape is then given by
the complex vector z = [z1, z2, . . . , zP ]T , where zi = xi + jyi.
Naturally, since the points do not have labels, the same shape can be
described by any vector obtained from z by re-ordering its entries.

To cope in a simple way with this myriad of descriptions for the
same object, a permutation invariant representation was introduced
in [3, 4]: the analytic signature (ANSIG). The ANSIG is an analytic
function on the complex plane, obtained from z through

a(z, ξ) =
1

P

P∑
i=1

eziξ . (1)



The adequacy of representing the shape in z by its ANSIG hinges
on the following facts, formalized and proved in [3] as the maximal
invariance with respect to the permutation group: (i) any vector ob-
tained from z by re-ordering its entries, leads to the same ANSIG
(permutation invariance); and (ii) any vector with landmarks lying
at different positions than the ones in z, leads to a different ANSIG
(discrimination). This justifies that (1) is in fact as a shape signature.

The ANSIG copes with geometric transformations. In [3] it is
shown that the simple pre-processing step of working with

√
P (z−

z)/ ‖z− z‖, rather than directly with z, extends the maximal invari-
ance of the ANSIG to translation and scale transformations. It is also
shown that the rotation of a shape “propagates” to its signature, being
easily factored out. In [4], it is shown that, with the pre-processing
step just referred, the ANSIG also deals well with shapes described
by point sets of different cardinality, which is often the case in prac-
tice, when the shape points come from automatic processing, e.g.,
edge detection, of images of different resolutions.

The properties above make the task of comparing arbitrary
shapes very simple, requiring only the direct comparison of the
corresponding ANSIGs. This was thoughtfully illustrated in [3, 4],
with several shape-based image classification experiments. In these
experiments, the analytic function (1) is described in the computer
by its 512 samples uniformly taken on the unit-circle of the complex
plane. Working with these high dimensional vectors may be ade-
quate for tasks requiring the comparison of a small number of shapes
but certainly not for applications that deal with large databases, e.g.,
the internet. In the sequel, we show that a much more compact shape
description can be used without performance decrease.

3. COMPLEX MOMENTS AND THE ANSIG SPECTRUM

A direct consequence of Cauchy’s integral formula [10] is that any
analytic function is fully specified by the values it takes on a closed
contour on the complex plane. Thus, the ANSIG in (1) is equiva-
lently described by its restriction to the unit-circle (ξ = ejθ),

h(θ) = a(z, ejθ) =
1

P

P∑
i=1

exp
(
zie

jθ
)
, (2)

where, for simplicity, we omitted the dependence of h on z.
To approximate the (unit-circle restriction of the) ANSIG by a

finite-dimensional computer representation, we study its frequency
spectrum. Note that h(θ) in (2) can be seen as a real-argument
complex-valued periodic function, with fundamental period T = 2π
and fundamental frequency ω0 = 2π/T = 1. Thus, it can be written
in terms of its Fourier series:

h(θ) =

+∞∑
k=−∞

Hke
jkθ (3)

where each coefficient Hk is given by, see, e.g., [11],

Hk =
1

2π

∫ 2π

0

h(θ)e−jkθ dθ . (4)

The analysis expression (4) is hard to carry out in the case of
h(θ) given by (2). However, the coefficients of the Fourier series
easily follow from the comparison of the synthesis expression (3)
with the definition of h(θ) in (2), after some manipulations. In fact,
expressing the exponential in (2) by its Maclaurin series (i.e., its
Taylor series at the origin), we get

h(θ) =
1

P

P∑
i=1

∞∑
k=0

(
zi e

jθ
)k

k!
=

∞∑
k=0

(
1

Pk!

P∑
i=1

zki

)
ejkθ . (5)

Comparing (5) with (3) and since the coefficients of the Fourier se-
ries representation are unique [11], we conclude that:

Hk =

{
1
Pk!

∑P
i=1 z

k
i for 0 ≤ k < +∞ ,

0 for −∞ < k ≤ −1 .
(6)

Thus, given a 2D shape described by a set of P landmarks, expres-
sion (6) relates the values of the coefficients of the Fourier series of
(the unit-circle restriction of) its ANSIG, {Hk,−∞ < k < +∞},
to the positions of the landmarks in the plane, {zi, 1 ≤ i ≤ P}.

Before proceeding, we relate the Fourier series coefficients in (6)
with the so-called complex moments (CMs) introduced in [6]. The
CM of order (p, q) of an image g(x, y) is defined by

Cpq =

∫ ∫ +∞

−∞
(x+ jy)p (x− jy)q g(x, y) dx dy , (7)

where p ≥ 0 and 0 ≤ q ≤ p [6]. Considering an image com-
posed by a set of P mass points located at the shape landmarks
{zi, 1 ≤ i ≤ P}, the integral in (7) becomes a sum:

Cpq =

P∑
i=1

zpi z̄i
q , (8)

where, z̄i denotes the complex conjugate of zi. It is now clear that,
for k ≥ 0, the Fourier series coefficients in (6) are scaled versions
of particular complex moments in (8): Hk = Ck0/Pk!. Finally,
note also that, for any shape, we have H0 = 1

P

∑P
i=1 1 = 1, and,

assuming the shapes were pre-processed as described in the previous
section, H1 = 1

P

∑P
i=1 zi = 0.

We now derive an upper bound b(k) for the magnitude of the
coefficient Hk, for k ≥ 2, in terms of the number of landmarks
describing the shape. This is done through the following chain of
equalities and inequalities:

|Hk| =
1

Pk!

∣∣∣∣∣
P∑
i=1

zki

∣∣∣∣∣ ≤ 1

Pk!

P∑
i=1

|zi|k (9)

=
1

Pk!

P∑
i=1

(
|zi|2

) k
2 ≤ 1

Pk!

(
P∑
i=1

|zi|2
) k

2

(10)

=
P

k
2−1

k!
= b(k) , (11)

where (9) uses the triangle inequality, (10) uses the fact that the func-
tion (a + b)n is convex for a, b real positive and n ≥ 1, and (11) is
due to the fact that

∑P
i=1 |zi|

2 = P , for pre-processed shapes.

4. PRINCIPAL MOMENTS FOR SHAPE DESCRIPTION

We now estimate the bandwidth of the ANSIG in terms of the num-
ber of landmarks. Usually, bandwidth is estimated by seeking the
smallest k such that the ratio |Hk|/|H0| is below a given thresh-
old p. In our case, since H0 = 1, we get |Hk| < p. Using the
upper bound b(k) as a proxy for |Hk|, we are not sure to obtain the
smallest k, but we guarantee the satisfaction of the inequality, since
|Hk| ≤ b(k), see (9)-(11).

Finding the smallest k such that b(k) < p requires solving the
limit case equation P

k
2−1/k! = p, for which there is not an analytic

solution. We propose a simple method to solve for k numerically.



Due to the fast grow of k!, we use logarithms to increase stability.
Denoting the natural logarithm of b(k) by B(k), we have:

B(k) = ln b(k) =

(
k

2
− 1

)
lnP − ln k! (12)

' k

(
lnP

2
+1

)
− k ln k − 1

2
ln k − lnP − 1

2
ln 2π , (13)

where (12) uses the definition of b(k) in (11) and (13) uses the Stir-
ling’s approximation ln k! ' k ln k − k + 1

2
ln 2πk, see, e.g., [12].

To analyze the behavior ofB(k) given by (13), we relax k to the
reals and express the first two derivatives:

B′(k) =
lnP

2
− ln k − 1

2k
, B′′(k) = − 1

k
+

1

2k2
. (14)

From these expressions, we see that B(k) has an inflection at k =
1/2, where B′′(k) = 0, and two extrema at k = k1 < 1/2 and k =
k2 > 1/2, where B′(k) = 0. Also, B(k) monotonically decreases
for k > k2, where B′(k) < 0, being limk→+∞B(k) = −∞. The
plot in Fig. 1 illustrates the behavior of B(k) for P = 10. To find k
such that B(k) is below a given threshold ln p, we thus propose the
following strategy in two steps: first, solveB′(k) = 0 in the interval
k ∈ [1/2,+∞), obtaining k2. Then, solve B(k)− ln(p) = 0 in the
interval k ∈ [k2,+∞), obtaining k = kB , the desired upper bound
for the bandwidth of the ANSIG. Note that the first step is necessary
to specify the lower limit of the search region for the second one:
without that limit, we could obtain a spurious solution kB < k2.

Fig. 1. Upper bound B(k) for the (logarithm of the) magnitude of
the spectrum of the analytic signature, for P = 10 points.

We thus conclude that the most of the energy (the parameter p
controls the amount) of the ANSIG of a shape described by P land-
marks is contained in a number kB of complex coefficients, which,
naturally, depends on P . Fig. 2 plots the number of coefficients
kB , computed as described above, as a function of the number of
landmarks P , for p = 0.1 (−20dB). Obviously, kB can be in-
distinctly interpreted as either the required number of Fourier se-
ries coefficients {Hk}, which we call the Principal Moments (PMs)
of the shape (due to the relation between Hk and the complex mo-
ments Ck0 pointed out in the previous section), or the required num-
ber of samples in the unit-circle. In fact, since the fundamental

frequency is ω0 = 1, the approximate bandwidth of the signal is
ωB = kBω0 = kB . Since the spectrum is zero for negative fre-
quencies (6), it suffices to sample at a rate (number of points) of
N = ωs = ωB = kB (the Nyquist sampling rate ωs of twice
the bandwidth is only required for two-sided spectra [11, 13]). Nat-
urally, to recover the original continuous ANSIG from these sam-
ples, it suffices to use a (complex coefficient) filter with passband
ω ∈ [0, ωs) (in opposition to the traditional low-pass filter with cut-
ting frequency ωs/2). The plot in Fig. 2 also compares the required
number kB of samples, or of PMs, with 512, the fixed number of
samples used in [3, 4]: while for shapes described by an huge num-
ber of points (more than' 40000), 512 samples may not be enough,
for the majority of cases that may arise in practice (a few hundred of
landmarks), the required number is much smaller (a few dozens).

Fig. 2. The number of coefficients kB needed to represent a shape
described by P landmarks.

Having motivated the usage of only kB PMs as a way to com-
pactly represent shape, in terms of its complexity, i.e., its number of
landmarks, we now discuss the comparison of descriptions of shapes
of distinct complexity. Since the PMs are the (most relevant) coef-
ficients of the ANSIG Fourier series, it suffices to pad with zeros
the smaller vector, before performing the comparison in frequency
domain. If, in opposition, the shapes are equivalently described by
the sparse set of kB ANSIG samples, say N1 samples for one of the
shapes and N2 samples for the other, it is necessary to use multirate
signal processing techniques to convert both to a common sampling
rate, see, e.g., [13]. For example, perform upsampling of the AN-
SIGs by a factor of, respectively, L1 = lcm(N1, N2)/N1 and L2 =
lcm(N1, N2)/N2, where lcm stands for the least common multi-
ple, followed by interpolation using (complex coefficient) filters with
passband, respectively, ω ∈ [0, 2π/L1) and ω ∈ [0, 2π/L2).

5. EXPERIMENTS

Since the ANSIG was extensively demonstrated in shape-based clas-
sification of real images [3, 4], we focus on showing that the com-
putational saving that arises from using our PMs, a much more com-
pact description, does not degrade performance. We start by illus-
trating this point by using a shape described by an arbitrary number
(7 in this case) of unlabeled landmarks. Proceeding as described
in the previous section, we obtain the required number of PMs for



this shape, kB = 6. The plot of Fig. 3 shows the magnitude of
the spectrum of the corresponding ANSIG. As easily perceived, the
magnitude of the 6th coefficient, |H5|, is very small, indicating that
the first 6 coefficients, i.e., the PMs {Hk, 0 ≤ k ≤ 5}, containing
the majority of the energy, adequatelly describe the shape. See also
that |H0| = 1 and H1 = 0, as anticipated above. In Fig. 4, we
compare the dense ANSIG with the one obtained by interpolating
our very compact representation. The densely sampled ANSIG is
represented by the solid lines, the kB = 6 samples required by our
study are dots, and the reconstruction obtained from this sparse set
is represented by the dashed lines. We see that the lines of both plots
are visually indistinguishable, showing that the PMs are adequate to
represent the ANSIG and, consequently, the underlying shape.

Fig. 3. Magnitude of the spectrum of the ANSIG of a shape de-
scribed by a small number of landmarks.

The behavior just illustrated was observed in general. To con-
firm the results, we then compared PMs with the densely sampled
ANSIG in terms of shape classification performance. In particular,
we generated noisy versions of prototype shapes, like the ones used
in [3, 4], and classified them by using 1-NN, i.e., by just selecting the
prototype that had most similar description. The number of PMs kB
ranged from 15 to 22, thus our descriptions are much shorter than
the vectors of 512 samples used in [3, 4]. We performed hundreds of
tests for each shape, obtaining the same performance (100% correct
classifications, except for shapes that are visually indistinguishable),
for both the densely sampled ANSIG and the PMs.

6. CONCLUSION
We studied the frequency spectrum of the ANSIG for 2D shape rep-
resentation. The major relevance of this study is that it enables the
adoption of a compact description for 2D shape, in terms of what we
call its Principal Moments, where the description length depends on
the shape complexity. Our experiments show that this compact rep-
resentation exhibits the same performance than the fixed rate densely
sampling scheme originally proposed for the ANSIG.
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