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Abstract

These notes address the problem of aligning, or registering, two
images (or image patches). This is done by estimating the motion of
the brightness pattern between the two images in a global way, i.e.,
without any pre-processing step such as selecting and matching salient
features. The resultant optimization problem is solved in an efficient
way by using a Gauss-Newton method in a multiresolution pyramid.

1 Introduction

These notes address the estimation of the two-dimensional (2D) motion of
the brightness pattern in the image plane. This is a crucial step in solving
any motion analysis task. For example, the problems of building a mosaic,
or panorama, from uncalibrated images, segmenting out moving objects, and
inferring three-dimensional (3D) structure from video, require the step of
estimating 2D motion to accomplish their higher level goals.

The problem of estimating the 2D motion of the brightness pattern has
been widely addressed in the recent past. The cue to estimate the motion
of the brightness pattern between two images is the brightness constancy.
Since the early days of motion analysis, researchers have noticed that local
motion estimation is an ill-posed problem, see for example [1]. In fact, it
is easily shown that it is not possible to determine the 2D motion if we are
allowed to see only through an infinitesimally small spatial aperture. This
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limitation, referred to as the aperture problem, is usually overcomed by using
smoothing assumptions [1]. In these notes, this is done by describing motion
in a parametric way. To estimate the motion parameters, we use an efficient
approach made popular by Bergen, Anandan, Hanna, and Hingorani [2]. This
approach uses a hierarchical Gauss-Newton method, where the derivatives
involved are simply computed from the image gradients.

The notes are organized as follows. In section 2 we develop the motion
estimation algorithm and discuss the influence of the spatial variability of
the brightness pattern on its behavior. In section 3 we study the estimation
error. We derive an expression for the variance of the estimation error and
discuss how to use this result to measure the accuracy of the estimates of
the motion parameters. Sections 4 and 5 particularize the study of sections 2
and 3 to two widely used motion models: translational and affine. Section 6
summarizes.

2 Motion estimation

We consider images as real functions defined on a subset of the real plane.
The image space is a set {I : D → R}, where I is an image, D, a compact
subset of the real plane R2, is the domain of the image, and R is the range of
the image. Images code intensity gray levels1. The domain of each image is
rectangularly shaped with size fitting the needs of the corresponding image.
Although we use a continuous spatial dependence for commodity, in practice
the domains are discretized and the images are stored as matrices. We index
the entries of each of these matrices by the pixels (x, y) of each image and refer
to the value of image I at pixel (x, y) as I(x, y). Throughout the text, we refer
to the image product of two images A and B, i.e., the image whose value at
pixel (x, y) equals A(x, y)B(x, y), as the image AB. Note that this product
corresponds to the Hadamard-Schur product, or elementwise product, of the
matrices representing images A and B, not their usual matrix product.

1The intensity values of the images are positive, usually coded by a binary word of
eight bits. Thus, the intensity values of a gray level image are in the set of integers in
the interval [0, 255]. For simplicity, we do not take into account the discretization and the
saturations, i.e., we consider the intensity values to be real numbers and the gray level
images to have range R. The analysis in these notes is easily extended to color images.
A color is represented by specifying three intensities, either of the perceptual attributes
brightness, hue, and saturation; or of the primary colors red, green, and blue, see, e.g., [3].
The range of a color image is then R3.
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We consider parametric motion models. We represent this kind of mo-
tions by specifying parameter vectors. Let Np be the number of parameters
describing the motion. The image obtained by applying the rigid motion
coded by the Np × 1 vector p to the image I is denoted by M(p)I. The
image M(p)I is also usually called the registration of the image I accord-
ing to the parameter motion vector p. The entity represented by M(p) is
seen as a motion operator. In practice, the (x, y) entry of the matrix repre-
senting the image M(p)I is given by M(p)I(x, y) = I(fx(p; x, y), fy(p; x, y))
where fx(p; x, y) and fy(p; x, y) represent the coordinate transformation im-
posed by the 2D rigid motion. We use bilinear interpolation to compute
the intensity values at points that fall in between the stored samples of an
image. We denote the “inverse” of p by p#, i.e., the vector p# is such that
the registration of the image M(p)I according to p# is the original image I.

Consider a pair of images {I1, I2}. Our goal is the estimation of the motion
of the brightness pattern between images I1 and I2 in a given region R of the
image plane. The observation model simply captures the intensity constancy,
i.e., for pixels (x, y) within region R, we have:

{
I1(x, y) = S(x, y) + W1(x, y)
I2(x, y) = M(p#)S(x, y) + W2(x, y) ,

(1)

where S is the (unknown) scene observed in image I1; the unknown motion
is represented by the vector p that parameterizes the operator M(p#) that
“distorts” S when observed in image I2; and W1 and W2 stand for the
observation noise, assumed Gaussian, zero mean, and white.

Our goal is to estimate the motion parameter vector p. When formulating
the Maximum Likelihood (ML) estimate of all parameters involved, there is
an additional unknown, the scene S, which, however, is easily taken care of.
According to the model (1), the ML cost function to minimize is then simply
the sum of the overall square error:

CML(p,S) =

∫ ∫

R

{
[I1(x, y)− S(x, y)]2 +

[
I2(x, y)−M(p#)S(x, y)

]2
}

dxdy ,

(2)
where the integral is over the support region R. To minimize the ML cost
function CML, given by expression (2), with respect to the unknowns S and p,

we first express the estimate Ŝ of S in terms of the unknown vector p. Then
we insert the estimate Ŝ of the real brightness pattern into expression (2)
and minimize with respect to the motion parameter vector p.
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By minimizing (2) with respect to the scene brightness pattern S, we
get the ML estimate of S as the average of the brightness pattern of the
two images, after registering I2 according to the image motion (verify, as an
exercise):

Ŝ =
1

2

[
I1(x, y) +M(p)I2(x, y)

]
. (3)

Replacing S in the ML cost (2) by Ŝ given by (3), we obtain, after simple
algebraic manipulations,

CML(p) =
1

2

∫ ∫

R

[
I1(x, y)−M(p)I2(x, y)

]2

dx dy. (4)

Expression (4) makes sense: it shows that the estimate of the motion param-
eter vector p is the one that best aligns I2 with I1 in the Least Squares (LS)
sense.

To make explicit the warping of image I2 according to the motion opera-
tor p, we rewrite M(p)I2(x, y) as

M(p)I2(x, y) = I2

(
fx(p; x, y), fy(p; x, y)

)

= I2

(
x + dx(p; x, y), y + dy(p; x, y)

)
, (5)

and the ML estimate p̂ of the motion vector p minimizing (4) as

p̂ = arg min
p

E(p), where E(p) =

∫ ∫

R
e2(p; x, y) dx dy, (6)

and e(p; x, y) = I1(x, y)− I2

(
x + dx(p; x, y), y + dy(p; x, y)

)
. (7)

In expressions (5) and (7), the displacement of the pixel (x, y) between im-
ages I1 and I2 is denoted by d(p; x, y) = [dx(p; x, y), dy(p; x, y)]T .

To minimize E(p) in expression (6) we use a known technique introduced
in reference [2]. This technique uses a Gauss-Newton method, where the esti-
mate p̂ is computed by refining a previous estimate p0. The initial estimate
is usually made the identity mapping, i.e., M(p0)I2 = I2 ⇔ fx(p0; x, y) =
x, fy(p0; x, y) = y ⇔ dx(p0; x, y) = 0, dy(p0; x, y) = 0.

4



The error function e(p; x, y) is approximated by neglecting second and
higher order terms of the Taylor series expansion of e(p0 + δp),

e(p; x, y) ' e(p0; x, y) + δT
p∇pe(p0; x, y), (8)

where δp = p−p0 and ∇pe(p0; x, y) is the gradient of e(p; x, y) with respect
to p evaluated at p = p0.

After inserting the first-order approximation of expression (8) into the
cost function (6), the estimate p̂ is given by

p̂ = p0 + δ̂p, with δ̂p = arg min
δp

E (p0 + δp) . (9)

Equating to 0 the gradient of E (p0 + δp) with respect to δp, we get the

estimate δ̂p as the solution of the linear system

ΓR(p0) δ̂p = γR(p0), (10)

where ΓR(p0) =

∫ ∫

R
∇pe(p0; x, y)∇peT (p0; x, y) dx dy, (11)

and γR(p0) = −
∫ ∫

R
e(p0; x, y)∇pe(p0; x, y) dx dy. (12)

The vector γR(p0) has the same dimension of p, i.e., Np × 1 and the ma-
trix ΓR(p0) is square Np ×Np. Derive (10)-(12), as an exercise.

The error e(p0; x, y) and its gradient ∇pe(p0; x, y) are computed from the
spatial and temporal derivatives of the brightness pattern as

e(p0; x, y) = −it(p0; x, y), (13)

∇pe(p0; x, y) = −ix(x, y)∇pdx(p0; x, y)− iy(x, y)∇pdy(p0; x, y)

= −∇pd
T (p0; x, y)ixy(x, y), (14)

where it(p0; x, y) is the temporal derivative computed by

it(p0; x, y) = I2

(
x + dx(p0; x, y), y + dy(p0; x, y)

)
− I1(x, y), (15)

and ix(x, y) and iy(x, y) are the spatial derivatives computed from the refer-
ence image I1(x, y). The 2× 1 vector ixy(x, y) is defined as

ixy(x, y) =

[
ix(x, y)
iy(x, y)

]
, (16)
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and the Np × 2 matrix ∇pd
T (p0; x, y) is defined as

∇pd
T (p0; x, y) =

[ ∇pdx(p0; x, y) ∇pdy(p0; x, y)
]
. (17)

By replacing expressions (13) and (14) into the definitions (11) and (12),
we express ΓR(p0) and γR(p0) in terms of the image derivatives and dis-
placement derivatives as:

ΓR(p0) =

∫ ∫

R
∇pd

T (p0)ixyi
T
xy∇pd(p0) dx dy, (18)

γR(p0) = −
∫ ∫

R
it(p0)∇pd

T (p0)ixy dx dy, (19)

where we omitted the dependence of the integrands on (x, y), for simplicity.
Since the Gauss-Newton method just described approximates the error

function e(p) by the truncated Taylor series expansion of e(p0 + δp), the
initial estimate p0 must lie in a tight neighborhood of the actual value of the
vector p. Since the process is initialized by assuming there is no motion, this
means that the motion between consecutive frames must be small, typically
sub-pixel motion. Fortunately, a very simple strategy enables to cope with
larger displacements: the use of a spatial resolution pyramid. In this pyramid,
images I1 and I2 are represented at several resolution levels: from the finest
one, corresponding to the original resolution, to the coarsest one, where the
images will be describe by just a few pixels. Motion is first computed for
the coarsest level of resolution (where it can be assumed to be sub-pixel!),
and then propagated as initial estimate to the immediately finer level. The
process continues until the finer (i.e., full) resolution estimate is obtained.

In order to obtain a reliable convergence of the Gauss-Newton method,
the equation system (10) must be well conditioned, i.e., the matrix ΓR(p0),
given by expression (18), must be well conditioned with respect to inversion.
A widely used measure for the sensitivity of the solution of the linear system
is the condition number of the square matrix involved, see reference [4]. The
relative error of the solution of a linear system Ax = b is approximated
by the condition number k(A) of the square matrix A times the relative
errors in A and b. The condition number depends on the underlying norm
used to measure the error. With the common choice of the matrix 2-norm,
the condition number of a matrix is given by the quotient of the largest
singular value by the smallest singular value, see reference [4]. Since the
matrix ΓR(p0) is symmetric and semi-positive definite, their eigenvalues are
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positive real and coincide with the singular values. The sensitivity of the
iterates of the motion estimation algorithm are measured by

k(ΓR(p0)) =
λ1(ΓR(p0))

λNp(ΓR(p0))
, (20)

where the eigenvalues are assumed non-increasingly ordered, i.e., λ1(ΓR(p0))
is the largest eigenvalue of ΓR(p0) and λNp(ΓR(p0)) is its smallest eigenvalue.

If the condition number k(ΓR(p0)) is large, the matrix ΓR(p0) is said to
be ill-conditioned. In this case, the Gauss-Newton iterates are very sensitive
to the noise and the process can not be guaranteed to converge. We will
see in sections 4 and 5 what are the practical implications of requiring the
condition number k(ΓR(p0)) to be small. We will discuss there the difficulty
of estimating the motion parameters in terms of the variability of image
brightness pattern within the support region R.

3 Estimation error

This section studies the statistics of the error in estimating the vector p of
motion parameters. This analysis is local, in the sense that we assume small
deviations between the true value of the vector of motion parameters and
its estimate. This local analysis is very common in estimation problems.
It leads, for example, to the establishment of fundamental bounds like the
Cramér-Rao lower bound (CRB) for the variance of the estimation error, see
reference [5].

In our case, due to the specific structure of the estimator, the small de-
viation assumption enables the derivation of an expression for the expected
noise variance in terms of image spatial gradients. The statistics that we ob-
tain are valid in practice as good approximations to the real statistics if the
estimation problem is well conditioned, i.e., if the observations, regardless
of the noise level, contain “enough information” to estimate the desired pa-
rameters (this imprecise definition can be made precise in terms of the usual
signal to noise ratio parameter). This situation is the one in which we are
interested because we only use the motion estimates when the corresponding
estimation problem is well conditioned in the sense discussed in the previous
section.

We denote the actual value of the vector of motion parameters by pa. The
estimate p̂ is written in terms of a small deviation relative to the actual pa.
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By proceeding in a similar way as done in the previous section, using pa

instead of p0 as the central point of the Taylor series expansion, we obtain

p̂ = pa + Γ−1
R (pa) γR(pa), (21)

where, we recall, the matrix ΓR(pa) and the vector γR(pa) are given by
expressions (18) and (19) with pa instead of p0. The random variable p̂ in
expression (21) is a non-linear function of the image derivatives {it(pa), ixy =
[ix, iy]

T}.
The derivatives it and ixy are random variables – they are noisy versions

of the actual values of the scene brightness derivatives. The actual value
of it(pa) is ita(pa) = 0 because pa is the actual value of the vector of motion
parameters. The actual value of ixy is denoted by ixya = [ixa, iya]

T . Since the
image noise Wf (x, y) is zero mean, the noise corrupting the derivatives it,
ix, and iy is also zero mean. Furthermore, the noise corrupting the temporal
derivative it is white because the noise images W1(x, y) and W2(x, y) are
independent. The variance of the noise corrupting the image derivatives is
denoted by σ2

t for it, σ2
x for ix, and σ2

y for iy.
We find the expected value of the estimate p̂ by computing the mean of

expression (21) with respect to the noise of the image derivatives. For small
deviations, the first-order approximation of E{p̂} is given by the value of
expression (21) evaluated at the mean values of the random variables it(pa)
and ixy. Since the mean of it(pa) is zero, we get γR(pa) = 0 and the mean
of the estimate p̂ is

E {p̂} = pa + E
{

δ̂p

}
= pa. (22)

Expression (22) states that, to first-order approximation, the estimate p̂ is
unbiased.

The covariance matrix of the estimating error, denoted by Σp, is defined as

Σp = E
{

(p̂− pa) (p̂− pa)
T
}

. (23)

The first-order approximation of the covariance matrix Σp is related to the
partial derivatives of the estimate p̂ with respect to the random variables
involved, i.e., with respect to it, ix, and iy, and to the variances of those
random variables. That result, known from estimation theory, see, e.g., [6],
states that the first-order approximation of the covariance matrix of a random
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vector p̂ that depends on a set of random variables {vi, i ∈ V } is given by

Σp =
∑

k,l∈V

E {(vk − vk) (vl − vl)} ∂p̂

∂vk

∂p̂T

∂vl

, (24)

where vi denotes the mean of vi and the partial derivatives are evaluated
at {vi = vi, i ∈ V }.

From expressions (21), (18), and (19), we compute the partial derivatives
of p̂ with respect to the random variables it(x, y), ix(x, y), and iy(x, y), and
evaluate them at the mean values it(x, y) = ita(x, y) = 0, ix(x, y) = ixa(x, y),
iy(x, y) = iya(x, y). We get

∂p̂

∂it(x, y)
= −∂

[
Γ−1
R (pa)γR(pa)

]

∂it(x, y)
= Γ−1

R (pa)∇pd
T (pa))ixya(x, y), (25)

∂p̂

∂ix(x, y)
= −∂

[
Γ−1
R (pa)γR(pa)

]

∂ix(x, y)
= 0, (26)

∂p̂

∂iy(x, y)
= −∂

[
Γ−1
R (pa)γR(pa)

]

∂iy(x, y)
= 0, (27)

where the last two are zero because γR(pa) = 0, since the mean value of it
is zero.

Since we use a continuous representation of the spatial variables x and y,
we write the continuous version of expression (24). Using the fact that the
noise corrupting it is white and noting that the derivatives in expressions (26)
and (27) are zero, we obtain for the covariance Σp,

Σp = σ2
t

∫ ∫

R

∂p̂

∂it

∂p̂T

∂it
dx dy. (28)

After replacing the derivative of p̂ with respect to it(x, y) given by (25),
we get

Σp = σ2
t Γ

−1
R (pa)

∫ ∫

R
∇pd

T (pa)ixyai
T
xya∇pd(pa) dx dy Γ−T

R (pa). (29)

Noting that the integral above is the matrix ΓR evaluated at pa (compare
to expression (18)), and that the matrix ΓR(pa) is symmetric, we obtain for
the error covariance

Σp = σ2
t Γ

−1
R (pa). (30)

9



Expression (30) provides an inexpensive way to compute the reliability
of the motion estimates. The matrix ΓR(pa) is in general unknown because
it depends on the actual value pa of the unknown vector p. Obviously,
the matrix ΓR(pa) can be approximated by the matrix ΓR(p0) used in the
iterative estimation algorithm. We note that when the motion model is linear
in the motion parameters, as it is the case with the majority of motion models
used in practice, the matrix ΓR(p) becomes independent of the vector p
because the derivatives of the displacement d(p) involved in expression (18)
do not depend on the motion parameters. In this case, the matrix ΓR(p0)
does not change along the iterative estimation algorithm. The matrix ΓR(p0)
depends uniquely on the image region R and ΓR(p0) will be denoted simply
by ΓR. Since the noise variance σ2

t is considered to be constant, we measure
the error covariance for different regions by comparing the corresponding
matrices Γ−1

R . For example, the mean square Euclidean distance between the
true vector pa and the estimated vector p̂, denoted by σ2

p, is proportional to

the trace of the matrix Γ−1
R ,

σ2
p = E

{
(p̂− pa)

T (p̂− pa)
}

= σ2
t tr

(
Γ−1
R

)
. (31)

These concepts will become clearer in the next two sections where we
particularize for the translational motion model and to the affine motion
model the results derived in this section and in the previous section.

4 Translational motion

This section studies the translational motion model. The translational mo-
tion model is characterized by a constant displacement for all the pixels that
fall into the region R. The translational motion model is widely used to
estimate the displacement of pointwise features when inferring 3D structure
from 2D motion. In this case the region R is a small square centered in the
coordinates of the feature point. The translational model is also frequently
used to represent the motion within a larger region R for special cases of the
3D shape of the scene that is projected onto R and for special cases of the
3D motion of the camera.

For the translational motion model, the vector p of motion parameters is
defined as

p =

[
p1

p2

]
, (32)
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where p1 and p2 determine the displacement d(p) as

d(p) =

[
dx(p)
dy(p)

]
=

[
p1

p2

]
= p. (33)

Motion estimation

The motion parameters are estimated by particularizing to the model of
expression (33) the algorithm described in section 2.

To compute the matrix ΓR(p0) and the vector γR(p0) needed for the
Gauss-Newton iterates, we start by making explicit the gradient of the dis-
placement d with respect to the vector p,

∇pd
T =

[ ∇pdx ∇pdy

]
=

[
1 0
0 1

]
= I2×2. (34)

As advanced at the end of the previous section, the gradient in expres-
sion (34) does not depend on the vector p. For this reason, the matrix ΓR will
be independent of p0 and will remain constant along the iterative process.
By replacing expression (34) into expressions (18) and (19), we get

ΓR =

∫ ∫

R
ixyi

T
xy dx dy =

[ ∫∫
R i2x dx dy

∫∫
R ixiy dx dy∫∫

R ixiy dx dy
∫∫
R i2y dx dy

]
, (35)

γR(p0) = −
∫ ∫

R
it(p0)ixy dx dy = −

[ ∫∫
R ixit(p0) dx dy∫∫
R iyit(p0) dx dy

]
. (36)

Each iteration of the algorithm updates the initial estimate p0 as p̂ = p0+ δ̂p

with δ̂p obtained from expression (10) with ΓR and γR given by expres-
sions (35) and (36).

The behavior of the estimation algorithm depends on the condition num-
ber of the matrix ΓR of expression (35). The condition number k(ΓR) was
defined in expression (20) for a general motion model. For the translational
motion model, it is the quotient of the first eigenvalue of ΓR by the second
eigenvalue,

k(ΓR) =
λ1(ΓR)

λ2(ΓR)
, (37)

where λ1(ΓR) and λ2(ΓR) are the eigenvalues of ΓR in expression (35) with
λ1(ΓR) ≥ λ2(ΓR). If the condition number k(ΓR) is large, the Gauss-Newton
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iterates are very sensitive to the noise and the process can not be guaranteed
to converge. If the condition number k(ΓR) is small, i.e., if it is close to unity,
since k(ΓR) ≥ 1, the linear system involved in the Gauss-Newton method is
well conditioned.

We discuss when k(ΓR) has large values. To see the influence of the image
brightness pattern within region R on the condition number k(ΓR) consider
that

∫∫
R ixiy dx dy = 0. The matrix ΓR becomes diagonal and the condition

number is simply

k(ΓR) =

∫∫
R i2x dx dy∫∫
R i2y dx dy

(38)

if

∫ ∫

R
i2x dx dy ≥

∫ ∫

R
i2y dx dy (39)

or the inverse if the inequality goes in the opposite way. If one of the com-
ponents of the spatial image gradient is much larger than the other, k(ΓR)
becomes large and the equation system (10) is ill-conditioned. The condition

k(ΓR) < λ, (40)

where λ is a threshold, restricts the brightness pattern within regionR not to
have variability along some direction much higher than the variability along
the perpendicular direction.

The analysis in the paragraph above explains the well known aperture
problem. The aperture problem is usually described as the impossibility of es-
timating locally the 2D motion. In fact, if the regionR contains a single pixel,
the matrix ΓR given by expression (35) is singular; we obtain det(ΓR) = 0 by
removing the integrals from expression (35), and the condition number k(ΓR)
is +∞. This happens because the two motion parameters can not be deter-
mined by the single constraint imposed by the brightness constancy.

The study of the condition number k(ΓR) shows that, for particular struc-
tures of the brightness pattern, it is very difficult to estimate the 2D motion,
even when the region R contains several pixels.

Expression (38) was obtained with
∫∫
R ixiy dx dy = 0. We should note,

however, that the case where

∫ ∫

R
ixiy dx dy 6= 0 (41)
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does not correspond to a more general situation. In fact, it can be shown
that an appropriate rotation of the brightness pattern makes

∫ ∫

R
ixiy dx dy = 0, (42)

without changing the condition number k(ΓR) – as we would expect, the
conditioning of the estimation of the motion of the brightness pattern is
independent of 2D rigid transformations of the brightness pattern.

Figure 1 illustrates the dependence of the conditioning of the 2D mo-
tion estimation on the structure of the brightness pattern. For each of the
eight 10× 10 images in Figure 1, we determine the condition number of the
matrix ΓR. The condition number k(ΓR), obtained by evaluating expres-
sion (37), is on the right side of each image in Figure 1. The texture of the
brightness pattern shown on the top left image is such that there is no dom-
inant direction over the entire region R. We expect that the estimation of
the 2D motion of a pattern of this kind is very well conditioned. In fact, over
the entire image no component of the spatial gradient dominates, and the
condition number k(ΓR) captures this behavior. We get k(ΓR) = 1.34 – the
value of k(ΓR) is close to unity indicating that the linear system involved in
the Gauss-Newton iterates of the motion estimation algorithm is well condi-
tioned. In contrast to this case, the texture of the brightness pattern shown
in the bottom right image of Figure 1 exhibits a clear dominant direction.
It is very hard to perceive the 2D motion of these type of patterns because
only the component of the motion that is perpendicular to the dominant
direction of the texture is perceived. The condition number k(ΓR) captures
the indetermination in estimating the 2D motion – it is k(ΓR) = 133.82 in-
dicating that the linear system involved in the Gauss-Newton iterates of the
motion estimation algorithm is ill-conditioned. The other images of Figure 1
illustrate intermediate cases.
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k(ΓR) = 1.34 k(ΓR) = 2.58

k(ΓR) = 4.99 k(ΓR) = 9.63

k(ΓR) = 18.59 k(ΓR) = 35.90

k(ΓR) = 69.31 k(ΓR) = 133.82

Figure 1: The dependence of the condition number k(ΓR) of the matrix
involved in the motion estimation algorithm on the structure of the image
brightness pattern. When the texture of the brightness pattern exhibits a
dominant direction, the motion estimation is ill conditioned – see the bottom
right image and the high value of k(ΓR).
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Estimation error

The covariance matrix of the estimation error for the translational motion
model is given by expression (30) after replacing ΓR by expression (35),

Σp = σ2
t Γ

−1
R = σ2

t

[ ∫∫
R i2x dx dy

∫∫
R ixiy dx dy∫∫

R ixiy dx dy
∫∫
R i2y dx dy

]−1

. (43)

The knowledge of the error covariance matrix Σp enables us to compute
the reliability of a displacement estimate in an easy way. In fact, in section 3,
we saw that the mean square error of the displacement estimate (in the
sense of the Euclidean distance) is the trace of the covariance matrix Σp, see
expression (31). In terms of image gradients, we get the following expression
for the mean square error, denoted by σ2

p,

σ2
p = σ2

t

∫
R i2y dx dy +

∫
R i2x dx dy

∫
R i2x dx dy

∫
R i2y dx dy − (∫

R ixiy dx dy
)2 . (44)

When recovering 3D structure from 2D motion estimates, the estimate of the
mean square error σ2

p given by expression (44) can be used to weight motion
estimates corresponding to different regions [7, 8].

To interpret the mean square error σ2
p given by expression (44), let us

consider again that the matrix ΓR is diagonal. This is the general case
because, as for the condition number, it can be shown that any non-diagonal
matrix ΓR can be made diagonal without changing σ2

p, by an appropriate
rotation of the image brightness pattern. When

∫∫
R ixiy dxdy = 0, the mean

square error σ2
p is

σ2
p = σ2

t

(
1∫∫

R i2x dx dy
+

1∫∫
R i2y dx dy

)
. (45)

Expression (45) states that the error in the estimate of the displacement is
proportional to the inverse of the sum of the square components of the image
gradient within region R. This coincides with the intuitive notion that the
higher the spatial variability of the brightness pattern is, the lower the error
in estimating the motion is. As expected, it is also clear that the estimation
error decreases when the size of the region R increases.

Figure 2 illustrates the dependence of the expected square error of the
2D motion estimates on the image brightness pattern. To isolate the estima-
tion error from the eventual ill-posedness of the motion estimation problem,
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we used brightness patterns that do not have a dominant texture direction,
i.e., we used brightness patterns for which the linear system involved in the
motion estimation is well conditioned. In particular, we used the bright-
ness pattern of the top left image of Figure 1 to generate all the images
of Figure 2 by changing the brightness contrast. The conditioning of the
linear system involved in the motion estimation problem does not depend
on the brightness contrast, as shown by the constant value of the condition
number, k(ΓR) = 1.34 for all the images in Figure 2.

For each image in Figure 2, we computed the mean square error σ2
p by

evaluating expression (44). Since the goal is to illustrate the influence of the
brightness pattern on σ2

p, we made σ2
t = 1 when evaluating expression (44).

The values obtained for σ2
p are shown in Figure 2 on the right side of the cor-

responding image. The top left image of Figure 2 has a very high brightness
contrast. For this reason, we expect that the estimate of the 2D motion of
such a pattern is very accurate. In fact, the sum of the square components of
the image gradient has a high value and the value of the motion estimation
mean square error is low, σ2

p = 0.19. When the brightness contrast decreases,
we expect less accurate motion estimates. The values of σ2

p in Figure 2 are
in agreement with this. The expected square error σ2

p increases with the
decrease of brightness contrast because the square components of the image
gradient decrease. The bottom right image of Figure 2 shows the extreme
situation of a pattern with almost zero brightness contrast. For this pattern,
the expected mean square estimation error is very high – larger than 60 times
the error for the top left image. It is therefore hopeless to try to compute
accurate motion estimates for this kind of low contrast patterns. Note that
this is due to the fundamental bound on the motion estimation error, not
to the conditioning of the linear system involved in the motion estimation
algorithm (the condition number k(ΓR) = 1.34 is close to unity indicating
that the linear system is well conditioned).

In summary, for the estimation algorithm to be stable, the two compo-
nents of the image gradient should not have too radically different magnitude
values. With respect to the mean square error of the displacement estimate,
we argued that when the magnitude of the components of the image gradient
is large, the error is smaller.
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k(ΓR) = 1.34
σ2

p = 0.19
k(ΓR) = 1.34
σ2

p = 0.35

k(ΓR) = 1.34
σ2

p = 0.63
k(ΓR) = 1.34
σ2

p = 1.14

k(ΓR) = 1.34
σ2

p = 2.07
k(ΓR) = 1.34
σ2

p = 3.74

k(ΓR) = 1.34
σ2

p = 6.76
k(ΓR) = 1.34
σ2

p = 12.21

Figure 2: The dependence of the motion estimation error on the image bright-
ness pattern. The expected square error σ2

p increases with the decrease of
the brightness contrast.

17



5 Affine motion

This section studies the affine motion model. The affine model is also widely
used in practice. For example, a planar surface moving far away from the
camera, undergoing an arbitrary 3D motion, induces an affine motion for the
brightness pattern between pairs of images.

The vector p parameterizing the affine motion model has 6 components,

p =
[

p1 p2 p3 p4 p5 p6

]T
. (46)

The affine displacement d(p), to which we will also refer to as the affine
mapping, is given by

d(p) =

[
dx(p)
dy(p)

]
=

[
p1

p2

]
+

[
p3 p5

p4 p6

] [
x− xc

y − yc

]
, (47)

where xc and yc are arbitrary constants that in practice we choose to be the
center of the region R to improve the stability of the estimation algorithm,
as will become clear below.

Motion estimation

The affine motion parameters are estimated by using the algorithm de-
scribed in section 1. To specialize the expressions of matrix ΓR(p0) and
vector γR(p0) involved in the Gauss-Newton iterates to the affine motion
model, we start by computing the gradient of the affine displacement with
respect to the motion parameters, obtaining

∇pd
T =

[ ∇pdx ∇pdy

]
=




1 0
0 1

x− xc 0
0 x− xc

y − yc 0
0 y − yc




. (48)

As with the translation motion model, because the affine motion model
is linear on the motion parameters, the gradient in expression (48) does
not depend on the vector p. The matrix ΓR will then be independent
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of p0 and remain constant along the iterative process. By replacing ex-
pression (48) into expressions (18) and (19), we get the following expressions
for ΓR and γR(p0),

ΓR =




∫
R i2x

∫
R ixiy

∫
R x̃i2x

∫
R x̃ixiy

∫
R ỹi2x

∫
R ỹixiy∫

R ixiy
∫
R i2y

∫
R x̃ixiy

∫
R x̃i2y

∫
R ỹixiy

∫
R ỹi2y∫

R x̃i2x
∫
R x̃ixiy

∫
R x̃2i2x

∫
R x̃2ixiy

∫
R x̃ỹi2x

∫
R x̃ỹixiy∫

R x̃ixiy
∫
R x̃i2y

∫
R x̃2ixiy

∫
R x̃2i2y

∫
R x̃ỹixiy

∫
R x̃ỹi2y∫

R ỹi2x
∫
R ỹixiy

∫
R x̃ỹi2x

∫
R x̃ỹixiy

∫
R ỹ2i2x

∫
R ỹ2ixiy∫

R ỹixiy
∫
R ỹi2y

∫
R x̃ỹixiy

∫
R x̃ỹi2y

∫
R ỹ2ixiy

∫
R ỹ2i2y




,

(49)

γR(p0) = −




∫∫
R ixit(p0) dx dy∫∫
R iyit(p0) dx dy∫∫
R x̃ixit(p0) dx dy∫∫
R x̃iyit(p0) dx dy∫∫
R ỹixit(p0) dx dy∫∫
R ỹiyit(p0) dx dy




, (50)

where

{
x̃ = x− xc

ỹ = y − yc
. (51)

The stability of the motion estimation algorithm depends on the condition
number of the matrix ΓR above. If the condition number k(ΓR) is high, the
linear system involved in the motion estimation iterative algorithm is ill con-
ditioned. If the condition number k(ΓR) is low (close to one) that system is
well conditioned and the algorithm is stable. To understand the influence of
the constants xc and yc on the condition number k(ΓR), we evaluated k(ΓR)
for a simpler case – the one-dimensional (1D) affine motion model. The con-
dition number k(ΓR) for the 2D affine model is complex to study because,
in opposition to the translational motion model, the matrix ΓR in expres-
sion (49) can not be diagonalized by rotating the image brightness pattern.
The condition number of the matrix ΓR involved in the estimation of the pa-
rameters of the 1D affine model exhibits the property we want to illustrate
for the 2D affine model and leads to a much simpler expression.

The 1D affine motion model is parameterized by the vector p = [p1, p2]
T .

The 1D displacement is

d(p) = p1 + p2(x− xc). (52)
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Proceeding as we did for the 2D case, we obtain the 2×2 matrix ΓR involved
in the 1D affine motion estimation,

ΓR =

[ ∫
R i2x dx

∫
R(x− xc)i

2
x dx∫

R(x− xc)i
2
x dx

∫
R(x− xc)

2i2x dx

]
. (53)

The 2×2 semi-positive definite matrix ΓR in expression (53) is the 1D version
of the matrix in expression (49). We obtain the condition number of a generic
semi-positive definite 2 × 2 matrix in terms of the entries of the matrix, by
expressing the quotient of the larger by the smaller eigenvalue of the matrix,

A =

[
a11 a12

a12 a22

]
=⇒ k(A) =

a11 + a22 +
√

(a11 − a22)2 + 4a2
12

a11 + a22 −
√

(a11 − a22)2 + 4a2
12

.

(54)
In Figure 3 we plot the condition number of the matrix ΓR in expres-

sion (53) in terms of the entries of the matrix. We fixed the entry

a11 =

∫

R
i2x dx = 1. (55)

We used expression (54) to evaluate the condition number k(ΓR) with

a22 =

∫

R
(x− xc)

2i2x dx (56)

ranging from 1 to 100, and

a12 =

∫

R
(x− xc)i

2
x dx (57)

ranging from −5 to 5. From Figure 3 we can see that the condition num-
ber k(ΓR) is small if

∫
R(x− xc)

2i2x dx is close to one and
∫
R(x− xc)i

2
x dx is

close to zero. In this case, the linear system involved in the motion estima-
tion algorithm is very well conditioned. If either the value of

∫
R(x−xc)

2i2x dx
or the absolute value of

∫
R(x − xc)i

2
x dx are very high, the condition num-

ber k(ΓR) is high and the linear system is ill conditioned. For this reason,
the optimal choice for the constant xc is the center of the region R.
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Figure 3: Affine motion estimation. The dependence of the condition num-
ber k(ΓR) on the entries (1, 2) and (2, 2) of the matrix ΓR of expression (53).
The entry (1, 1) was kept fixed,

∫
R i2x dx = 1. If the constant xc is chosen

to be far from the center of the region R, the linear system involved in the
motion estimation algorithm may be very ill conditioned.

For the 2D affine motion model, the condition number of the 6 × 6 ma-
trix ΓR is given by

k(ΓR) =
λ1(ΓR)

λ6(ΓR)
, (58)

where λ1(ΓR) is the largest eigenvalue of ΓR and λ6(ΓR) is its smallest eigen-
value. We expect the same kind of behavior of the condition number k(ΓR)
in terms of the constants xc and yc. We then choose the constants xc and yc

to be the center of the support region R, as noted at the beginning of the
section.

21



Estimation error

The covariance matrix of the estimation error for the affine motion model is
given by expression (30) after replacing ΓR by expression (49),

Σp = σ2
t Γ

−1
R . (59)

The knowledge of the error covariance matrix Σp enables us to compute
the reliability of a motion parameter estimate in an easy way. References [7]
and [8] use the reliability of the estimates of the motion parameters to weight
the contribution of those estimates on the recovery of 3D structure. We define
the error σ2

P as the mean square error Euclidean distance between the true
and estimated values of a subset of the set of motion parameters,

σ2
P = E

{∑
i∈P

(p̂i − pia)
2

}
, (60)

where P is the subset of the set of motion parameters and pia is the actual
value of parameter pi. Since the error σ2

P depends only on the main diagonal
entries of the covariance matrix Σp, we obtain from expression (59),

σ2
P = σ2

t

∑
i∈P

Πii, where Π = Γ−1
R . (61)

In expression (61), the set P is an arbitrary subset of the parameters of
the affine motion model. For example, we can compute the variance of the
estimation error of a single parameter pi by making P = {pi}, or the mean
square Euclidean error of the translational component of the affine motion
by making P = {p1, p2}.

6 Summary

In these notes, we studied the estimation of the motion of the brightness pat-
tern between a pair of frames. The motion estimation technique described is
global, in the sense that the parameters describing the motion are estimated
directly from the all image intensities available, rather than from the dis-
placements of a set of feature points. We discussed the conditioning of the
2D motion estimation problem and derived an expression for the covariance
of the estimation error in terms of the image spatial gradients.

22



We specialized the analysis to two motion models often used in practice –
the translational motion model, and the affine motion model. For the trans-
lational motion model, we relate the conditioning of the estimation problem
to the variability of the spatial brightness pattern. For the affine motion
model, we also discuss the influence of the origin of the affine mapping on
the conditioning of the estimation problem. For both motion models, we
derive expressions for the expected square of the Euclidean distance between
the true and estimated values of the parameters.

The algorithm described in these notes is summarized as:

• Build multiresolution pyramids
{
Il
1, I

l
2, 1 ≤ l ≤ L

}
for imagesI1 and I2.

The images at resolution l = 1 are the original ones, I1
1 = I1, I

1
2 = I2.

The coarsest resolution images are IL
1 and IL

2 .

• Initialize the motion estimate at resolution level L, i.e., pL
0 , as the

identity mapping.

• For l = L down to 1 do

– Repeat

∗ Update estimate of motion parameters at level resolution level l,
i.e., pl, using the solution of (10), with ΓR and γR given
by (18,19) (expressions (35,36) or (49,50) in the case of the
translational or affine motion model).

– Until convergence.

– Convert the current motion estimate pl to the next resolution level
pl−1

0 (just take into account the change of scale).

Algorithms that extend in several ways the ones presented here have
also been proposed, e.g., using more general motion models [9], simultane-
ous registration of multiple images [10], or dealing with differently exposed
photographs [11].

As a final illustration, we used affine-motion version of the algorithm
described in these notes (actually, its extension described in [11]) to align
the images of Figure 4.

We represent in Figure 5, from left to right, top to bottom, the evolution
of the registration of the right image according to successive estimates of the
registration parameters in p (and exposure correction parameters). The top
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Figure 4: Two photographs of the same scene. Left: “natural” orientation
and exposure. Right: tilted and mush darker view.

left image of of Figure 5 shows the lower resolution version of the right image
of Figure 4, see how the orientation and exposure of these images is the same.
As the registration process evolves, the orientation (and the exposure) of the
successive images in Figure 5 converges to the ones that best match the left
image of Figure 4. The final result, obtained at the original full resolution,
is shown in the bottom right image of Figure 5.

In Figure 6, we represent the composition of the two images of Figure 4,
after simultaneous registration (and exposure correction) i.e., the mosaic
obtained by merging the left image of Figure 4 with the bottom right image
of Figure 5.
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Figure 5: Evolution of the motion estimation algorithm when processing the
pair of images of Figure 4. From left to right, top to bottom, we represent
the registration of the right image, at increasing resolution levels, according
to the estimates of the parameters obtained as the algorithm evolves.
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Figure 6: Composition of the images in Figure 4, using our method for
simultaneous registration and exposure correction.
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