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Abstract

These notes overview the spectral representation, emphasizing its
compactness for describing acoustic signals, e.g., music, and visual
patterns, e.g., textures and contours.

1 Sinusoids in Nature

We start by looking at the general class of sinusoidal signals. One of the
reasons why this class is relevant in practice is that many physical systems
produce signals that are well approximated by sinusoids. As an example,
suggested by [1], consider the tuning fork in Figure 1.

Figure 1: Tuning fork.
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When stroked, the tuning fork produces a sound, a persistent “hum”.
Figures 2 and 3 plot this sound, which is usually called a “pure tone”. Is it
a coincidence that the (stationary part of the) signal looks like a sinusoid ?

Figure 2: Acoustic signal produced by a tuning fork. (From [1].)

Figure 3: Stationary part of the signal in Figure 2, shown at a different scale.

Naturally, when stroked, the tuning fork tines vibrate. This vibration,
transmitted through the air particles surrounding the fork, produces the
audible sound. To derive the way the tuning fork tines (and thus the air
particles) vibrate, consider the schematic diagram in Figure 4. It represents
the fork after being stroked, i.e., one of the tines is deformed by a given
displacement from its equilibrium position.
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Figure 4: Vibrating tuning fork model.

Unless the initial deformation is so large that the tine bends (or breaks!),
the metal can be thought as an elastic material. Thus, there is a (time-
varying) restoring force F (t) that is proportional to the deformation x(t)
(Hooke’s law), both represented in Figure 4:

F (t) = kx(t) , (1)

where k is an elastic constant measuring the stiffness of the material.
Naturally, the restoring force produces a proportional acceleration a(t)

on the tine (Newton’s second law), i.e.,

a(t) =
d2x(t)

dt2
= − 1

m
F (t) , (2)

where m is the mass of the tine. The minus signal is due to the fact that,
obviously, the deformation x(t) and the restoring force F (t) have opposite
directions (see Figure 4).

Replacing (1) in (2), we obtain an equation that describes the dynamics
of the fork, i.e., the time evolution of the tine deformation x(t):

d2x(t)

dt2
= − k

m
x(t) . (3)
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The solution of the second-order linear differential equation (3) is given
by a sinusoidal signal,

x(t) = A cos (ω0t + φ) . (4)

In fact, by replacing (4) into (3), we get

−ω2
0A cos (ω0t + φ) = − k

m
A cos (ω0t + φ) , (5)

which holds for all t if the frequency of the sinusoidal signal is

ω0 =

√
k

m
, (6)

regardless of the values of the parameters A and φ.
We conclude that the fork tines (and thus the air particles) vibrate sinu-

soidally (in agreement with the observation in the plot of Figure 3), with a
frequency ω0 that is uniquely determined by the tuning fork characteristics:
it increases with the metal stiffness and decreases with the tine mass. Param-
eters A and φ, respectively, amplitude and phase shift, are not determined
by the dynamics of the fork, but rather by its initial deformation, i.e., by two
auxiliary conditions required to make unique the solution of the second-order
differential equation (3), e.g., x(0) = x0,

dx(t)
dt

∣∣∣
t=0

= v0.

The fact that forks like this vibrate at a fixed frequency makes them useful
to tune musical instruments. For example, the fork in Figure 1 is a A-440
tuning fork. It’s natural frequency is 440Hz (ω0 = 2π × 440 rad s−1), the
frequency of the note A (“Lá”) above middle C (“Dó”) on a Western musical
scale. This corresponds to a period T = 1

440
'2.27ms, which is observed

in the plot of Figure 3 (notice that there are five periods in approximately
11.5s).

The parameters ω0, A, and φ in (4) are an efficient (i.e., compact) rep-
resentation of the (stationary part of the) acoustic signal produced by the
tuning fork.

2 Spectral harmonics

Although other physical devices produce sounds that are approximately si-
nusoidal, e.g., whistles, the sinusoidal model is far from being general, even
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Figure 5: Acoustic signal produced by a violin.

to describe single musical notes. As an example, see in Figures 5 and 6 how
the sound of an A above middle C looks like when played by a violin.

From the plot in Figure 6, we see that, although not sinusoidal, the
(stationary part of the) acoustic signal produced by the violin is periodic.
Furthermore, the period is the same as the one of the sound produced by
the A-440 tuning fork (see Figure 3), giving intuition on why the fork can be
used to tune the violin.

Naturally, the acoustic signal in Figure 6 does not admit such a compact
representation as a sinusoidal signal. However, the time evolution of a vi-
brating string, such as the one producing the sound in Figure 6, can also be
predicted from the fundamental laws of Physics, leading to a partial differ-
ential equation (because space derivatives are also involved), whose solution
is a superposition of sinusoids. Rather than studying the dynamics of the
vibrating string, we invoke the more general result wonderfully captured by
Jean Baptiste Fourier in 1807, which states that the generality of periodic
signals 1 can be obtained by summing sinusoids of frequencies multiples of a
fundamental frequency (usually called spectral harmonics, or partials).

To clarify, consider a generic periodic signal x(t), e.g., the signal in Fig-
ure 6. The period T of the signal defines its fundamental frequency:

ω0 =
2π

T
. (7)

1Exceptions are irrelevant in practice, e.g., signals with infinite number of discontinu-
ities in a finite interval.
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Figure 6: Stationary part of the signal in Figure 5, displayed at a different
scale. Compare to the plot in Figure 3.

In the case of the signal in Figure 6, the fundamental frequency is the same
frequency of the sinusoidal signal produced by the A-440 tuning fork. Fourier
proposed to represent x(t) by what is now called its spectral decomposition,
i.e., a linear combination of sinusoids of frequencies kω0:

x(t) = A0 +
∞∑

k=1

Ak cos (kω0t + φk) . (8)

Naturally, the parameters {A0, Ak, φk, k = 1, . . .} determine the “shape” of a
period of the signal.

For the spectral representation (8) of the violin acoustic signal in Fig-
ure 6, the first component, i.e., the one corresponding to the fundamen-
tal frequency, is precisely the (possibly scaled and delayed version of the)
fork sinusoidal acoustic signal in Figure 3. In practice, many signals, e.g.,
the violin sound in Figure 6, are well approximated by truncating expres-
sion (8) to a finite (and small) set of, say, K harmonics, thus the parameters
{A0, Ak, φk, k = 1, . . . , K} are a compact representation for those signals.

For simplicity, the spectral representation in (8) is often written in terms
of complex exponentials, leading to what is usually called the Fourier series
of the signal:

x(t) =
∞∑

k=−∞
Xke

jkω0t , (9)
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where we introduced the “complex amplitudes” {Xk,−∞ < k < ∞}, related
to the parameters {A0, Ak, φk, k = 0, 1, . . .} in (8) by

X0 = A0, Xk =
Ak

2
ejφk , X−k = X∗

k =
Ak

2
e−jφk , k ≥ 1 . (10)

These “complex amplitudes”, i.e., the coefficients of the spectral represen-
tation, or the Fourier series (9), are uniquely determined by the signal x(t),
through

Xk =
1

T

∫
T

x(t)e−jkω0t dt , (11)

see, e.g., [2] for details.
As another example of the usefulness of the spectral representation for

compactly representing periodic signals, Figure 7 plots the coefficients {Xk}
for an approximation of an acoustic signal produced by an human voiced
sound. The majority of these coefficients are zero and only five sinusoidal
components are enough to approximate the real sinal (Figure 8 illustrates
the synthesis by using these components).

Figure 7: Spectral analysis of a voiced sound.
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Figure 8: Spectral synthesis of a voiced sound.

3 Images, textures, and contours

The analysis in the previous section is easily extended to two-dimensional (2D)
signals, i.e., images, where independent variable time t is now replaced by
the two spatial independent variables x and y. In particular, the sinusoidal
building block is an image I(x, y) given by

I(x, y) = A cos (ωxx + ωyy + φ) , (12)

where ωx stands for the spatial frequency along the x axis and ωy for the
frequency along y.

Figures 9 to 11 show three examples of sinusoidal images obtained by
representing, in a gray level scale, the result of evaluating expression (12) for
different pairs of values for ωx, ωy (x is represented on the horizontal axis and
y on the vertical one). The resulting images are planar waves, whose direction
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Figure 9: Sinusoidal image. Left: image intensity as a function of x and y.
Right: corresponding gray level image.

Figure 10: Sinusoidal image.

and frequency is determined by ωx and ωy. For example, in Figure 10, for
ωx 6= 0 and ωy = 0, we get an horizontal wave, while in Figure 9, for ωy 6= 0
and ωx = 0, we get a vertical one. In Figure 11, for ωx 6= 0, ωy 6= 0, we get
a diagonal wave, whose direction is the one of the vector (Tx, Ty) and whose

period is given by
√

T 2
x + T 2

y , where Tx = 2π
ωx

and Ty = 2π
ωy

(prove this, as an

exercise).
Naturally, the theory outlined in the previous section for representing

one-dimensional (1D) periodic signals in terms of sinusoids, extends to 2D
in a straightforward way, see e.g., [3]. Rather than dive into the correspond-
ing equations, which are simple extensions of their 1D version above, let us
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Figure 11: Sinusoidal image.

Figure 12: A textured pattern obtained by linear combination of the images
on the right side of Figures 9, 10, and 11.

illustrate, with a simple example, that sinusoidal images also lead to useful
compact representations. See the textured pattern image shown in Figure 12.
This image, looking somehow complex and resembling a natural tissue, was
obtained by a simple weighted sum of the sinusoidal images represented in
Figures 9 to 11. In fact, in a similar way as for 1D signals, periodic im-
ages, i.e., 2D patterns that repeat in space, are also compactly represented
as linear combination of sinusoids.

We now discuss how Fourier-like representations are also useful to repre-
sent other types of visual content, namely, 2D contours. In fact, identifying
the visual field with the complex plane, a closed contour can be seen as a
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periodic (complex) signal, see the example in Figure 13. On the left, we see
an arbitrary contour. Considering a parametric representation in terms of a
parameter t ∈ [0, 1], the contour corresponds to the geometric locus of the
points {x(t), y(t)}. This way, an equivalent representation for the contour
is the complex periodic signal z(t) = x(t) + jy(t), of which one period is
represented (both real and imaginary parts) in the right plot of Figure 13.

Figure 13: A contour as a periodic signal in the complex plane.

The periodic signal z(t) admits, in turn, a spectral representation in terms
of the expressions (9) and (11). In Figure 14, we represent the coefficients
{Xk} of the Fourier series of z(t) 2. We see that the magnitude of the coef-
ficients is only relevant for small |k|, meaning that a compact representation
for the contour is then obtained by simply storing those coefficients.

Figure 15 shows some of the successive approximations of the contour,
obtained by using the synthesis expression (9), with increasing number of
spectral components. Notice how the bottom right contour of Figure 15, ob-
tained with only 10 spectral components, is almost visually indistinguishable
from the original contour in Figure 13.

2Note that the coefficients of the Fourier series do not verify X−k = X∗
k because the

signal is complex, i.e., there is no equivalent representation such as (8) or the relations (10).
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Figure 14: Spectral analysis of the contour in Figure 13.
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Figure 15: Spectral approximations of the contour in Figure 13.
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4 Time-frequency representation and musi-

cal notation

After having illustrated that the spectral analysis provides a compact rep-
resentation for repetitive patterns, we must now refer that it is not so for
signals in general. In fact, the generality of signals do not repeat in time or
space: just think of a general image, e.g., Figure 16, a pronounced phrase,
or an entire musical piece (see extract in Figure 17).

Figure 16: Example of a non-stationary image.

Naturally, the analysis of the previous sections can be extended to cope
with non-periodic signals, by letting T → ∞, which originates the Fourier
transform, see, e.g., [2]. However, this approach lacks the nice compactness
characteristic we observed for the Fourier series representation of periodic
signals 3. When dealing with acoustic musical signals, instead of attempting
to describe general aperiodic signals with a single spectrum, we may take ad-
vantage of the fact that these signals are “locally periodic”. In fact, although
not “globally periodic”, many musical signals are composed by shorter seg-
ments that exhibit periodicity, see the example in Figure 17. Thus, an useful

3Although not emphasized here, Fourier-like representations are also motivated by other
characteristics, for example, its effectiveness in linear filtering, see e.g., [1, 5], and its
invariance with respect to certain groups of transformations in image analysis, see e.g.,
[3, 4].
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Figure 17: Example of a music segment. Note that, although non-periodic,
it is largely ”locally periodic“.

description for this kind of signals is based on the set of spectral represen-
tations of the periodic segments. This description consists on a so-called
time-frequency representations, because it describes the spectral content of
the signal as a function of time, see e.g., [5, 6].

The oldest time-frequency representation can be traced back to at least
the 16th century, see an example in Figure 18. It was developed as a compact
way to describe Western music. Time is on the horizontal axis. Each sound
event, i.e., each note (or pause), is denoted by a symbol, which is placed
in an horizontal position that indicates its start time. The specific symbol
used denotes the duration of the sound event (see, e.g., [7], for a detailed
description of the symbols). Frequency is on the vertical axis. The vertical
position of the symbols indicate the fundamental frequency of the respective
note, in a logarithmic scale.

The correspondence between the vertical position of the symbols indicat-
ing the notes, the corresponding (white) key in a piano keyboard, and the
corresponding (fundamental) frequency is indicated in Figure 19. The piano
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Figure 18: Western music notation: a time-frequency representation.

keyboard is organized in a repetitive pattern, where each segment doubles
the frequency (i.e., an octave). For example, since, as referred in the previ-
ous sections, the frequency of the A above middle C is 440Hz, the frequency
of the A immediately above is 880Hz and the one of the A below is 220Hz
(see Figure 19). In between (the majority of) the piano white keys, there
are also black keys (whose note is represented in musical notation by using
special symbols like ] or [, see, e.g., [7]). Overall, each octave is divided into
12 steps. In an equally tempered scale, each of these steps is equal, meaning
that the ratio between the frequencies of consecutive keys is fixed, say r.
Since 12 steps double the frequency,

r12 = 2 ⇔ r = 21/12 = 12
√

2 ' 1.0595 . (13)

It is thus straightforward to compute the frequency of any note, knowing
the frequency of another one. To make things clear, let us number the notes,
starting by the lowest frequency key of the piano keyboard (see Figure 19):
A-1, A](⇔B[)-2, B-3, C-4, C](⇔D[)-5, D-6, etc. To compute the frequency
fm of key number m, given the one of key n, fn, we just have to multiply
it (or divide), by the ratio r, the appropriate number os steps, i.e., m − n
times:

fm = fn rm−n = fn 2(m−n)/12 . (14)

As an example, let us compute the fundamental frequency of the middle C
(key number 40). Since the fundamental frequency of the key 49 (A above
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Figure 19: Piano keyboard and correspondent mapping to music sheet. See
also the frequency ranges of other musical instruments and human voices.
(From [8].)

middle C) is 440Hz, we get

f40 = f49 2(−9/12) ' 261.6256Hz (15)

for the middle C, according with what is indicated in Figure 19.
We end by emphasizing that the automatic inference of an highly struc-

tured representation for a music signal, such as the one based in the musical
notation of Figure 18, is a tremendously difficult task. This is the ultimate
goal of automatic music transcription, which, besides obvious applications in
music analysis, is also required for structured audio coding, where very eco-
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nomic representations, such as MIDI 4 files, retain only an extremely compact
description of the characteristics of a piece of music, see [6].
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