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Resumo

Muitas aplicações requerem o conhecimento de uma combinação linear esparsa de sinais elementares
que aproxima um dado sinal. Este problema é conhecido por “problema de aproximação esparsa”
e surge em diversos contextos em ramos da Engenharia Electrotécnica e da Matemática Aplicada. A
grande dificuldade em lidar com este tipo de problemas é a falta de convexidade ou a não–diferenciabilidade
das medidas de esparsidade.

A grande contribuição desta tese é propôr, analisar e comparar algoritmos distribuídos que permitem
resolver um problema de aproximação esparsa conhecido pelo nome de “basis pursuit”. Há interesse
considerável em resolver este problema de forma distribuída pela sua aplicabilidade em telecomuni-
cações, computação e redes de sensores. Todos os algoritmos propostos baseiam–se na existência de
uma partição da matriz que contém a descrição dos sinais elementares. Essa partição pode ser horizon-
tal ou vertical e os respectivos blocos da matriz estão armazenados em diferentes processadores. Con-
tudo, cada algoritmo, estando associado a uma determinada arquitectura de ligações entre os vários
processadores disponíveis, opera sob essa arquitectura para resolver o “basis pursuit”.

Também são apresentadas provas de convergência para todos os algoritmos propostos na tese.
Com esta finalidade, as provas conhecidas de convergência para os métodos “Diagonal Quadratic Ap-
proximation” e “Nonlinear Gauss–Seidel” tiveram de ser generalizadas de modo a abranger uma nova
classe de funções não–diferenciáveis. Essa nova classe é definida, e é-lhe dado o nome de “funcões
rígidas”.

Por último, são apresentados possíveis caminhos na futura investigação de algoritmos que resolvam
o “basis pursuit” e uma sua versão mais robusta, “basis pursuit denoising”, de forma centralizada, mas
rápida.

Palavras Chave: Basis Pursuit, Algoritmos Distribuídos, Nonlinear Gauss–Seidel, Diagonal Quadratic
Approximation, Método de Subgradiente, Funções Rígidas.
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Abstract

Many applications require the knowledge of a sparse linear combination of elementary signals that can
explain a given signal. This problem is known as the “sparse approximation problem” and arises in
many fields of electrical engineering and applied mathematics. The great difficulty when dealing with
sparse approximation problems is the lack of convexity or the non-differentiability inherent to the sparsity
measures.

The main contribution of this thesis is the proposal, and in–depth analysis, of some distributed al-
gorithms that solve a sparse convex approximation problem known as the “basis pursuit” problem. The
interest in solving this problem distributedly concerns applications such as communications, computing
and sensor networks. All the proposed algorithms assume that the matrix which contains the descrip-
tion of elementary signals is partitioned either horizontally or vertically among the several processors
available. Nevertheless, each algorithm is based on a particular architecture for the links between the
processors and must operate upon that architecture in order to solve the basis pursuit.

This thesis also provides proofs of convergence for all the proposed algorithms. This required ex-
tending the well-known results of convergence of the Diagonal Quadratic Approximation and the Non-
linear Gauss–Seidel methods to cover a new class of non-differentiable functions, which we call “rigid
functions”.

Finally, we also point out new possible directions in the research for centralized but fast algorithms to
solve, not only the basis pursuit, but also the “basis pursuit denoising” problem.

Keywords: Basis Pursuit, Distributed Algorithms, Nonlinear Gauss–Seidel, Diagonal Quadratic Ap-
proximation, Subgradient Method, Rigid Functions.
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Chapter 1

Introduction

Over the last half century, society has benefited a lot from the significant advances in signal process-
ing. Ranging from image and audio processing to genetics and bioengineering, its applications are
numerous. So, it is no surprise that developments on these application areas can be observed almost
everyday. Nevertheless, the field of signal processing itself is far from being static. The topic of sparse
representation of signals is a quite recent and promising one [27, 28].

Sparse representation arises in so many fields that it is impossible to mention all here. Exam-
ples include signal reconstruction and restoration, denoising, regularization, estimation and fitting, in-
terpolation, channel coding and compressed sensing. It is worthwhile to mention that compressed
sensing provides a more efficient alternative to the Shannon-Nyquist sampling for a broad class of sig-
nals [16, 2, 12, 7]. However, most of the theoretical results found in the area of sparse representation
are relatively recent and, consequently, advances in its related areas of application are expected in the
near future.

At the same time, the computing architecture paradigm is changing towards more distributed envi-
ronments, where computational resources are not just concentrated in a single place but over many.
Sensor networks are just an example, having (real-time) applications such as security, surveillance,
smart classroom, robotics, aerospace and medical monitoring [15, 19]. While the hardware for parallel
computing has had great developments, there is still lot of space for advances in the parallelization of
algorithms. A parallelizable algorithm has always a certain hardware architecture associated, and may
not be suitable for other architectures. Therefore, it is of considerable interest to develop algorithms that
can be used over several architectures.

The main difficulty encountered when dealing with sparse representation problems is the non-convexity
or the non-differentiability of the sparsity measures. In this thesis, we are interested in two important
problems that arise in the context of sparse representation:

min
Ax = b

var : x ∈ Rn

‖x‖1 (BP)

and

min
x∈Rn

1
2
‖Ax− b‖2 + β‖x‖1. (BPDN)

Although both problems are convex, it will be shown in subsection 1.3.1 that (BP) is a convex relaxation
of a combinatorial problem involving the `0-quasi norm; and (BPDN) is a more robust way of solving (BP).

Problem (BP) is known as the basis pursuit problem. It consists in finding a vector x ∈ Rn that has

1



the least `1-norm (‖x‖1 :=
∑
i |xi|) and at the same time verifies the linear equation Ax = b. A is a

real–valued matrix m × n and b is a vector in Rm. We can assume, without loss of generality, that the
rows of A are linearly independent. Thus, this problem only makes sense when m < n, i.e., there are
more unknowns than equations, being Ax = b an underdetermined system. When m = n, the only
feasible point is x = A−1b.

A closely related problem is (BPDN), which is called basis pursuit denoising [13]. In fact, this is an
heuristic to find a vector x ∈ Rn that is both sparse and close to verify equation Ax = b, where A ∈ Rm×n

and b ∈ Rm. In this thesis, when we write ‖ · ‖ we always refer to the `2-norm, unless otherwise stated.
So, in (BPDN), we try to find a solution such that Ax − b is small in the `2-norm sense, and x is small
in the `1-norm sense. The number β is the trade-off parameter between the two objectives that we are
trying to minimize. Unlike (BP), this problem makes sense for any relationship between the dimensions
of A, m and n.

1.1 Contributions

Problems (BP) and (BPDN) belong to well–established classes of optimization problems. While (BP)
can be written as a linear program, (BPDN) can be recast as a quadratic program. However, when one
of the requirements is to solve these problems in a distributed/parallelized way, there are no references
in the literature, to the best of our knowledge, of algorithms that fulfill this requirement.

In this thesis, we tackle the problem of solving the BP in a distributed environment and take for
granted the fact that no single processor knows the entire matrix A. We consider both the cases where
this matrix is partitioned horizontally and vertically. In the first case, we propose, analyze and compare
three algorithms that differ, not only in the approaches, but also in the supporting architecture for the
links between the processors. In the second case, we propose and analyze just one algorithm, although
another one is possible but more inefficient, that relies on a link architecture different from those found
in the algorithms that are based on a horizontal partition of A. Still in the latter case, we show how to
easily adapt that algorithm to solve the BPDN.

Concerning the technical aspects of this work, we give for each algorithm a proof of convergence
and define its conditions of applicability. The main difficulty in solving the BP and the BPDN in a dis-
tributed/parallelized way is the lack of guarantees of convergence, for non–differentiable functions, of
well–known methods that induce parallelization. We extend the proofs of convergence of such meth-
ods (Diagonal Quadratic Approximation and Nonlinear Gauss–Seidel algorithms) to include a new kind
of non–differentiable functions: the “rigid functions”. The concept of rigid functions is defined in the
text as being part of the class of subdifferentiable functions that share a particular property with the
differentiable functions.

Throughout this thesis, we also propose several possible topics of research in the area of algorithms
that solve the BP and the BPDN. The case where centralized but fast algorithms are required is also
addressed, bur we only emphasize details that can lead to new efficient algorithms.

1.2 Thesis Organization

In section 1.3, we present some useful material for the comprehension of this thesis, concerning not
only recent theoretical results, but also some problem analysis.

In chapter 2, we tackle the problem of solving the BP with an horizontal partition of the matrix A.
Three different algorithms are proposed, analyzed and compared.

2



Chapter 3 concerns the case when the matrix A is partitioned vertically for the resolution of both the
BP and the BPDN.

Finally, in chapter 4, future research topics are proposed concerning the development of centralized
fast algorithms to solve either the BP or the BPDN.

1.3 Preliminaries

This section provides some background, some analysis and some recent theoretical results on the basis
pursuit (BP) and basis pursuit denoising (BPDN) problems. We will show that BP is a linear program
as well as interpret its dual, thus collecting information for the analysis of the proposed algorithms.
Furthermore, we will also explain the relationship between BP and BPDN, and the reason why these
two problems are usually related to sparse approximation.

1.3.1 Why is sparsity usually associated with the `1-norm?

The basis pursuit problem
min

Ax = b

var : x ∈ Rn

‖x‖1, (1.1)

where the data are A ∈ Rm×n and b ∈ Rm, and the variable is x ∈ Rn, is considered a least–norm
problem

min
Ax = b

var : x ∈ Rn

‖x‖, (1.2)

where ‖x‖ is any norm. Nevertheless, we will just consider three types of the well–known `p-norms
(p = 0, p = 1 and p = 2). The `p-norm of a vector x ∈ Rn is defined by

‖x‖p :=


(
∑n
i=1 |xi|p)

1/p
, if 0 < p < +∞

|{i : xi 6= 0} | , if p = 0
maxi=1,...,n |xi| , if p = +∞

,

where |S| is the cardinality of a finite set S. Strictly speaking, ‖ · ‖p is a norm only for p ≥ 1.
We can interpret problem (1.2) as a way of solving an ill-posed linear equation Ax = b, and finding

its smallest solution (measured in the respective norm). When the chosen norm is the `2-norm, (1.2)
has a unique solution called the least–squares solution, which can be easily obtained. However, the
least-squares solution is rarely sparse1. On the other hand, if we use the `1-norm we will get sparse
solutions very often.

Let’s examine why this happens [6, page 296]. Interpreting the objective function ‖x‖ on (1.2) as a
penalizing term, we seek the least penalized solution. As problem (1.2) is equivalent to

min
Ax = b

var : x ∈ Rn

‖x‖2,

1By a sparse vector we mean a vector that has few non–zero entries.
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making x = (x1, x2, . . . , xn) and using the `2-norm we get

min
Ax = b

var : x ∈ Rn

x2
1 + x2

2 + . . .+ x2
n. (1.3)

In its turn, the basis pursuit (1.1) can be written as

min
Ax = b

var : x ∈ Rn

|x1|+ |x2|+ . . .+ |xn|. (1.4)

Therefore, we can restrict our analysis to R, by comparing the functions φ1, φ2 : R → R, φ1(u) = |u|
and φ2(u) = u2. When |u| = 1, φ1(u) = φ2(u) = 1. When |u| � 1, we have φ1(u) � φ2(u), meaning
that the large values of each component of x are much more penalized using the `2-norm than using
the `1-norm. Finally, when |u| � 1, we get φ1(u)� φ2(u), so the `1-norm puts much more emphasis on
small values of the components of x than the `2-norm (see Figure 1.1). As a consequence, the solution

u
2

u−1

|u|

card(u)

1

Figure 1.1: Graphics of the functions |u|, u2 and card(u) (cardinality of the vector u, which is equivalent
to the `0-quasi norm in R) in order to illustrate the difference in the penalization of small and large
components of u.

of (1.4) has more small or near zero components and perhaps a few large non–zero components, than
the solution of problem (1.3).

Figure 1.2 gives another popular explanation (in the plane) why the `1-norm is preferred to the `2-
norm in order to generate sparse vectors. The optimal solution in both cases is the first point of the
corresponding norm ball to “touch” the set {x : Ax = b}, as if we were swelling up the ball. It happens
that the `1-norm ball is larger on the coordinate axis directions than in the other directions, while the
`2-norm ball is isotropic.

So if we seek a solution with lots of small (near–zero) components, the `1-norm is a good choice.
Actually, any (quasi) `p-norm with 0 ≤ p ≤ 1, would lead to the same results. But from these (quasi)

norms, the only convex one is the `1-norm (p = 1) — recall that non-convex problems are the hardest to
solve. Nevertheless, as the cardinality of a vector is measured by the `0-quasi norm, the sparsest vector
that solves the linear equation Ax = b is the solution of (1.2) with the `0-quasi norm

min
Ax = b

var : x ∈ Rn

‖x‖0. (1.5)
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{x : Ax = b}

x
?

(a) `1-norm

x
?

{x : Ax = b}

(b) `2-norm

Figure 1.2: Alternative explanation of the sparsity inducing property of the `1-norm.

It is interesting to note that problem (1.1) is actually a convex relaxation of the problem (1.5). In
Figure 1.1, we can see that the `p-norm that best approximates the `0-quasi norm near the origin, and
is convex, is the `1-norm. This approximation can reveal very useful in the sense that we replace a
combinatorial problem by a linear program (see subsection 1.3.2) — the simpler class of optimization
problems.

Even more surprising is the fact that there are results that state that problems (1.1) and (1.5) are
equivalent under certain conditions. To understand when this equivalence occurs, we need to use the
concept of restricted isometry constants, introduced in [10] and refined in [11, 8].

Definition 1 (Restricted isometry constants). For each s = 1, 2, . . . , n, the restricted isometry constant
δs(A) of a matrix A ∈ Rm×n is the smallest number such that

(1− δs(A))‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δs(A))‖x‖2, (1.6)

holds for all s-sparse vectors2. Similarly, the s, s′–restricted orthogonality constant θs,s′(A) is defined for
s+ s′ = 1, 2, . . . , n as the smallest number such that

| < Ax,Ax′ > | ≤ θs,s′(A) · ‖x‖‖x′‖, (1.7)

holds for all s-sparse vector x and all s′-sparse vector x′, where < a, b >:=
∑n
i=1 aibi for a, b ∈ Rn.

The numbers δs(A) and θs,s′(A) measure how close any s-sparse collection of the columns of the
matrix A behaves like an orthonormal system. In particular, the smaller these constants are, the closer
this collection of columns is to an orthonormal system.

To see how important the restricted isometry constants are, we can see, for instance, that if δ2s(A) <
1, problem (1.5) has a unique s-sparse solution. Instead of proving this claim, let’s see what happens
when δ2s(A) = 1. In this case, there exists a vector 2s-sparse h such that Ah = 0. We can then
decompose h as x− x′, where both x and x′ are both s-sparse, meaning that Ax = Ax′. This equation
tells that if x is a solution of (1.2), so x′ is.

Imagine a communication setting3 in which the sender wishes to communicate a vector x to the
receiver, but, instead of sending x (a large vector of size n), it just sends the vector b of size m < n,
satisfying Ax = b. Matrix A is known by the receiver. Furthermore, the receiver knows that the vector x
is s-sparse. In this case, if the matrix A has a restricted isometry constant δ2s(A) <

√
2− 1, the receiver

can solve either problem (1.1) or problem (1.5), since both problems have the same solution. That is,
2A vector is s-sparse if it has at most s non–zero entries.
3It could be any situation that consisted in finding a sparse solution of an ill–posed linear system. For more situations see, for

example, [12, 27, 2].
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the convex relaxation of problem (1.5) (which is (1.1)) is exact. A more generic result, in which x is
not necessarily s-sparse but completely generic, involves the best sparse approximation that one could
obtain if one knew exactly the locations and the amplitudes of the s–largest absolute entries of x. This
result is in [8] and is given by

Theorem 1. Let x be an arbitrary vector in Rn; A a real matrix m by n with a restricted isometry constant
δ2s(A) <

√
2 − 1; and b a vector in Rm such that b = Ax. Denote the vector which is equal to x only at

the s–largest absolute entries and zero elsewhere by xs. Then the solution x? to (1.1) obeys

‖x? − x‖ ≤ C0s
−1/2‖x− xs‖1,

where C0 is a constant depending on δ2s(A). In particular, if x is s-sparse, the error is zero.

We add that this theorem is only useful for values of δ2s(A) smaller than about 0.4; and that the
constant C0 is rather small for δ2s(A) < 0.3 (see Figure 1.3). Similar results, with different conditions,

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

10

20

30

40

50

60

70

δ2s

 

 

C1

C0

Figure 1.3: Graphical description of the constants C0 and C1, which appear in theorems 1 and 2, as a
function of δ2s(A). C0 given by C0 = 2(1 + ρ)/(1− ρ), where ρ =

√
2δ2s(A)/(1− δ2s(A)); and C1 is given

by C1 = 2α/(1− ρ), where α = 2
√

1 + δ2s(A)/(1− δ2s(A)).

are proved in [11, 9], and also explained in [7]. The same articles also refer which kind of matrices
have “good” restricted isometry constants, namely Gaussian random matrices with i.i.d. entries, Fourier
ensembles and general orthogonal measurement ensembles. Still covering this issue, we mention [1].
This analysis would not be complete without mentioning the articles [27, 26], which provide a different
analysis for the same problem.

Concerning the practical implications of this theory, [10, 2] state that we can code without loss (with
an overwhelming probability) all the information of a s-sparse vector x of size n into a vector b of size m,
with m = O(s log(n/s)), just by doing b = Ax, where A is a random matrix of the kind of the ones that
were mentioned above.

The Basis Pursuit Denoising

Here, it will be explained the role of the basis pursuit denoising (BPDN) problem in the context of sparse
approximation. Some recent theoretical results will also be presented.

Imagine again that we are in a communication setting, as explained in page 5, but now the signal b,
known by the receiver, is contaminated with noise: b = Ax+ z, where z is any perturbation for which we

6



know a magnitude upper–bound ε, i.e. ‖z‖ ≤ ε. If we know a priori that x is sparse, it makes sense to
solve a slightly different version of the basis pursuit

min
‖Ax− b‖ ≤ ε
var : x ∈ Rn

‖x‖1. (1.8)

This problem, however, is not equivalent to a linear program anymore. It belongs to the class of the
second–order cone programs [6, page 156]. The next theorem, proved in [8], shows that by solving
problem (1.8) the receiver can reconstruct x in a stable way.

Theorem 2. Let x be an arbitrary vector in Rn; A a real matrix m by n with a restricted isometry constant
δ2s(A) <

√
2 − 1; and b a vector in Rm such that b = Ax + z, being z arbitrary noise, but bounded by

ε, i.e. ‖z‖ ≤ ε. Denote the vector which is equal to x only at the s–largest absolute entries and zero
elsewhere by xs. Then the solution x? to (1.8) obeys

‖x? − x‖ ≤ C0s
−1/2‖x− xs‖1 + C1ε,

where C0 is the same constant of theorem 1 and C1 is another constant that also only depends on
δ2s(A). In particular, if x is s-sparse, the error is only bounded by C1ε.

The two constants C0 and C1 are plotted in Figure 1.3. Again, we note that theorems 1 and 2 only
have practical interest for values of δ2s(A) smaller than about 0.4 or less, depending on the desired
accuracy.

We still need to know how to relate problem (1.8) to (BPDN). The KKT-system [6, page 243] for (1.8)
will be used to prove that a solution of (1.8), which always exists according to Weierstrass’s theorem, is
either x = 0 or a solution of (BPDN), for some β > 0.

The constraint of (1.8) can be equivalently written as 1/2‖Ax−b‖2 ≤ 1/2ε2. This way, the Lagrangian
function L : Rn × R of (1.8) is

L(x, µ) = ‖x‖1 +
µ

2
‖Ax− b‖2 − µ

2
ε2

and the corresponding KKT-system is
x? ∈ arg minx(µ?/2)‖Ax− b‖2 + ‖x‖1 − (µ?/2)ε2

‖Ax? − b‖ ≤ ε
µ? ≥ 0
µ? (‖Ax? − b‖ − ε) = 0

, (1.9)

where x? and µ? are the optimal primal and dual variables, respectively.
If µ? > 0, the first equation of (1.9) is equivalent to

x? ∈ arg min
x

1
2
‖Ax− b‖2 +

1
µ?
‖x‖1. (1.10)

In this case, we have ‖Ax?− b‖ = ε, from the last equation of (1.9). We also have that a solution of (1.8),
provided that it exists and strong duality holds4, is also a solution of (BPDN), for β = 1/µ?.

On the other hand, if µ? = 0, then the optimal primal variable minimizes ‖x‖1, due to the first equation
of (1.9). So, the only solution is x? = 0.

4It suffices that there exists at least a vector x ∈ Rn such that ‖Ax − b‖ < ε (Slater’s condition). In our case, as we are
assuming that the rows of A are linearly independent, there exists always an x̃ such that Ax̃ = b, thus strong duality is always
satisfied and (1.8) is always feasible.
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As it is difficult to find the optimal dual variable µ? of (1.9), what is done in practice if one wants to
solve (1.8) through the BPDN, is to solve (BPDN) for several values of β and choose the solution with
the desired sparsity.

1.3.2 BP as a Linear Program

Using standard techniques in optimization [6], we can reformulate the basis pursuit (BP) as

min
−t ≤ x ≤ t
Ax = b

var:(x, t) ∈ Rn × Rn

1Tn t, (1.11)

which is clearly a linear program. 1n stands for the column vector of size n with all its entries equal to
one. Notice that the size of the variable is now 2n.

1.3.3 The Dual Of The BP

In this subsection we will derive the dual of the basis pursuit problem

p? = min
Ax = b

var : x ∈ Rn

‖x‖1. (1.12)

The dual program of an optimization problem provides a lower bound d? to the optimal value of the
primal problem p?, i.e, d? ≤ p?. However, if the primal program is convex and verifies some constraint
qualification, e.g. Slater’s condition [6, page 226], strong duality holds, meaning that d? = p?. Moreover,
when strong duality holds, by solving the KKT-system, one can find simultaneously the optimal primal
and dual variables, thus the solution of the optimization problem.

It is easy to see that (1.12) is convex and satisfies Slater’s condition (its constraints are affine),
so solving its dual will reveal profitable if we want to get to its optimal solution. By representing the
Lagrangian function by L : Rn × Rm → R (a notation used throughout the text), the steps to get to the
dual program are:

1. L(x, λ) = ‖x‖1 + λT b− λTAx

2.

L(λ) = inf
x

[
‖x‖1 −

(
ATλ

)T
x
]

+ λT b (1.13)

=
n∑
i=1

[
inf
xi
|xi| − aTi λxi

]
+ λT b (1.14)

We designated each column of the matrix A by ai for i = 1, . . . , n, i.e.,

A =

 | | |
a1 a2 · · · an

| | |

 ,
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thus, we can write

ATλ =


aT1 λ

aT2 λ
...

aTnλ

 .
This, together with the decomposition x = (x1, x2, . . . , xn) justifies the passage from (1.13) to (1.14).

Now, we have to evaluate the infimum of the function |xi| − aTi λxi, for each i = 1, . . . , n. Based on
the plots of the functions |xi| and aTi λxi, which are in Figure 1.4, we can see that the infimum is
only finite when |aTi λ| ≤ 1, being zero in that case. Note that

|aTi λ| ≤ 1, ∀i=1,...,n ⇐⇒ ‖ATλ‖∞ ≤ 1.

Therefore, we can write

L(λ) =

{
λT b , ‖ATλ‖∞ ≤ 1
−∞ , otherwise

.

3. Finally, the dual program is

d? = p? = max
λ

{
λT b , ‖ATλ‖∞ ≤ 1
−∞ , otherwise

,

which is equivalent to
d? = max

‖ATλ‖∞ ≤ 1
var : λ ∈ Rm

λT b. (1.15)

xi

|xi|

|ai
Tλ| < 1

|ai
Tλ| > 1

Figure 1.4: Plot of the functions |xi| and aTi λxi for two situations: when the absolute value of the slope
of the line aTi λxi is greater than one, |aTi λ| > 1, the infimum of the function |xi| − aTi λxi is −∞; when
|aTi λ| ≤ 1, the infimum is 0, being the origin a minimizer, i.e. x?i = 0.

As expected, the dual of the BP (1.12) — which is itself equivalent to a linear program — is a linear
program. Note that the corresponding linear programs are a little bit different in the size of the variables
and in the number of constraints: while (1.11) has 2n + m linear constraints and the size of its variable
is 2n, (1.15) has 2n linear constraints and the size of its variable is only m.

In Figure 1.5, which represents graphically problem (1.15), we are considering that the polyhedron
P =

{
λ : ‖ATλ‖∞ ≤ 1

}
is bounded. In fact, it can be shown that the linear independence of the rows
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of A implies that P is bounded.

bλ
?

P =
{

λ : ‖AT
λ‖
∞

≤ 1
}

R
m
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Changed with the DEMO VERSION of CAD-KAS PDF-Editor (http://www.cadkas.com).

Changed with the DEMO VERSION of CAD-KAS PDF-Editor (http://www.cadkas.com).

Figure 1.5: Graphical depiction of the linear program (1.15). The dashed lines represent the level curves
of the objective function. One of the optimal points is always a vertex of the polyhedron.

This set P represents n inequalities of the form |aTi λ| ≤ 1, for i = 1, . . . , n, which are actually 2n
linear inequalities. It is important to note that if we used any optimization method that minimizes a
constrained optimization program based on projections on the constraining set (for instance, gradient [3,
page 223] and subgradient [5] projection methods), it would be cumbersome to project a point on the set
P, just because this set is characterized by too many constraints (2n) — recall that (BP) only becomes
interesting for large values of n.

There are several methods that solve large-scale linear programs, such as simplex, interior-point or
affine scaling methods. However, these methods are not readily adapted for a multi-processor/distributed
environment.
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Chapter 2

Distributed BP With Horizontal
Partition

In this chapter, we propose, analyze and compare some algorithms for solving the basis pursuit (BP)
problem

min
Ax = b

var : x ∈ Rn

‖x‖1, (2.1)

where x ∈ Rn, A ∈ Rm×n, b ∈ Rm and ‖x‖1 = |x1| + |x2| + . . . + |xn| is the `1-norm. The variable
is x, whereas A and b are given. We have already seen that (2.1) can be cast as a linear program in
subsection 1.3.2. However, in this chapter, we consider the case where the matrix A ∈ Rm×n is not
concentrated in a single computer, thus standard methods for solving linear programs cannot be readily
applied. This can happen if, for example, the dimensions of A are too large, or just because it’s not
practical to have A stored on a single computer.

In this chapter we assume that the matrix A is partitioned horizontally. Recall that A can be seen as
an over–complete dictionary, perhaps integrating many families of functions. Each column of A, then,
may represent a function. So, an horizontal partition makes sense when we want to operate each family
of functions on different computers, for example to adapt each computer architecture to a particular
family of functions.

We will then use several computers (or devices with some memory and computing power, which will
be called processors, computers or nodes indistinctly) to try to solve problem (2.1).

Nowadays, distributed systems are becoming more and more important in applications such as com-
munications, computing, or even sensor networks [4, 25, 19]. So, it shouldn’t be too difficult to find
an environment in applications where we have available several processors that can communicate with
each other relatively fast.

To formalize, we assume that the matrix A is stored among the P computers available, being parti-
tioned horizontally

A =

 A1 · · · Ap · · · AP


xy︸ ︷︷ ︸

n

m

into P blocks, each with np columns for p = 1, . . . , P , throughout the rest of this chapter. As each
block Ap is stored on a single processor, we are assuming that no processor knows the entire matrix A.
Nevertheless, the processors have to cooperate to get to an optimal solution of (2.1).
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We also assume that each blockAp contains adjacent columns ofA, only for convenience of notation.
In any case, it is always possible to re-order the columns so that this happens.

2.1 Subgradient Method

Here, we will try to solve (2.1) through its dual

max
‖ATλ‖∞ ≤ 1
var : λ ∈ Rm

λT b, (2.2)

nonetheless using a “trick” to get rid of the polyhedral constraint ‖ATλ‖∞ ≤ 1, which represents 2n linear
inequalities. As we have already stated in subsection 1.3.3, the main difficulty here is the presence of
the polyhedral constraints. The use of methods that project points on a polyhedron with many equations
becomes inefficient, therefore it sounds a good idea to get rid of the constraint ‖ATλ‖∞ ≤ 1 .

In fact, that constraint comes up when it is imposed that the dual function L(λ) (on page 8, equa-
tion (1.14)) has a finite infimum. There are two ways of guaranteeing this without imposing restrictions
on the variable λ:

• By transforming the dual Lagrangian function into a coercive function1 with respect to the primal
variable, for example, by adding a strictly convex quadratic term. Recall that a continuous coercive
function has always a finite infimum (this method will be approached later);

• By guaranteeing that the primal constraint set is compact, and making use of Weierstrass’s theo-
rem.

This second way can be followed if a bound for the optimal solutions of (2.1) is known. Namely, we
assume that there exists a sufficiently large R such that x∗ belongs to the interior of B∞(0, R), where
B∞(c,R) = {x : ‖x − c‖∞ ≤ R} stands for the `∞ ball centered at c with radius R, and x∗ denotes
any solution of (2.1). Indeed, any norm for the ball would fit, but for our purposes the `∞ is the more
adequate one, and simply means that the absolute value of any component of x? cannot be larger than
R.

In general, the introduction of the constraint x? ∈ B∞(0, R) in (2.1) increases its optimal value but,
provided that R is large enough, (2.1) is equivalent to the bounded basis pursuit

min
Ax = b

x ∈ B∞(0, R)
var : x ∈ Rn

‖x‖1. (2.3)

Note that one can easily find an R such that all the optimal solutions of (2.1) are in the interior
of B(0, R): take any point x̂ ∈ Rn that satisfies Ax̂ = b; then, R can be equal to n‖x̂‖∞ + ε, where ε > 0
is some small number. This can be seen from the identity: ‖x‖∞ ≤ ‖x‖1 ≤ n‖x‖∞, for any x ∈ Rn.
Indeed, if x̂ is a feasible point of (2.1) and x∗ any of its optimal solutions, we have

‖x∗‖∞ ≤ ‖x∗‖1
≤ ‖x̂‖1
≤ n‖x̂‖∞.

1We say that a function f : Rn → R is coercive if lim‖x‖→+∞ f(x) = +∞.
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2.1.1 Dual Approach For Solving The Bounded Basis Pursuit Problem

By partitioning the variable x into P variables, x = (x1, x2, . . . , xP ), and by using the convention for A on
page 11, (2.3) is equivalent to

p? = min
A1x1 +A2x2 + . . .+APxP = b

‖xp‖∞ ≤ R, p = 1, 2, . . . , P

‖x1‖1 + ‖x2‖1 + . . .+ ‖xP ‖1. (2.4)

Let’s now derive the dual program of (2.4) by dualizing only the equality constraint:

1. The Lagrangian function L : Rn1 × Rn2 × . . .× RnP × Rm −→ R is given by

L(x1, x2, . . . , xP , λ) =
P∑
p=1

‖xp‖1 + λT b− λT
(

P∑
p=1

Apxp

)

=
P∑
p=1

(
‖xp‖1 − λTApxp

)
+ λT b

2. The corresponding dual function is

L(λ) = inf
‖xp‖∞ ≤ R
p = 1, 2, . . . , P

L(x1, x2, . . . , xP , λ)

=
P∑
p=1

[
inf

‖xp‖∞≤R

(
‖xp‖1 − λTApxp

)]
+ λT b (2.5)

3. Note that, under the assumption that R is large enough and A is full–rank, Slater’s condition holds
for (2.3) for any vector b, hence also strong duality:

p? = d? = max
λ∈Rm

L(λ) = − min
λ∈Rm

−L(λ).

Let H(λ) be equal to −L(λ). Now, the goal is to solve

min
λ∈Rm

H(λ), (2.6)

where

H(λ) = −λT b−
P∑
p=1

[
inf

‖xp‖∞≤R

(
‖xp‖1 − λTApxp

)]
. (2.7)

Here, we note that H(λ) can be written as a supremum of functions. Let be

r(λ, x) = −λT b+ λTAx− ‖x‖1. (2.8)

Then,
H(λ) = sup

‖x‖∞≤R
r(λ, x).

In this equation, x must be seen as indexing the family of functions r(·, x). As H(λ) is the pointwise
supremum of convex differentiable functions it is convex but it may not be differentiable at every point.
However, (2.6) can be solved using a non-descent algorithm called subgradient method2 [5]. The only

2As the subgradient method is an iterative method, we should use, from now on, the notation λk to make clear that every
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requirement for the function H(λ) is to be subdifferentiable. It is known [23, Theorem 3.1.13] that if a
function is closed and convex at an interior point of its domain, then it is subdifferentiable at that point.
In fact, H(λ) is closed on all Rm, since it is a continuous and convex function. We can conclude, then,
that H(λ) is subdifferentiable.

Subgradient Method. We now present the canonical format of the subgradient method. Let f : Rn →
R be a subdifferentiable function over Rn. Then, the subgradient method for the minimization of a
function consists on:

Algorithm 1 (Subgradient Method).

Initialization

• x0 ∈ Rn;

• a sequence of step sizes, {αk};
• k = 0.

Step 1 Compute a subgradient of f at the point xk: gk ∈ ∂f(xk).

Step 2 xk+1 = xk − αkgk.

Step 3 k ← k + 1 and return to Step 1.

The notation ∂f(x) is used to designate the subdifferential of the function f at the point x, i.e., the
set of all subgradients of f at that point.

There are many choices for the step sizes αk. For some examples, we refer the reader to [5], where
proofs of convergence are also provided.

Concerning the stopping criterion of the subgradient method, as [5] says, there is no “formal stopping
criterion”. However, there are good indicators that the convergence has already been attained. For
example, if the subgradient gk is too close to zero, that may mean that we are close to an optimal point.
This follows from the fact that if a subdifferentiable convex function f : Rn → R has the zero vector in its
subdifferential at a point x∗, then this is equivalent to saying that x∗ is a global minimizer of f . Formally,

0 ∈ ∂f(x∗) ⇐⇒ x∗ is a global minimizer of f.

Another good evidence that might indicate that the algorithm has already converged is the fact that the
cost function hasn’t been decreasing for some iterations.

A subgradient of H(λ). Returning to our problem, let Xλ be the index set

Xλ = {x̃ : sup
‖x‖∞≤R

r(λ, x) = r(λ, x̃)},

i.e., the set of indices in x such that the supremum of r(λ, x) subject to ‖x‖∞ ≤ R is attained for a
given λ. The subgradient method only requires the availability of one subgradient of H(λ) at each point.
This way, as the subdifferential of a supremum of functions contains the convex hull of the union of the
subdifferential of each function where the supremum is attained, i.e.,

co

( ⋃
x∈Xλ

∂λr(λ, x)

)
⊂ ∂λH(λ),

operation involving the variable λ is indexed to the iteration k of the subgradient method. However, we will not do so in this
subsection, just for simplicity of notation. We will merely use the simple notation λ.
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we have that, for x̃ ∈ Xλ,
g ∈ ∂λr(λ, x̃) =⇒ g ∈ ∂λH(λ).

In the above expressions, co(S) represents the convex hull of the set S and ∂λf(λ) represents the
subdifferential of the function f(λ) with respect to the variable λ.

In fact, r(λ, x) is differentiable with respect to λ, for a fixed x. So, ∂λr(λ, x) = {∇λr(λ, x)}, where
∇λr(λ, x) represents the gradient of r(λ, x), with respect to λ. By (2.8), ∇λr(λ, x̃) = Ax̃ − b, thus
Ax̃− b ∈ ∂λH(λ), for x̃ ∈ Xλ.

Finding x̃ ∈ Xλ. However, we have not seen yet how to find an x̃ in Xλ. Since x̃ depends on λ, we will
use the notation x̃(λ) to make it clearer. This is where all the P processors come in.

From (2.7),
x̃p(λ) ∈ arg min

‖xp‖∞≤R
‖xp‖1 − λTApxp, for p = 1, 2, . . . , P, (2.9)

which can be computed in parallel by all the P processors. Then, a central node would collect all the
x̃p(λ)’s and would form x̃(λ) = (x̃1(λ), x̃2(λ), . . . , x̃P (λ)). Note that the existence of the solution of (2.9)
is guaranteed by Weierstrass’s theorem.

In its turn, every processor has to solve problem (2.9). Writing xp as
(
x1
p, . . . , x

np
p

)
, for p = 1, 2, . . . , P ,

and being ajp, j = 1, . . . , np, each column of the submatrix

Ap =

 | |
a1
p · · · a

np
p

| |

 ,
we have the following equivalence

min
‖xp‖∞≤R

‖xp‖1 −
(
ATp λ

)T
xp ⇐⇒

np∑
j=1

min
|xjp|≤R

(
|xjp| −

(
ajp
T
λ
)
xjp

)
. (2.10)

The solution for the jth component of xp in (2.10) can be found in closed–form and is given by

x̃jp(λ) ∈


{0} ,if |ajp

T
λ| < 1{

R · sign
(
ajp
T
λ
)}

,if |ajp
T
λ| > 1

[−R, 0] ,if ajp
T
λ = −1

[0, R] ,if ajp
T
λ = 1

, j = 1, . . . , np, (2.11)

where the function sign(x) returns the sign of x. Figure 2.1 gives the graphical explanation of this
solution. This way, we can find an x̃(λ) in Xλ.

If we want to implement or simulate this method, we must decide which value to choose for x̃jp(λ)
on (2.11) when |ajp

T
λ| = 1. We opt to choose the extremal ones, R or −R, for no particular reason. So,

when ajp
T
λ = −1, we make x̃jp(λ) = −R; when ajp

T
λ = 1, we make x̃jp(λ) = R; and (2.11) becomes

x̃jp(λ) =

{
0 ,if |ajp

T
λ| < 1

R · sign
(
ajp
T
λ
)

,if |ajp
T
λ| ≥ 1

, j = 1, . . . , np. (2.12)

In subsection 2.1.2 we will see that the optimal dual variable λ∗ verifies |ajp
T
λ∗| ≤ 1 for all j and for

all p. In other words, λ∗ belongs to the set P =
{
λ : ‖ATλ‖∞ ≤ 1

}
. However, along the iterations of the

subgradient method, we don’t have any guarantee that λ ∈ P. This is the reason why (2.12) includes
the possibility of λ 6∈ P.
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p
T
λ| < 1

|aj
p
T
λ| > 1

−R R
xj

p

|xj
p|−|xj

p|

Figure 2.1: Graphical interpretation of the solution of problem (2.10), for each component of xp. The
solid line shows the function |xjp|, while the dashed lines show the linear function −(ajp

T
λ)xjp for the two

relevant cases: when the absolute value of the slope −ajp
T
λ is smaller than one, the optimal solution

is x̃jp(λ) = 0; otherwise, if that number is greater than one, x̃jp(λ) lies on one of the extremal points, R
or −R.

Cost function. We might be interested in using the cost function (2.7) in a stopping criterion of the
subgradient method. Now, we will see how to evaluate it, assuming that at each iteration of the subgra-
dient method the optimal point x̃(λ), given by (2.12) for all j and for all p, is known. Replacing it in (2.7),
we get

H(λ) = −λT b−
P∑
p=1

(
‖x̃p(λ)‖1 − λTApx̃p(λ)

)
,

and taking into account that ‖x̃(λ)‖1 = ‖x̃1(λ)‖1 + ‖x̃2(λ)‖1 + . . .+ ‖x̃P (λ)‖1, and

A1x̃1(λ) +A2x̃2(λ) + . . .+AP x̃P (λ) = Ax̃(λ),

where x̃(λ) = (x̃1(λ), x̃2(λ), . . . , x̃P (λ)) and A = [A1A2 . . . AP ],

H(λ) = −λT b+ λTAx̃(λ)− ‖x̃(λ)‖1
= λT gk − ‖x̃(λ)‖1︸ ︷︷ ︸

R|Ω̃|

,

being Ω̃ the set of indices for which the components of x̃(λ) are non-zero; |Ω̃| its cardinality; and gk =
Ax̃(λ)− b ∈ ∂λH(λ) a subgradient of H(λ) at λ.

Transmission issue. From what we have seen until now, the only information that the processors have
to transmit to the central processor in each step of the subgradient method is the product Apx̃p(λk) to
calculate a subgradient (and the number of the non-zero entries of x̃p(λk), if the central processor wants
to evaluate the cost function).
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2.1.2 Solving The Bounded BP Problem Through Its Dual

In this subsection, we will see how to find an optimal primal variable of the bounded BP (2.3); first by
assuming that we know an optimal dual variable λ∗, and then adapting it to the practical case, where
we only have available an approximation of λ∗. The notation x∗ will be used to designate any solution
of either (2.1) or (2.3). Indeed, both problems have the same solutions if the assumption taken at the
beginning, that R is large enough, holds.

An optimal dual variable is known. We now assume that we know an optimal dual variable λ?, which
solves (2.6).

Since strong duality holds, the optimal solution x? can be obtained by solving the KKT-system
for (2.3): {

x? ∈ arg min‖x‖∞≤R λ?T b+
∑n
i=1

(
|xi| − aTi λ?xi

)
Ax? = b

(2.13)

Note that now we are not considering the partition of the variable x into P subvariables as before,
but into n subvariables in R instead3.

We now claim that λ∗ must belong to the polyhedron P = {λ : ‖ATλ‖∞ ≤ 1}, i.e., it satisfies
|aTi λ∗| ≤ 1 for all i = 1, . . . , n. Indeed, suppose that |aTi λ∗| > 1 for some i. Then, according to (2.13)
we would have |x∗i | = R for any solution x∗ of (2.3). But this contradicts our initial assumption that the
solution set of (2.1) lies in the interior of B∞(0, R) (we recall that the solution sets of (2.1) and (2.3) are
the same).

Let’s see what we can find about each component i of the solutions of (2.13).

• If x?i > 0, then

d

dxi

(
xi − aTi λ?xi

)∣∣
x?i

= 0⇐⇒ 1− aTi λ? = 0

⇐⇒ aTi λ
? = 1 (2.14)

• If x?i < 0, then

d

dxi

(
−xi − aTi λ?xi

)∣∣
x?i

= 0⇐⇒ −1− aTi λ? = 0

⇐⇒ aTi λ
? = −1 (2.15)

• Finally, when x∗i = 0, we have |aTi λ?| ≤ 1.

This implies that if |aTi λ∗| < 1, we have x∗i = 0; if aTi λ
∗ = 1, then x∗i ≥ 0; and when aTi λ

∗ = −1, we
have x∗i ≤ 0.

From this, we can see that x? cannot be found only from the knowledge of the optimal dual variable λ?

together with the first equation of (2.13). The only thing we can know with this information is the sign of
each of its entries. Apparently this is not too valuable, but it allows us to discard some columns of the
matrix A and solve a smaller problem, i.e., if |aTi λ?| = 1, we already know that the corresponding column
of A, ai, can be activated by x∗i ; if |aTi λ?| < 1, it won’t. So, the second equation of the KKT-system (2.13)
can be solved much easily, in a lower dimension, using only the columns of A for which |aTi λ?| = 1.

As we are expecting that the optimal solution is sparse, the reduction of the dimensions of the prob-
lem can be immense.

3The numbers of the processors don’t matter here, so we change the index of a column and the index of a variable into the
subscript notation throughout this subsection.
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Only an approximation of λ∗ is known. We now admit that only an approximation of λ∗ is available.
Let that approximation be λ̂. This situation is the most common in practice and arises mainly because
of the bang–bang solution we adopted for x̃(λk), at the iteration k of the subgradient method, i.e., the
non-zero components of x̃(λk) can only assume extremal values: R or −R. In fact, this originates a
ripple in the inner products aTi λ

k, along the iterations of the subgradient method (see Figures 2.3-2.6
from the simulations). As a consequence, we need to establish a threshold ξ > 0 in order to tell, when
the subgradient method has converged and we have access to λ̂, whether each number |aTi λ̂| is smaller
or equal to 1. This way, we have to adopt the following decision criterion{

Column ai is discarded, if |aTi λ̂| ≤ 1− ξ
Column ai is kept, if |aTi λ̂| > 1− ξ

. (2.16)

Assuming that λ̂ is accurate and that ξ is well adjusted, with the information from (2.16) the bounded
BP (2.3) becomes

min
Mu=b

‖u‖1, (2.17)

a problem which we will call the reduced basis pursuit (RBP). Note that we dropped the constraint ‖u‖∞ ≤
R, as we don’t need it anymore. Indeed, we only used it as a “trick” to solve a dual problem and get an
approximation of the dual variable. In problem (2.17), M is the matrix formed by the chosen columns
of A, through the decision process (2.16). To formalize, we define the set

Ω = {i : |aTi λ̂| > 1− ξ},

and designate its cardinality by n′. This way, matrix M lies in Rm×n′ and is defined by

M = A|Ω .

For later use, we also define the set

Ω∗ = {i : x∗i 6= 0},

where x∗ is a solution of (2.1) (or (2.3)). Note that we have, in general, that Ω 6= Ω∗, for any optimal
set Ω∗, not only due to the error in the dual variable, ‖λ̂ − λ∗‖, but also because we must choose
an ξ > 0. Actually, the incidence of these kinds of errors that lead to Ω 6= Ω∗ are the major drawback of
this method.

Is RBP important? We can ask, however, if solving the RBP is really necessary. Actually, the answer
can be yes and no. In the most interesting practical cases, when the optimal solution is quite sparse,
the matrix A has good properties, the parameter ξ is well adjusted and the subgradient method finds
an accurate dual variable λ̂, we don’t need to solve (2.17) since the linear system Mu = b has a single
solution; it just suffices to solve that linear system. The following lemma translates this into mathematical
terms.

Lemma 1. Let δs(A) designate the restricted isometry constant of the matrix A for s. Let also n′ be the
number of columns of the matrix M . If δn′(A) < 1 and the linear system

Mu = b (2.18)

has a solution, then that solution is unique.
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Proof. By assumption, (2.18) has at least one solution.
Now, admit that there exist two different solutions, i.e., û and ũ both in Rn′ such that û 6= ũ and

Mû = Mũ = b. This means that M(û− ũ) = 0.
On the other hand, we have δn′(M) ≤ δn′(A) < 1, which means that the columns of M are linearly

independent. Therefore, it doesn’t exist any h ∈ Rn′\{0} such that Mh = 0. We reached a contradiction.

The condition δn′(A) < 1 usually holds if n′ is small (that is, if the decision process (2.16) returns few
columns), and if the matrix has practical interest (recall the motivations that make us try to solve (2.1)
in subsection 1.3.1). For example, if A is a random matrix in Rm × Rn, and n′ ≤ m, then this condition
holds with high probability. Recall, however, that evaluating the restricted isometry constant of a matrix
is impractical in most cases. Nevertheless, we will assume, from now on, that it is possible to know a
certain integer L such that

n′ ≤ L =⇒ δn′(A) < 1. (2.19)

In the worst case, when no information of the matrix A is available at all, L = 1 works. But this is an
extreme case, with no practical interest. For example, for random matrices, an L equal to the number of
rows, m, guarantees that (2.19) holds with high probability.

When has (2.18) at least one solution? The condition that the linear system (2.18) has at least one
solution isn’t easy to ensure in practice. It depends on a “good” stopping criterion of the subgradient
method, as well as on a “good” adjustment of the parameter ξ (of course, if we take ξ close to 1,
surely (2.18) has at least one solution, but we don’t benefit from the small reduction of dimensions
from A to M ). It is intuitive that the existence of any optimal Ω∗ such that Ω∗ ⊂ Ω is sufficient for (2.18)
have at least one solution.

Lemma 2. If it exists any Ω∗ such that Ω∗ ⊂ Ω, then the linear system (2.18) has at least one solution.

Proof. Let x∗ be an optimal solution of (2.1) (by the assumption on the rank of A, it exists). As x∗ is a
feasible point,

Ax∗ = A|Ω∗ u∗ = b,

where u∗ = x∗|Ω∗ . Recall the definition of M : M = A|Ω. If Ω∗ ⊂ Ω, then AΩ∗ is a submatrix of M , in
the sense that all columns of AΩ∗ are contained in M . Therefore, the vector ũ defined in Rn′ (n′ = |Ω|)
that verifies ũ = x∗|Ω∗ and is zero elsewhere solves (2.18).

Overcoming the infeasibility. We will see in the simulations that the subgradient method, together
with (2.16), usually generates more columns than the needed ones, i.e., n′ = |Ω| > |Ω∗|, for any optimal
set Ω∗. When the reason for choosing a non–optimal column is inherent to the subgradient method we
say that a “false alarm” occurred (see Figure 2.6 for an illustration). Even though, in the case when we
choose more columns than needed, we might have Ω∗ 6⊂ Ω, for all Ω∗. When this happens, we don’t
even have any guarantees that either the linear system (2.18) or the problem (2.17) are feasible. In this
situation, perhaps it is more prudent to solve a problem like the BPDN instead:

min
u

1
2
‖Mu− b‖2 + β‖u‖1, (2.20)

for some value of β. The standard procedure would then be solving (2.20) for several values of β and
then choosing the more appropriate solution, i.e., the one we were expecting the most.
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Though actually, when the number of columns n′ of the matrix M is small enough, there is a value
for β that yields good results: β = 0. Indeed, the solution is already sparse, so we don’t need the term
that induces sparsity, β‖u‖1. Moreover, the resulting problem

min
u
‖Mu− b‖2, (2.21)

besides having a closed–form solution, has a single solution, with zero as an optimal value, if the con-
ditions Ω∗ ⊂ Ω and δn′(A) < 1 hold. This follows directly from lemmas 1 and 2. Also note that the
computational complexity in solving either the linear system (2.18) or the least–squares (2.21) is similar.

On the other hand, when n′ isn’t small, for instance greater than m, now there is a great probability of
the vector b being in the span set of M , making the RBP (2.17) have at least one feasible point. Besides
that, if Ω∗ ⊂ Ω, then the RBP returns an optimal solution u∗. We define an optimal solution u∗ as being

u∗ = x∗|Ω∗ ,

that is, the vector that collects all the non–zero entries of a solution of (2.1), x∗.

A procedure to find x̂. After solving the dual of the bounded BP, we must do our best in order to find
a vector x̂ that is close to an optimal solution x∗ of the BP (2.1). Not even always we can guarantee that
we find an x∗.

So, a possible procedure to try to find an x∗ is the following:

Procedure 1 (Calculate x̂).

Input:

• The set Ω and the matrix M = A|Ω ∈ Rm×n′ ;

• the vector b and the number L.

Step 1 Solve the least–squares problem

q = min
u
‖Mu− b‖, (2.22)

and designate the found solution by u′.

Step 2 If q > 0 or n′ ≤ L, make û = u′ and go to step 4.

Step 3 Else (q = 0), solve the RBP
min
Mu=b

‖u‖1, (2.23)

and designate the found solution by û.

Step 4 Form x̂ ∈ Rn by making x̂|Ω = û and equating all the other entries to zero.

One positive aspect of this procedure is that it always evaluates the feasibility of (2.23) before trying
to solve it. Moreover, the uniqueness of its feasible set is also checked by the condition n′ ≤ L also
before trying to solve it. If q = 0 and n′ ≤ L we have already found the solution of (2.23) in step 1.
On another hand, when it is found that the matrix M is incomplete in the sense that it can’t span b, the
vector that is closest to verify the linear system Mu = b is returned.

The following theorem establishes an important result about procedure 1.
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Theorem 3. Procedure 1 returns x̂ equal to an optimal solution x∗ if and only if an optimal set Ω∗ is
contained in Ω, i.e.

∃Ω∗ : Ω∗ ⊂ Ω ⇐⇒ x̂ = x∗,

where Ω∗ is any optimal set that doesn’t necessarily correspond to x∗.

Proof. Admit that Ω∗ ⊂ Ω. From lemma 2 the linear system Mu = b has at least one solution. Hence,
q = 0. Following the same steps of the proof of lemma 2, we will prove that the vector ũ in Rn′ such that
ũ|Ω∗ = u∗ and is zero elsewhere is a solution of the linear system Mu = b. Note that, by the definition
of u∗, we have

Ax∗ = A|Ω∗ u∗ = b.

This proves that Mũ = b, since M contains A|Ω∗ as its submatrix. There are two options now:

• If n′ ≤ L, then the vector ũ is the only solution of the linear system Mu = b, as follows from
lemma 1. Since we have q = 0, the vector u′ found in step 1 must be equal to ũ. It follows that
step 4 generates x∗, by the definition of ũ, û and u∗.

• Otherwise, if n′ > L, the vector ũ solves the RBP (2.23), because ‖ũ‖1 = ‖u∗‖1 = ‖x∗‖1. This
way, step 4 generates an optimal solution x∗, even if there is another u 6= ũ that solves (2.23).

To prove the converse implication, suppose that procedure 1 returned an x∗ and that Ω∗ 6⊂ Ω for all
optimal sets Ω∗. Without loss of generality, pick one of those sets. If Ω∗ is the empty set, then there is a
contradiction since the empty set is contained in any set. Assume now that Ω∗ 6= ∅. As Ω∗ 6⊂ Ω, there
is a k ∈ Ω∗ such that k 6∈ Ω. By the definition of Ω∗, we have x∗k 6= 0. This contradicts the step 4 of the
procedure.

At this point, we can say that for the case when no optimal set Ω∗ such that Ω∗ ⊂ Ω exists and
procedure 1 executes its 4th step, then this procedure returns not necessarily a vector close to an
optimal solution, but the one that has the least `1-norm in the available linear space {u : Mu = b}.

Additional sign information From theorem 3 we see that the optimal solution can only be found
running procedure 1 if there exists an Ω∗ such that Ω∗ ⊂ Ω. The information about the sign of the entries
of the vector x̂, which can be obtained from the dual variable λ̂ using (2.14) and (2.15), isn’t used in this
procedure.

We can code it mathematically by the introduction of the restriction Φu ≥ 0, where Φ = Diag(r) and r
is a vector in Rn′ such that

ri =

{
1 , if ui > 0
−1 , if ui < 0

, for i = 1, . . . , n′. (2.24)

The notation Diag(v) is used to designate the square matrix Q by Q (if v ∈ RQ), where its diagonal
equals the entries of the vector v and is zero elsewhere, i.e.

Diag(v) =


v1 0 · · · 0
0 v2 · · · 0
...

...
. . .

...
0 0 · · · vQ

 .

If we have Ω∗ ⊂ Ω for any optimal set Ω∗, then theorem 3 guarantees that the procedure 1 finds the
optimal primal variable x∗. So, in this case, there is no benefit in using the inequality Φu > 0.
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What about when it doesn’t exist any Ω∗ such that Ω∗ 6⊂ Ω? In this case, theorem 3 says that we
can’t have x̂ = x∗, for any optimal solution x∗. But does the inequality Φu > 0 help anyway?

In fact, it doesn’t. If we add any restriction to (2.22) we might be “loosing feasibility” and even
“gain infeasibility”, whereas if we add any restriction to (2.23) we might be “loosing optimality” (note
that ‖x̂‖1 = ‖û‖1).

This way we conclude that it isn’t worthy to use this information about the sign of the entries of x̂, the
variable returned by procedure 1. When x̂ 6= x∗, where x∗ is any solution of (2.1), we don’t have any
guarantee that we will find a better solution than x̂.

Transmission issue. After all the processors cooperate to get to a dual variable λ̂ (subgradient
method), from what we have seen in this subsection namely in procedure 1, it is straightforward to
see that the only information that the processors p = 1, . . . , P need to transmit to the central processor
is the set Ω and the matrix M = A|Ω.

2.1.3 The Resulting Algorithm

Gathering all that we have seen in the previous subsections, we finally can write the overall algorithm for
solving the BP (2.1).

Algorithm 2 (Subgradient Method For Bounded BP).

• Predefined Parameters/Initialization:

– Ap for each processor, p = 1, . . . , P ;

– A bound R for ‖x?‖∞; the maximum number of iterations, K; the parameter 0 < ζ < 1 for
choosing the interesting columns: ai is interesting if |aTi λ̂| ≥ ζ (note that ζ = 1 − ξ); an
integer L such that (2.19) is verified.

– Choose λ0.

• Procedure (for central processor):

– Receive b (from outside);

– for k = 0 until K [subgradient method cycle]

1. §1 Send λk and R to each processor p = 1, . . . , P ;

2. §1 Receive Apx̃p(λk) (and possibly |Ωkp| = ‖x̃p(λk)‖0), from each processor;

3. Compute gk = A1x̃1(λk) + . . .+AP x̃P (λk)− b;
4. Check stopping criterion (if based on the cost function, evaluate H(λk) = λk

T
gk −

R
∑P
p=1 |Ωkp|), and break the cycle if verified;

5. Choose step size, αk;

6. λk+1 = λk − αkgk;

– λ̂ = λk;

– §2 Send λ̂ and ζ to each processor p = 1, . . . , P .

– §2 Receive Ωp = {i : x̂i 6= 0, and i is in the index range of the processor p} and Ap|Ωp from
each processor p.

– Form the matrix M =
[
A1|Ω1

· · · AP |ΩP
]
.

– Run procedure 1.
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– Return x̂.

• Procedure (for each processor p = 1, . . . , P )
There are two modes (referenced above as §1 and §2):

– Mode 1:

1. Receive λk and R;

2. Compute c = ATp λ
k (Ap is stored internally);

3. Set xj = 0 if |cj | < 1, and xj = R · sign(cj) if |cj | ≥ 1, for j = 1, . . . , np;

4. Return Apx̃p(λk), where x̃p(λk) =
(
x1, . . . , xnp

)
(and possibly |Ωkp| = ‖x̃p(λk)‖0).

– Mode 2:

1. Receive λ̂ and ζ;

2. Compute c = ATp λ̂ (Ap is stored internally);

3. Return the interesting columns of Ap, Ap|Ωp , where
Ωp = {i : x̂i 6= 0, and i is in the index range of the processor p}, and also return the
set Ωp.

In Figure 2.2 there is a possible architecture for the implementation of algorithm 2. Note that the
operations that each processor must be able to do are relatively simple: multiplications, additions and
some binary operations. Moreover, there might be situations in which the products Apx̃p(λk) and ATp λk

can be computed very fast, using the internal structure of the matrix Ap. Nonetheless, each processor
must be able to store a matrix Ap. It operates in two modes: Mode 1 is run at most K times, receiving
m + 1 numbers and returning equally m + 1 numbers, where m is the number of rows of A; mode 2 is
run only once, receiving m + 1 numbers, and returning a variable number of columns of A for further
calculations at the central processor.

· · ·

· · ·

Central
Processor

Processor 1

Processor 2

Processor P

Figure 2.2: Required minimal architecture of the links between the processors for the implementation
of the subgradient method for bounded BP (algorithm 2). There is a central node which doesn’t know
any column of A. In fact, A isn’t stored in a single processor; its columns are stored throughout P
processors, which solve distributedly a (dual) problem in order to determine which columns should be
used for solving a reduced equivalent problem. This reduced problem is then solved at the central
processor.
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(a) x∗i > 0.
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(b) x∗i < 0.

Figure 2.3: Typical behavior of the inner product aTi λ
k along 500 iterations of algorithm 2, in which ai is

a column of A associated with a non-zero coefficient of x∗.

Ripple in the iterations. Variable ζ is really needed in algorithm 2 because of the ripple found in the
inner product aTi λ

k along the iterations of the subgradient method, for each column i = 1, . . . , n. This
happens because we adopted a bang–bang solution for x̃(λk), i.e., its non-zero components can only
assume extremal values: R or −R. In Figure 2.3, it is plotted the evolution of aTi λ

k for columns ai of A
which are known to have a non-zero contribution for the exact solution, i.e., x∗i 6= 0, where x∗ is the exact
solution of (2.1), which can be obtained by software that solves its linear program formulation (1.11)4.
Due to this behavior, if the parameter ζ is too close to one, we might be loosing interesting columns for
the subsequent least–squares problem (2.22) or RBP (2.23) in procedure 1. So, not only a moderate
value for ζ is advised, but also a filtering of the inner products aTi λ

k over the iterations. Figure 2.4 shows
an example. One can also consider the mean of the last T values.

The adaptation of the algorithm for this situation is trivial: each processor has to keep track of the
last value of the filtered values, or of the last T values, of aTi λ

k for each of its stored columns. When the
processors are called in mode 2 they wouldn’t use c = ATp λ

k, but the filtered products or the mean for
the last T components instead.
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Figure 2.4: Same example as in Figure 2.3(a), but with filtering along the iterations. The used filter was
an exponential weighted moving average one: fk+1 = γaTi λ

k + (1− γ)fk, with f0 = 0, and γ = 0.1.

Figure 2.5 shows the typical behavior of aTi λ
k for the situation where x∗i = 0 in the optimal solution.

Note that in Figs. 2.3 and 2.4 the number of iterations was deliberately reduced for the transient period
be visible. Of course in both plots the behavior is maintained no matter how much we increase the

4Note that while we use x∗ to designate the solution of (2.1), we use the notation x̂ to designate the output of algorithm 2.
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number of iterations.
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Figure 2.5: Evolution of the inner product aTi λ
k along the iterations of the algorithm 2 when the corre-

spondent component x∗i is close to zero. Note that it doesn’t approach 1 or −1 in general, it approaches
an arbitrary number between them instead.

However, there are awkward situations in which columns with a practically null contribution to the
optimal solution exhibit the same behavior as a column with a moderate contribution. That is, both inner
products have similar behaviors over the iterations (see Figure 2.6). This means that there are some
“false alarm” situations (we choose more columns than the ones we need) when the number of iterations
is too high. This fact validates some of the options taken when we designed the procedure 1.
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(a) x∗i = −4.95× 10−12.
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(b) x∗i = −4.72× 10−2.

Figure 2.6: Inner product of a column of A with λk over 1000 iterations of the algorithm 2, for two
different situations: in (a) the corresponding column has no contribution for the optimal solution; in (b)
the corresponding column has a moderate contribution. Nevertheless, they exhibit the same behavior
over the iterations. Note that maxi |x∗i | = 1.49 for this example.

So, we are able to distinguish four different situations, depicted on table 2.1. In general, there

Table 2.1: Different types of behavior of |aTi λk| along the iterations of the subgradient method phase of
algorithm 2.

|x∗i | Behavior of |aTi λk|
large converges to 1 rapidly

moderate converges slowly to 1
small usually doesn’t converge to 1
small few situations when it converges to one, but slowly

are some “false alarms”, but not even always the subgradient method together with the decision pro-
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cess (2.16) “catches” all the necessary columns in order to find an optimal solution, i.e., Ω∗ ⊂ Ω. Fig-
ure 2.7 illustrates an example of this by showing the superposition of the plots of the exact solution
of (2.1), x∗, and the result of the algorithm 2, x̂. Note that, in the case of Figure 2.7, after the decision
process, it didn’t exist any Ω∗ such that Ω∗ ⊂ Ω, in spite of the cardinality of Ω being 16 (that is, the
subgradient method returned 16 columns) and the cardinality of Ω∗ for the x∗ of the figure being only 10.
Nevertheless, the relative error of the vector x̂ returned by algorithm 2 in comparison with an optimal
solution x∗ was only 1.7%.

Actually, just one column indexed by Ω∗ is missing in Ω. That missing column has a moderate
contribution in x∗ (−4.12× 10−2), thus the behavior of the corresponding inner product aTi λ

k is similar to
the one in Figure 2.6(b). This suggests that either we executed few iterations of the subgradient method,
or we chose a too high value for ζ. Figure 2.8 shows the behavior of that missing column. There, it is
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Algorithm solution, x̂

Optimal solution, x∗

Figure 2.7: Comparison between an exact solution of (2.1), x∗, and the solution returned by algorithm 2,
x̂. The parameters of this experience were (the same for Figs. 2.3–2.9): m = 50 (number of rows of A),
n = 250 (number of columns ofA), P = 10 (number of processors), R = 3 (majorant of ‖x∗‖∞),K = 1000
(number of iterations), γ = 0.1 (exponential moving average filter) and ζ = 0.9 (decision process); and
the step used in the subgradient method was α = 10−2/‖gk‖; The column reduction resultant from the
decision process was about 94%, having the matrix M just 16 columns. Notice that card(x∗) = 10. The
relative error of x̂ was 1.7%, and we also had ‖Ax̂− b‖ = 0.27.

evident that just 1000 iterations of the subgradient method weren’t enough for the inner product aTi λ to
get close to −1.

Guarantees of convergence. Concerning the guarantees of convergence of the subgradient method
phase of algorithm 2 for the choices made in Figs. 2.3–2.9, we must say that this is dependent on the
number of iterations, as well as on the spectral norm of the matrix A, on the vector b and even on R.

First, we note that [5] allows us to conclude that the step length chosen (10−2/‖gk‖) guarantees that
|H(λk)−H(λ?)| ↓ 10−2G/2, as k → +∞. G is a bound for the norm of the subgradient gk = Ax̃(λk)− b,
along all the iterations carried. We can estimate G by noticing that

‖gk‖ = ‖Ax̃(λk)− b‖
≤ ‖Ax̃(λk)‖+ ‖b‖
≤ σmax(A)‖x̃(λk)‖+ ‖b‖ (2.25)

≤ σmax(A)
√
n‖x̃(λk)‖∞ + ‖b‖ (2.26)

≤ σmax(A)R
√
n+ ‖b‖, (2.27)
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Figure 2.8: Inner product aTi λ
k along the iterations of the subgradient method, where ai is the column

that was wrongfully discarded in the experience of the Figure 2.7. It is quite clear that 1000 iterations
aren’t enough for letting this inner product to get close to −1. On the other hand, if we had executed 8000
iterations of the subgradient method, the column reduction would only be 86% (35 columns returned by
the subgradient method and by the decision process with ζ = 0.9).

where σmax(A) is the largest singular value of the matrix A. From (2.25) to (2.26) we used the fact
that ‖x‖ ≤ √n‖x‖∞ holds for any vector x ∈ Rn. Inequality (2.27) follows obviously from ‖x̃(λk)‖∞ ≤ R.
Thus, we can make G = σmax(A)R

√
n + ‖b‖. The matrix used in those graphics is a random matrix

with σmax(A) < 22.5. Therefore, we can conclude that the subgradient method in algorithm 2 solves
the dual problem (2.6) with an error on the cost function of 5.46 (the norm of b is less than 25.2 and we
chose R = 3), as long as k is large enough.

As we can see, this bound on the dual cost function and the number of iterations of the subgradient
method weren’t enough to guarantee that exists an optimal index set of columns Ω∗ such that Ω∗ ⊂ Ω.
If such set existed, theorem 3 would have guaranteed that we had found an optimal solution.
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Figure 2.9: Evolution of the cost function H(λk) along the iterations. The parameters are the ones
described in Figure 2.7.

The cost function. Finally, the cost function H(λk) = λk
T
gk − ‖x̃(λk)‖1 along the iterations of the

subgradient method is plotted in Figure 2.9. Note that it isn’t always decreasing, since the subgradient
method is a non–descent method. Indeed, it has the same rippling characteristic that the inner products
aTi λ

k have. Also note that the cost function only decreases slightly when some components aTi λ
k are

still converging to ±1 (confront Figures 2.6 and 2.9). Therefore, care must be taken when choosing a
stopping criterion for the subgradient method on algorithm 2 that depends on the cost function H.
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A final remark should be done. Any stopping criterion based on the fact that the norm of the subgra-
dient gk = Ax̃(λk) − b is smaller than some threshold, wouldn’t work very well in this case. This is so,
because the values that the entries of x̃ take are extremal values, and don’t give a good indication that
we are close to find a solution of the linear system Ax = b.

Future research. We can pose the following question: is there a way of updating the bound R for the
`∞-norm of the optimal solution x∗, during the subgradient method phase of algorithm 2? Apparently,
the answer to this question seems simple: if during this phase of the algorithm we can calculate an x̂

that satisfies Ax̂ = b and ‖x̂‖∞ < R, then we can take a new R equal to n‖x̂‖∞ + ε, where ε is a small
positive number (of course, if the number n‖x̂‖∞ + ε is smaller than the previous value of R). However,
the subgradient method phase of the algorithm 2 doesn’t produce any feasible point (probably unless if it
has already converged). An updating of R can increase the speed of convergence of the algorithm and
perhaps reduce the rippling that we have talked about. Figure 2.10 shows the same inner product aTi λ of
the Figure 2.8, but where we reducedR from 3 to 1.48 (we already new that ‖x∗‖∞ = 1.4725). This shows
that an updating of R can really decrease the number of needed iterations. Also, notice that a refinement
of R also produces a refinement in the bound of the error of the cost function by reducing (2.27).

Another possible topic for future research is to study the behavior of the algorithm if we set a
bound Ri ∈ R for the absolute value of each coordinate of x∗, instead of setting a global bound for
all coordinates (that’s what we do when we use the `∞-norm).
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Figure 2.10: Same inner product aTi λ
k of the Figure 2.8 (missing column), but where we used a value for

the bound R of 1.48 instead of 3 (used in the experience that originated Figure 2.8). Note the significant
reduction in the number of iterations.
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2.2 Multiplier Methods

In this section we present two different algorithms for solving the basis pursuit problem

min
Ax = b

var : x ∈ Rn

‖x‖1, (2.28)

when the matrix A ∈ Rm×n is partitioned horizontally according to the convention used in page 11.

A =

 A1 · · · Ap · · · AP


xy︸ ︷︷ ︸

n

m

Each block matrix Ap, p = 1, 2, . . . , P , contains np consecutive columns of the matrix A. Obviously, the
numbers np must verify n = n1 + n2 + . . .+ nP .

2.2.1 Method of Multipliers As An External Loop

By partitioning the variable x into (x1, x2, . . . , xP ), where xp ∈ Rnp , for p = 1, 2, . . . , P , we can write (2.28)
as

min
A1x1+A2x2+...+AP xP=b

‖x1‖1 + ‖x2‖1 + . . .+ ‖xP ‖1. (2.29)

The variable is now (x1, x2, . . . , xP ) ∈ Rn1 × Rn2 × . . .× RnP .
We will try to solve (2.28), with the format of (2.29), through its dual again. If we proceeded the

calculation of the Lagrangian dual of (2.29), we would find a polyhedral constraint there. In order to
avoid this constraint, we will not use the ordinary Lagrangian, but the augmented Lagrangian instead.
Recall the discussion on page 12, where we stated that one way of avoiding this polyhedral constraint
was to transform the dual Lagrangian function into a coercive one.

To see how we get the augmented Lagrangian, note that problem (2.28) is equivalent to

min
Ax=b

‖x‖1 +
ρ

2
‖b−Ax‖2, (2.30)

where ρ is a positive scalar parameter. The augmented Lagrangian La of problem (2.28) is actually
the ordinary Lagrangian of (2.30). Let’s now calculate this augmented Lagrangian but with the variable
decomposition of (2.29): La : Rn1 × . . .RnP × Rm −→ R,

La(x1, . . . , xP , λ) =
P∑
p=1

‖xp‖1 + λT b− λT
(

P∑
p=1

Apxp

)
+
ρ

2
‖b−

P∑
p=1

Apxp‖2

= λT b+
P∑
p=1

(‖xp‖1 − λTApxp) +
ρ

2
‖b−

P∑
p=1

Apxp‖2. (2.31)

We must have always in mind that, considering x = (x1, x2, . . . , xP ), (2.31) is equivalent to

L′a(x, λ) = λT b+ ‖x‖1 − λTAx+
ρ

2
‖b−Ax‖2, (2.32)
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where L′a : Rn × Rm → R.
Notice that (2.32) is coercive with respect to the primal variable x, i.e., for a fixed λ. To see that,

write L′a(x, λ) as
L′a(x, λ) = ‖x‖1 + φ(b−Ax),

where φ(z) = λT z + (ρ/2)‖z‖2. Since the hessian ∇2φ(z) = ρIm is positive definite (Im is the matrix
identity in Rm), there exists a finite m such that φ(z) ≥ m for any z ∈ Rm. Therefore,

L′a(x, λ) ≥ ‖x‖1 +m

≥ ‖x‖+m,

which tends to +∞ as ‖x‖ → +∞, for a fixed λ. This proves the coercivity of L′a(x, λ) with respect to x.
As stated on [3, page 388], there are two mechanisms by which the minimization of (2.32) in the

variable x can yield points close to the optimal point of (2.28), x?: one is by taking λ close to the optimal
dual variable λ?; and the other is by taking a very large ρ.

Method of multipliers. However, there is an algorithm, known as the method of multipliers ([4, page 244]
and [3, page 398]), that allows us to find simultaneously the optimal primal and dual variables, x? and
λ?, in an iterative way. In fact, this algorithm integrates both mechanisms.

Algorithm 3 (Method of Multipliers).
Consider a convex and coercive function f : Rn → R; a real–valued matrix A ∈ Rm×n; a vector b ∈ Rm

and the optimization problem
min

Ax = b

var : x ∈ Rn

f(x). (P)

Let Lfa : Rn × Rm → R be the augmented Lagrangian of (P) with parameter ρ. Then, the method of
multipliers is well–defined and consists on:

Initialization

• λ0 ∈ Rm;

• two real numbers ρ0 > 0 and c ≥ 1;

• k = 0.

Step 1 Fix λk, and find
xk ∈ arg min

x
Lfa(x, λk). (2.33)

Step 2 Update λk and ρk,

λk+1 = λk + ρk
(
b−Axk

)
, ρk+1 = cρk.

Step 3 k ← k + 1; and return to Step 1.

When we say that the method of multipliers is well–defined, we mean that there exists at least one
solution of (2.33). This is due to the coercivity and convexity of the augmented Lagrangian Lfa(x, λk) in x
for any value of λk. The coercivity of Lfa(x, λk) can be proved using similar arguments to those used for
proving that L′a(x, λ) is also coercive. Note that the sum of coercive functions is also coercive. It can
also be proved that a coercive and continuous5 function has always a global minimizer.

5Note that a convex function finite everywhere is continuous everywhere.
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In the algorithm, note that the parameter of the augmented Lagrangian is ρk, and is being updated
in every iteration, although we don’t refer it explicitly in the expression of Lfa(x, λk).

The convergence of the method of multipliers is established by

Theorem 4 (Convergence of the method of multipliers).

• Every accumulation point of the sequence {xk} generated by the method of multipliers solves (P);
and every accumulation point of the sequence {λk} generated by the same algorithm converges
to some optimal dual solution of (P).

• Furthermore, the objective values of those sequences also converge to their optimum values.

The proof of this theorem can be based on the fact that the method of multipliers is, in fact, equivalent
to another method, called the proximal method [4, page 244], for which convergence can be proved [4,
page 233].

Considering the stopping criterion of the method of multipliers, we can consider at least three:

• if at the iteration k we have ‖b−Axk‖ ≤ εK for some predefined εK (feasibility criterion);

• if the dual variable didn’t change more than a predefined ε from the previous iteration: ‖λk −
λk−1‖ ≤ ε;

• or if the cost function Lfa hasn’t been decreasing too much (predefined value) for some iterations.

We will use preferably the feasibility criterion.

Application to our problem. So far, we have seen how to find the optimal primal and dual variables of
the problem (2.29). Nonetheless, we transformed this problem into a sequence of successive minimiza-
tions of the augmented Lagrangian (2.31) in the variables x1, x2, . . . , xP . If the main problem of (2.29)
was the existence of the coupling term

∑P
p=1Apxp = b, we haven’t solved this problem yet. In fact,

(2.31) is not separable into P independent functions, as we wished. Any xi is always coupled to xj , for
j 6= i, by the quadratic term (ρ/2)‖b−∑P

p=1Apxp‖2. However, the positive aspect of the approach taken
is that the domain of the augmented Lagrangian (2.32), for any fixed λ, is the full space. Recall that the
domain of a function is the set of inputs which do not evaluate to infinity. This fact allowed us to avoid
any kind of polyhedral constraints.

Now, we are going to see two well–known methods that can minimize the augmented Lagrangian (2.31)
in a separable way, for each variable xp, p = 1, 2, . . . , P . These methods are known to converge for dif-
ferentiable functions, thus those results don’t apply to (2.31), as this function isn’t differentiable. Even
though, we will prove that they still converge in this case.

Throughout the next subsections we will always refer to the dual variable as λk. We do so to em-
phasize that the minimization of the augmented Lagrangian (2.31) is only a single step of the method of
multipliers.

2.2.2 Nonlinear Jacobi Approach

In order to minimize (2.31) in each variable xp, for p = 1, 2, . . . , P , we define the function

Lpa(x, yp) = La(x1, . . . , yp, . . . , xP , λ
k)

= ‖yp‖1 − λk
T
Apyp − λk

T∑
i 6=p

Aixi +
ρ

2
‖b−Apyp −

∑
i 6=p

Aixi‖2. (2.34)
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We consider this function only for notational purposes: when we say that we are minimizing Lpa(x, yp)
with respect to yp, we are actually referring to the minimization of the augmented Lagrangian (2.31) with
respect to xp, while keeping the other block variables,

x1, . . . , xp−1, xp+1, . . . , xP ,

and λk constant (with the values of the previous iteration).
Note that we dropped the dependence of λk (and ρk) in the definition; and we did that just for

simplicity of notation.
The algorithm we propose for the minimization of (2.31), in the variables xp for p = 1, 2 . . . , P , is a kind

of a Nonlinear Jacobi algorithm [4, page 207] and is usually named Diagonal Quadratic Approximation
Method [29, 24], or simply DQA. The DQA differs from the ordinary Nonlinear Jacobi in the updating of
the variables (it is done in a filtering way, with a kind of an exponential moving average filter).

The DQA algorithm. To present the DQA algorithm, let f : Rn −→ R be a convex and coercive
function. Decompose a variable x ∈ Rn into P subvariables in Rnp , i.e. x = (x1, x2, . . . , xP ), where
xp ∈ Rnp , for p = 1, 2, . . . , P . Using a notation similar to (2.34), define for each p = 1, 2, . . . , P

fp(x, yp) = f(x1, . . . , xp−1, yp, xp+1, . . . , xP ).

As the DQA is an iterative algorithm, we will index each variable involved in an iteration of this algorithm
by the superscript t.

Algorithm 4 (DQA).

Initialization

• x0 ∈ Rn;

• Fix τ , a real number such that 0 < τ ≤ 1/P , where P is the number of subvariables of x;

• t = 0.

Step 1 Find
ytp ∈ arg min

yp∈Rnp
fp(xt, yp), (2.35)

for all p = 1, . . . , P .

Step 2 Form the vector yt = (yt1, y
t
2, . . . , y

t
P ).

Step 3 Update xt,
xt+1 = xt + τ(yt − xt). (2.36)

Step 4 t← t+ 1; and return to Step 1.

Again, this algorithm is well–defined for coercive and convex functions, since (2.35) has always at
least one solution in this case; thus, DQA is also well–defined if we apply it to Lpa(x, yp), at each iteration
of the method of multipliers.

A possible stopping criterion for this algorithm can be based on either the cost function (if it doesn’t
decrease after some iterations) or on the equation (2.36) (for example, ‖yt−xt‖ ≤ εT for some small εT ).

While it’s proved to converge for differentiable functions [29], we don’t have any guarantees of con-
vergence of the DQA algorithm if we apply it to Lpa(x, yp). It is easy to see that the term responsible for
the non–differentiability of (2.34) is the `1-norm, which is, however, subdifferentiable. Nevertheless, we
will prove the convergence of the DQA for a special kind of non–differentiable convex functions.
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Convergence and rigid functions. The main reason why we can’t apply the convergence results of
DQA for differentiable convex functions to a subdifferentiable convex function f : Rn → R is the fact
that, for the latter, a point x∗ that minimizes f along all the coordinate directions6 might not be a global
minimizer of f . Formalizing, if di is a subgradient of f at a point x∗ along the coordinate direction ei, i.e.

f(x?1, . . . , ui, . . . , x
?
n) ≥ f(x?1, . . . , x

?
i , . . . , x

?
n) + dTi (ui − x?i ) ∀ui∈R,

then there is no guarantee that the vector [d1, . . . , dn]T , formed by the subgradients of f at x? along all
the coordinate directions, is a subgradient of f at that point.

Note that the same doesn’t apply to the differentiable functions. If f : Rn → R is a differentiable
convex function, and is minimized at the point x?, along all the coordinate directions, we have

∂f(x)
∂xi

∣∣∣∣
x=x?

= 0, for all i = 1, 2, . . . , n. (2.37)

In fact, (2.37) is equivalent to ∇f(x?) = 0, which means that x? is a global minimizer of f .
We will designate the functions for which this happens as rigid functions7.

Definition 2 (Rigid Function). Let f : Rn → R be a subdifferentiable and continuous function over Rn.
We say that f is a rigid function if, for any point x? ∈ Rn, we have

0 ∈ arg min
h
f(x? + hei), ∀i=1,...,n =⇒ 0 ∈ ∂f(x?), (2.38)

where ei is a canonical direction in Rn.

If f : Rn → R is a convex function, then there is an alternative way of writing that a point x? minimizes
f , i.e. 0 ∈ ∂f(x?). In particular, x? is a global minimizer of f if and only if the directional derivative8 of f
at x? is non–negative for all directions, i.e. if f : Rn → R is convex, then

x? is a global minimizer of f ⇐⇒ f ′(x?; v) ≥ 0, ∀v∈Rn . (2.39)

Note that every directional derivative of a convex function over Rn is guaranteed to exist [3, page 709].
Although every convex and differentiable function is rigid, there are subdifferentiable convex functions

that aren’t rigid. In appendix A an example is provided. However, when the non-differentiability is only
due to an adding term like ‖x‖1, there is always rigidity, as the following lemma proves.

Lemma 3. Every function f : Rn → R of the type

f(x) = g(x) + ‖x‖1,

where g : Rn → R is a convex and differentiable function, is a rigid function.

Proof. f is obviously subdifferentiable and convex. Let x? be a point for which 0 ∈ arg minh f(x? + hei),
for i = 1, 2, . . . , n, where ei is a canonical direction in Rn. This is equivalent to saying that, for all

6In an n-dimensional space, we designate a vector of the form ei = (0, . . . , 1, . . . , 0), where it is zero everywhere except at
position i, where it takes the value 1, by a canonical direction/vector or coordinate direction/vector.

7The concept of a rigid function can also be developed for constrained minimization. As a consequence, all the results pre-
sented on this subsection can be easily generalized for that type of minimization.

8We define the directional derivative of a function f : Rn → R at the point x and along the direction v as

f ′(x; v) = lim
h↓0

f(x+ hv)− f(x)

h
,

whenever that limit exists.
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i = 1, 2, . . . , n,
f ′(x?;hei) ≥ 0, ∀h∈R. (2.40)

Before proceeding, let’s examine the directional derivative of the modulus function n : R → R, given
by n(x) = |x|, at an arbitrary point x.
When x > 0,

n′(x; v) = lim
h↓0
|x+ hv| − |x|

h
= lim

h↓0
x+ hv − x

h
= v;

when x < 0,

n′(x; v) = lim
h↓0
|x+ hv| − |x|

h
= lim

h↓0
−x− hv + x

h
= −v.

So, n′(x; v) = x
|x|v, for x 6= 0. Finally, when x = 0,

n′(0; v) = lim
h↓0
|hv|
h

= lim
h↓0
|h||v|
h

= |v|.

Let C be the index set of the null coordinates of x?, i.e. C = {i : x?i = 0}. Let’s evaluate the directional
derivative of f at the point x?, along an arbitrary direction v ∈ Rn.

f ′(x?; v) = lim
h↓0

g(x? + hv) + ‖x? + hv‖1 − g(x?)− ‖x?‖1
h

= lim
h↓0

g(x? + hv)− g(x?)
h

+ lim
h↓0
‖x? + hv‖1 − ‖x?‖1

h

= ∇g(x?)T v + lim
h↓0

∑n
i=1 [|x?i + hvi| − |x?i |]

h

= ∇g(x?)T v +
n∑
i=1

n′(x?i ; vi)

= ∇g(x?)T v +
∑
i 6∈C

x?i
|x?i |

vi +
∑
i∈C
|vi|

=
∑
i 6∈C

vi(∇g(x?)T ei +
x?i
|x?i |

) +
∑
i∈C

(vi∇g(x?)T ei + |vi|) (2.41)

≥ 0. (2.42)

From (2.41) to (2.42), we used the fact that each term in both sums is non–negative. To see this,
consider i 6∈ C. Using (2.41), we get

f ′(x?;hei) = h(∇g(x?)T ei +
x?i
|x?i |

)

≥ 0 ∀h∈R,

where the inequality follows from (2.40).
In its turn, if i ∈ C and we use the same equation, we get

f ′(x?;hei) = h∇g(x?)T ei + |h|
≥ 0 ∀h∈R,

where the inequality is also due to (2.40).
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Combining (2.39) with (2.42), we conclude that x? is a minimizer of f , hence the implication (2.38) is
valid for f .

Now we are in conditions to prove the convergence of the DQA for a function that is convex, rigid and
coercive9.

Theorem 5 (Convergence of DQA). Let f : Rn → R be a convex, rigid and coercive function over Rn.
Admit the decomposition of a variable x ∈ Rn into (x1, x2, . . . , xP ), where xp ∈ Rnp , for p = 1, 2, . . . , P ,
with n = n1 + n2 + . . .+ nP . Then,

1. Every accumulation point of the sequence {xt} generated by the DQA algorithm solves minx∈Rn f(x);

2. The sequence of objective values converges to the optimum, i.e., f(xt) ↓ f∗ := minx∈Rn f(x).

Proof of part 1: This proof is, up to some simplifications which permit to discard the differentiability of f ,
the one contained in Proposition 9, page 46, in [29].

In the sequel, we shall use the notations xt = (xt1, x
t
2, . . . , x

t
P ) and yt = (yt1, y

t
2, . . . , y

t
P ).

First, note that yt can be written as

yt =
P∑
p=1

(xt1, x
t
2, . . . , y

t
p, . . . , x

t
P )− (P − 1)xt. (2.43)

Inserting (2.43) into xt+1 = xt + τ(yt − xt) yields

xt+1 = τ

P∑
p=1

(xt1, x
t
2, . . . , y

t
p, . . . , x

t
P ) + (1− τP )xt. (2.44)

It follows that

f(xt+1) = f

(
τ

P∑
p=1

(xt1, x
t
2, . . . , y

t
p, . . . , x

t
P ) + (1− τP )xt

)

≤ τ
P∑
p=1

f(xt1, x
t
2, . . . , y

t
p, . . . , x

t
P ) + (1− τP )f(xt) (2.45)

= τ

(
P∑
p=1

fp(xt, ytp)− f(xt)

)
+ f(xt) (2.46)

≤ f(xt). (2.47)

Inequality (2.45) is due to the convexity of f and 0 < τ ≤ 1/P . Inequality (2.47) follows from fp(xt, ytp) ≤
f(xt), due to the definition of ytp.

So far, we have shown that the sequence {f(xt)} is monotonically non–increasing.
Now, define the sublevel set Sx = {x ∈ Rn : f(x) ≤ f(x0)}. Due to the continuity (a convex function

finite everywhere is continuous everywhere) and coercivity of f , this set is compact. Furthermore, as
{f(xt)} is monotonically non–increasing, the whole sequence {xt} is contained in Sx.

From xt+1 = xt + τ(yt − xt), we have ‖yt − xt‖ = (1/τ)‖xt+1 − xt‖. As the sequence {xt} is
contained in Sx, the distance ‖xt+1 − xt‖ is bounded for any sequence {t}. Thus, because τ is a fixed
parameter, ‖yt − xt‖ is also bounded. This means that there exists a compact set Sy that contains the
whole sequence {yt}. Let S = Sx ∪ Sy. S is also compact and contains both sequences {xt} and {yt}.

9 If we were using the concept of rigidity for constrained minimization in a compact set, the coercivity could be dropped.
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Let x∗ be an accumulation point of the sequence {xt}. Also, let {tj} be a sequence of indices such
that xtj → x∗ and ytj → y∗, where y∗ is an accumulation point of {yt}. The existence of such {tj} is
guaranteed by the compactness of the set S.

Choose an arbitrary z = (z1, z2, . . . , zP ) in Rn. There holds

fp(xtj , ytjp ) ≤ fp(xtj , zp) (2.48)

because, by definition, ytjp solves
min

wp∈Rnp
fp(xtj , wp).

Taking j → +∞ in (2.48) yields
fp(x∗, y∗p) ≤ fp(x∗, zp). (2.49)

Since zp ∈ Rnp can be arbitrary, inequality (2.49) shows that y∗p solves

min
wp∈Rnp

fp(x∗, wp). (2.50)

In the remaining part of the proof, we will show that x∗p also solves (2.50). For that, note that tj+1 ≥
tj + 1 and recall that {f(xt)} is monotonically non–increasing. Thus,

f(xtj+1) ≤ f(xtj+1). (2.51)

Concatenating (2.51) and (2.46) yields

f(xtj+1) ≤ τ
(

P∑
p=1

fp(xtj , ytjp )− f(xtj )

)
+ f(xtj ). (2.52)

Taking the limit j → +∞ in (2.52) leads to

f(x∗) ≤ τ
(

P∑
p=1

fp(x∗, y∗p)− f(x∗)

)
+ f(x∗),

or, equivalently,
P∑
p=1

fp(x∗, y∗p)− f(x∗) ≥ 0. (2.53)

Joining fp(x∗, y∗p) ≤ f(x∗) with (2.53) yields fp(x∗, y∗p) = f(x∗). That is, fp(x∗, y∗p) = fp(x∗, x∗p), which
proves that x∗p solves (2.50).

Since f was assumed to be rigid and convex, it follows that x∗ solves minx∈Rn f(x). �

Proof of part 2: We have seen in part 1 that the whole sequence {xt} is contained in a compact sublevel
set Sx = {x ∈ Rn : f(x) ≤ f(x0)}. Since f is continuous, it follows that {f(xt)} is bounded below. Also
in part 1, it was proved that the sequence {f(xt)} is monotonically non–increasing. Thus, the sequence
{f(xt)} converges, say to f , i.e., f(xt) ↓ f as t→ +∞.

Now, since Sx is compact, the sequence {xt} has an accumulation point, say x∗. According to part 1,
the point x∗ is a global minimizer of f over Rn, and obviously over Sx. Thus, f(x∗) = f∗ = minx∈Sx f(x).
Let {xtj} be a sub-sequence of {xt} converging to x∗. Because f is continuous, there holds f(xtj ) →
f(x∗) as j → +∞. But, since the whole sequence {f(xt)} is convergent to f , we also have f(xtj )→ f∗.
Thus, f = f∗ and f(xt) ↓ f∗. �
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Application to our problem. So, theorem 5, together with lemma 3, guarantees the convergence of
the DQA algorithm when applied to the augmented Lagrangian La(x1, . . . , xP , λ

k), defined in (2.31), for
an iteration k of the method of multipliers.

Note that the DQA is totally parallelizable, allowing each processor p to contribute to the calculation
of the solution of (2.33), in the step 1 of the method of multipliers. This way, we can find the optimal
primal and dual variables of the basis pursuit (2.28), in a parallelized way.

However, in each inner iteration t of the DQA, in step 1, each processor p has to solve

min
yp

Lpa(xt1, . . . , yp, . . . , x
t
P ), (2.54)

where

Lpa(xt1, . . . , yp, . . . , x
t
P ) = ‖yp‖1 − λk

T
Apyp − λk

T∑
i 6=p

Aix
t
i +

ρk

2
‖b−Apyp −

∑
i6=p

Aix
t
i‖2,

for p = 1, . . . , P .
It happens that (2.54) can be recast as basis pursuit denoising (BPDN) problem. Recently, efficient

software that can solve a BPDN problem in a fast way has come up (see [16, 20] for example).
By doing dtp = b−∑j 6=pAjx

t
j , (2.54) is equivalent to

min
yp
‖yp‖1 − λk

T
Apyp +

ρk

2
‖dtp −Apyp‖2. (2.55)

And if we develop the quadratic term,

ρk

2
‖dtp −Apyp‖2 =

ρk

2
ypA

T
pApyp − ρkdtp

T
Apyp +

ρk

2
‖dtp‖2,

we can see that (2.55) is equivalent to

min
yp

1
2
‖Apyp − γt,kp ‖2 +

1
ρk
‖yp‖1, (2.56)

where γt,kp = dtp + λk/ρk.

Multipliers/DQA Chaining the method of multipliers with DQA, and adapting them to solve (2.28),
yields algorithm 5. Besides all the P processors, a central processor is needed. The architecture of the
links is the same as in Figure 2.2. Actually, this architecture isn’t the only possible one, but it seems that
it is the one for which this algorithm runs faster. Note that the algorithm has two loops: the exterior one,
indexed to k, performs the method of multipliers; and the interior one, indexed to t, executes the DQA
algorithm.

The exterior loop usually takes a few iterations to converge. A good practice is to decrease the
parameter ε2, from the inner stopping criterion, in each external iteration, making it moderate at the
beginning and small at the last iterations. In fact, we don’t need an high accuracy at the first iterations,
so decreasing ε2 makes all the sense. Concerning the interior loop, this one takes usually more iterations
to converge than the external loop. In most of the algorithms that solve a BPDN, we can usually benefit
from using the solution found in the previous iteration as a starting point to the next one. To implement
this in algorithm 5, it suffices that all the processors keep in memory the previous yp. Note that all the
complexity is at the P processors, being the algorithm for the central processor relatively simple. This is
opposed to what happens in algorithm 2, subsection 2.1 (Subgradient method for bounded BP), which
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uses the same architecture for the links. In fact, this unit only has to do sums, multiplications and some
binary operations.

Algorithm 5 (Multipliers/DQA).

• Predefined Parameters/Initialization:

– Ap for each processor, p = 1, . . . , P ;

– Choose c ≥ 1 (for actualizing ρk);

– Choose 0 < τ ≤ 1/P ;

– Choose K and T as the maximum number of iterations; and εK , εT for the stopping criteria;

– Choose x0 ∈ Rn, λ0 ∈ Rm and ρ0 ∈ R+; note the decomposition xt = (xt1, x
t
2, . . . , x

t
P );

• Procedure (for central processor):

– Receive b (from outside);

– For k = 0 until K [Method of multipliers]:

∗ For t = 0 until T [DQA]:

1. §1 Send xtp to each processor p = 1, . . . , P ;

2. §1 Receive Apxtp from each processor;

3. Compute dtp = b−∑j 6=pApx
t
p, for p = 1, . . . , P .

4. §2 Send γt,kp = dtp + λk/ρk to each processor p = 1, . . . , P ;

5. §2 Collect yp from each processor;

6. Form y = (y1, y2, . . . , yP );

7. Stopping criterion: if ‖xt − y‖ ≤ εT , break cycle;

8. xt+1 = xt + τ (y − xt); and t← t+ 1.

∗ Make xk = xt for the last t;

∗ Evaluate the sum Axk =
∑P
p=1Apx

k
p (note that the vectors Apxkp have been previously

calculated);

∗ Stopping criterion: if ‖b−Axk‖ ≤ εK , stop the algorithm;

∗ λk+1 = λk + ρk
(
b−Axk

)
; ρk+1 = cρk; and k ← k + 1.

• Procedure (for each processor p = 1, . . . , P ): There are two modes (referenced above as §1 and
§2):

– Mode 1:

1. Receive xtp and return the product Apxtp.

– Mode 2:

1. Receive γt,kp ;

2. Solve yp = arg minwp(1/2)‖Apwp − γt,kp ‖2 + (1/ρk)‖wp‖1, and return yp.

In each iteration, each processor exchanges with the central processor vectors of the size n in steps 1
and 5 (of the central processor algorithm) and of the size m in steps 2 and 4. Therefore, in each
iteration 2(m + n) numbers are exchanged between any processor and the central node. Recall that in
algorithm 2 (Subgradient method for bounded BP) only 2(m+1) numbers were exchanged in the iterative
part of the algorithm. However, it happens that algorithm 2 requires usually much more iterations than
algorithm 5 to converge.
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The stopping criteria used in this algorithm serves merely as an example, and any other one that we
have mentioned before for both the method of multipliers and the DQA could be easily implemented.

Note that theorems 4 and 5 and lemma 3 together guarantee that this algorithm converges to an
optimal solution of (2.28).

2.2.3 Nonlinear Gauss–Seidel Approach

The DQA algorithm is a type of a Nonlinear Jacobi algorithm, where all the block variables are calculated
at the same time. This means that, at each iteration, processor p finds the minimizer yp of (2.34), for
p = 1, . . . , P . Consequently, no communications between the P processors are needed. Indeed, every
processor has to communicate only with the central processor.

However, if the P processors are able to communicate with each other, an alternative algorithm,
known as the Nonlinear Gauss–Seidel algorithm [4], can be used. This algorithm is known to be faster
than the Jacobi algorithm, clearly benefiting from the communications between the processors. So, it
is expected that it also performs faster than the DQA. Furthermore, with the Nonlinear Gauss–Seidel
algorithm we can discard the central processor if we communicate the relevant information in a circular
way. Nevertheless, the use of the Nonlinear Gauss–Seidel algorithm on non–differentiable functions is
not always successful [4, page 209].

In this subsection, we will prove that the Nonlinear Gauss–Seidel algorithm converges for functions
that are convex, rigid, coercive10, and also have unique block coordinate minimizers; and use it to solve
problem (2.33), i.e. the step 1 of the method of multipliers

xk = arg min
x∈X

Lfa(x, λk), (2.57)

for each iteration k. The original problem that we want to solve is the BP, so the augmented Lagrangian
in (2.57) is

La(x, λk) = ‖x‖1 + λk
T
b− λkTAx+

ρk

2
‖b−Ax‖2. (2.58)

Restrictions on the partition. This time, we have to make restrictions on the horizontal partition of the
matrix A ∈ Rm×n into P matrices Ap, with Ap ∈ Rm×np , for p = 1, 2, . . . , P and with n = n1+n2+. . .+nP .
Namely, we assume that each block Ap has full column–rank. This imposes automatically that np ≤ m.

In the context of the applications, this restriction is realistic either in cases where A is a random
matrix (provided that np is smaller than m), or in cases where A is a dictionary of functions (here, it
doesn’t make much sense to have linear dependence inside a small set of a family of functions). In any
case, if the number of available processors is less than the needed, it is always possible to simulate,
say, two processors inside just one: if Ap can be partitioned into two full column–rank submatrices, then
each time an operation for Ap is required, do the operations for one of those submatrices and then for
the other.

The Nonlinear Gauss–Seidel algorithm. Let f : Rn → R be a convex coercive function over Rn. Con-
sider the decomposition of a variable x ∈ Rn into (x1, x2, . . . , xP ), where xp ∈ Rnp , for p = 1, 2, . . . , P ,
with n = n1 + n2 + . . .+ nP . Then, the Nonlinear Gauss–Seidel algorithm consists on

Algorithm 6 (Nonlinear Gauss–Seidel).

Initialization
10As the footnote on page 35 says, the same result would hold if we were dealing with a minimization over a compact set. In

this case, the coercivity could be dropped.
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• x0 ∈ Rn;

• t = 0.

Step 1 For all p = 1, 2, . . . , P , find

xt+1
p ∈ arg min

xp∈Rnp
f(xt+1

1 , . . . , xt+1
p−1, xp, x

t
p+1, . . . , x

t
P ). (2.59)

Step 2 t← t+ 1; and return to Step 1.

Notice that the successive minimizations (2.59) can be performed in an arbitrary order, although we
will assume here, for simplicity of notation, that they follow the (circular) order 1, 2, . . . , P, 1, . . ..

The Nonlinear Gauss–Seidel algorithm is well–defined for convex coercive functions in the sense
that (2.59) is always solvable.

The stopping criterion of this algorithm can be based again, as the other methods that we have seen,
or on the cost function f or on the fact that ‖xt+1 − xt‖ ≤ εT , for some εT > 0.

Theorem 6 (Convergence of the Nonlinear Gauss–Seidel Algorithm). Suppose that f : Rn → R is a
convex, rigid and coercive function over Rn. Consider the decomposition of a variable x ∈ Rn into P

blocks, i.e. x = (x1, x2, . . . , xP ), where xp ∈ Rnp , for p = 1, 2, . . . , n, with n = n1 +n2 + . . .+nP . Further,
assume that f has unique block coordinate minimizers, that is, for any x = (x1, x2, . . . , xP ) ∈ Rn, the
optimization problem

min
wp∈Rnp

f(x1, . . . , xp−1, wp, xp+1, . . . , xP )

has a unique solution. Then, every limit point of the sequence {xt} generated by the Nonlinear Gauss–
Seidel algorithm solves minx∈Rn f(x).

Proof. This is essentially the proof in [3] but with a major simplification. Also, the need for the differen-
tiability of f is dropped. We will use the notation xt = (xt1, x

t
2, . . . , x

t
P ).

Define yt := xt+1 = (xt+1
1 , xt+1

2 , . . . , xt+1
P ). By the definition of the algorithm, the sequence {f(xt)}

is non–increasing. So, if S is the sublevel set {x ∈ Rn : f(x) ≤ f(x0)}, then both sequences {xt} and
{yt} are all contained in S. This happens because f is coercive, which makes S a compact set.

Then, let x∗ be a limit point of the sequence {xt}, say xtj → x∗ as j → +∞. Without loss of
generality, we can assume that {ytj} also converges (otherwise, pass to a convergent subsequence of
{ytj}, which is possible due to the compactness of S). Let y∗ be the limit of {ytj}, i.e., {ytj} → y∗ as
j → +∞.

As tj+1 ≥ tj + 1 and {f(xt)} is non–increasing, we have

f(xtj+1) ≤ f(xtj+1). (2.60)

Also, by the definition of the algorithm, there holds

f(xtj+1) = f(xtj+1
1 , x

tj+1
2 , . . . , x

tj+1
P ) ≤ f(xtj+1

1 , x
tj
2 , . . . , x

tj
P ), (2.61)

and
f(xtj+1

1 , x
tj
2 , . . . , x

tj
P ) ≤ f(x1, x

tj
2 , . . . , x

tj
P ), (2.62)

for any x1 ∈ Rn1 . Concatenating (2.60), (2.61) and (2.62) gives

f(xtj+1) ≤ f(xtj+1
1 , x

tj
2 , . . . , x

tj
P ) ≤ f(x1, x

tj
2 , . . . , x

tj
P ), (2.63)
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for any x1 ∈ Rn1 . Taking limits in (2.63) yields

f(x∗1, x
∗
2, . . . , x

∗
P ) ≤ f(y∗1 , x

∗
2, . . . , x

∗
P ) ≤ f(x1, x

∗
2, . . . , x

∗
P ), (2.64)

for any x1 ∈ Rn1 . Inequality (2.64) shows that both the points x∗1 and y∗1 solve the optimization problem

min
w1∈Rn1

f(w1, x
∗
2, . . . , x

∗
P ).

By the assumption on the uniqueness of the block coordinate minimizers, we conclude that x∗1 = y∗1 .
Thus, in particular, xtj+1

1 → x∗1.
Reasoning as before, we also have

f(xtj+1) ≤ f(xtj+1
1 , x

tj+1
2 , x

tj
3 . . . , x

tj
P ) ≤ f(xtj+1

1 , x2, x
tj
3 . . . , x

tj
P ), (2.65)

for any x2 ∈ Rn2 . Taking limits in (2.65) yields

f(x∗1, x
∗
2, x
∗
3, . . . , x

∗
P ) ≤ f(x∗1, y

∗
2 , x
∗
3, . . . , x

∗
P ) ≤ f(x∗1, x2, x

∗
3, . . . , x

∗
P ), (2.66)

for any x2 ∈ Rn2 . Inequality (2.66) shows that both x∗2 and y∗2 solve

min
w2∈Rn2

f(x∗1, w2, x
∗
3, . . . , xP ).

Again, by the assumption on the uniqueness of the block coordinate minimizers, we conclude that x∗2 =
y∗2 .

Proceeding similarly for p = 3, . . . , P , we have that x∗ = y∗ and x∗p is the solution of

min
wp∈Rnp

f(x∗1, . . . , x
∗
p−1, wp, x

∗
p+1, . . . , x

∗
P ).

Since f was assumed to be rigid we conclude that x∗ solves minx∈Rn f(x).

Convergence of the method for the augmented Lagrangian (2.58). To make the theorem above
applicable to (2.58), the assumption on the uniqueness of the block coordinate minimizers of (2.58)
must be checked.

We claim that if eachAp has full column–rank, then (2.58) has unique block coordinate minimizers. To
see that, fix x = (x1, x2, . . . , xP ) ∈ Rn, where each block variable xp belongs to Rnp , for p = 1, 2, . . . , P ;
and define Lpa : Rnp → R as before, i.e. Lpa(y) = La(x1, . . . , xp−1, y, xp+1, . . . , xP , λ

k).
We must show that Lpa has a unique minimizer over Rnp . We will establish this by showing that Lpa is

strictly convex. Indeed, we have

Lpa(y) = ‖(x1, . . . , y, . . . , xP )‖1 + λk
T

(dp −Apy) +
ρk

2
‖dp −Apy‖2, (2.67)

where we used the definition dp := b−∑j 6=pAjxj . Equation (2.67) can be rewritten as Lpa(y) = hp(y) +
fp(y), where

hp(y) = ‖(x1, . . . , y, . . . , xP )‖1 + λk
T

(dp −Apy) +
ρk

2
(
‖dp‖2 − 2dTpApy

)
and

fp(y) =
ρk

2
yTATpApy.
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Since Ap has full column–rank, the matrix ATpAp is positive definite. Thus, fp is a strictly convex function
and, as a consequence, Lpa = hp + fp is also a strictly convex function (note that hp is convex).

This way, with theorem 6 and lemma 3, we guarantee the convergence of the Nonlinear Gauss–
Seidel algorithm for (2.58).

Work for each processor. In every iteration of the Nonlinear Gauss–Seidel algorithm, each processor
has to solve (2.59), which is a BPDN problem in disguise. Indeed, it turns out that (2.59), when applied
to the augmented Lagrangian (2.58), is equivalent to a problem like (2.56), but where the variable γt,kp is
slightly different. To see this, first note that the step 1 of the Nonlinear Gauss–Seidel algorithm applied
to (2.58) yields the problem

min
xp∈Rnp

La(xt+1
1 , . . . , xt+1

p−1, xp, x
t
p+1, . . . , x

t
P , λ

k). (2.68)

The objective function of (2.68) can be written as

∑
i<p

‖xt+1
i ‖1 +

∑
i>p

‖xti‖1 + ‖xp‖1 + λk
T
dtp − λk

T
Apxp +

ρk

2
‖dtp −Apxp‖2,

where dtp = b−∑i<pAix
t+1
i −∑i>pAix

t
i. Hence, (2.68) is equivalent to

min
xp∈Rnp

‖xp‖1 − λk
T
Apxp +

ρk

2
‖dtp −Apxp‖2.

Now, taking the same steps used in passing from (2.55) to (2.56), we see that this problem is equivalent
to

min
xp∈Rnp

1
2
‖Apxp − γt,kp ‖2 +

1
ρk
‖xp‖1, (2.69)

where γt,kp = dtp + λk/ρk.
This variable γt,kp , being different from the one defined in subsection 2.2.2 page 37, can be updated

from processor p− 1 to processor p as follows:

γt,kp = b+
λk

ρk
−
∑
i<p

Aix
t+1
i −

∑
i>p

Aix
t
i.

If the processor p− 1 sends the vector

φp−1 = γt,kp−1 −Ap−1x
t+1
p−1

to the processor p, this processor can correctly find γt,kp by doing

γt,kp = φp−1 +Apx
t
p,

where xtp had been calculated in the previous iteration (note that it is xt+1
p that we want to find and that’s

what problem (2.68) does).
This way, the only information that the processors have to exchange with each other is the vector φp−1

(from the processor p − 1 to the processor p) and the number ρk, in a circular way. This works if each
processor p keeps in memory the vector xtp from the previous iteration. In fact, it can even use it to solve
the current problem as a starting point, if the algorithm used to solve (2.69) requires it.

Note that there is no need of a central node or processor for this algorithm. The task of verifying if
any of the algorithms has converged (the method of multipliers or the Nonlinear Gauss–Seidel), as well
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as the task of updating the fraction λk/ρk in the vector γt,kp , can be assigned to any of the P processors.
The updating of this fraction in γt,kp can be easily done in any processor p: if it has in memory the
previous value of the fraction, γt,kp , it suffices to do

γt,k+1
p = γt,kp −

λk

ρk
+
λk+1

ρk+1
.

We assume that both the tasks of checking the stopping criteria and updating the variables are all
performed by the processor number 1.

The association of the method of multipliers with the Nonlinear Gauss–Seidel algorithm, both adapted
to solve the BP (2.28), and with these details yields algorithm 7. In Figure 2.11 it is plotted the required
architecture for the algorithm.

Algorithm 7 (Multipliers/Gauss–Seidel).

• Predefined Parameters/Initialization:

– Ap for each processor, p = 1, . . . , P ;

– Choose c ≥ 1 (for actualizing ρk);

– Choose K and T as the maximum number of iterations; and εK , εT for the stopping criteria;

– Choose x0 ∈ Rn, λ0 ∈ Rm and ρ0 ∈ R+; note the decomposition x = (x1, x2, . . . , xP );

• for k = 0 until K [Method of Multipliers]:

Procedure (for processor 1):

– If k = 0,

1. Receive b (from exterior);

2. t = 0;

3. Initialize γt,01 (for example, γt,01 = b+ λ0

ρ0 );

4. Solve x1
1 = arg minx1

1
2‖A1x1 − γt,01 ‖2 + 1

ρk
‖x1‖1;

5. Send ρ0 and φ1 = γt,01 −A1x
1
1 to processor 2.

– If k > 0,

1. Receive φP from processor P (processor 1 already knows ρ);

2. t← t+ 1;

3. Inner stopping criterion:

∗ If t > T or ‖xt − xt−1‖ ≤ εT ,
check external stopping criterion:

· If k > K or ‖b−Axt‖ ≤ εK , stop the algorithm and return x.

· else, update λk+1 = λk + ρk(b − Axt), ρk+1 = cρk, γt,k+1
1 = γt,k1 − λk

ρk
+ λk+1

ρk+1 ,
k ← k + 1 and t = 0.

∗ else, t← t+ 1.

4. Set γt,k1 = φP +A1x
t
1;

5. Solve xt+1
1 = arg minx1

1
2‖A1x1 − γt,k1 ‖2 + 1

ρk
‖x1‖1;

6. Keep xt+1
1 in memory;

7. Send ρk and φ1 = γt,k1 −A1x
t+1
1 to processor 2.

Procedure (for processor p = 2, . . . , P ):
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1. Receive ρk and φp−1 from processor p− 1;

2. Set γt,kp = φp−1 +Apx
t
p;

3. Solve xt+1
p = arg minxp

1
2‖Apxp − γt,kp ‖2 + 1

ρk
‖xp‖1;

4. Keep xt+1
p in memory;

5. Send ρk and φp = γt,kp −Apxt+1
p to processor p+ 1.

· · ·

· · ·

Processor P

Processor 1

b

x

Processor 2

φ1

φ2

φP

Figure 2.11: Required architecture for the implementation of the algorithm 7. Processor 1 is considered
the starting/ending node which receives the vector b, updates the variables λk and ρk, and checks the
stopping criteria. The output of the algorithm is the vector x.

Communications and stopping criteria. In comparison to what was seen for algorithms 2 (Sub-
gradient for BP) and 5 (Multipliers/DQA), the communication requirements for this algorithm are less
demanding. This is mainly due to the lack of a central processor. In the previous algorithms, in each
iteration, all processors had to communicate with the central node. This algorithm, though, only requires
a communication of m+ 1 numbers (for all processors) in each inner iteration.

We chose for this algorithm the possible stopping criteria: for the Gauss–Seidel algorithm (inner
cycle), this one can stop if the maximum number of iterations is reached, or if the distance of two
consecutive iterations, ‖xt−xt−1‖, is smaller (or equal) than a constant εT ; for the method of multipliers,
it can also stop if the maximum number of iterations is reached or if ‖b − Axt‖ is smaller (or equal)
than the constant εK . Note that this implies that the processor 1 knows both the vectors x and Ax.
This is possible if the processors communicate their own vectors xp and Apxp to each other11, so that
processor 1 can play his role. Actually, this can be done in the idle times of the links while they are not
transmitting γt,kp nor ρk. In fact, the links are idle most of the time. If it is expensive to use the links,
one can also opt for other criteria, such as imposing only the maximum number of iterations, or making
circulate the global cost function (one number) and establishing a protocol saying that every processor
stops one cycle if the global cost function doesn’t decrease more than a predefined small value. Note
that it is possible to make circulate the global cost function as long as each processor knows λk/ρk at
each iteration of the method of multipliers.

11It is possible to know Ax from this because Ax =
∑P

p=1 Apxp, due to the horizontal partition of A.
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Robustness to instantaneous link failures. As it is noted on the errata of [3], there is an alternative
method to the fixed cyclic order of the Nonlinear Gauss–Seidel algorithm 6. Theorem 6 can be shown
to converge for an arbitrary order of iteration, as long as there is an integer M such that at the end
of every group of M contiguous iterations every processor has done at least one minimization (that is,
found the corresponding xp for p = 1, . . . , P ). Thus, this algorithm is quite versatile in the sense that
processors don’t need to communicate with each other in a predeterminate order. So, if the processors
communicate randomly with each other, for instance, this algorithm becomes robust to instantaneous
link failures.

Future research. We leave the following topics for future research:

• Is it possible to make a fusion between the DQA and the Nonlinear Gauss–Seidel algorithms, if,
for example, we had available a central processor and communications from all to all? What would
be the properties of such algorithm? Would it be robust not only to instantaneous link failures, in
the case of random communications, but also to permanent link failures?

• The adaptation of the algorithms 2, 5 and 7 to solve the BPDN or a greater class of rigid functions.

2.3 Comparison Of The Methods

All the algorithms that we proposed for solving the BP, with an horizontal partition of the matrix A, can
solve it accurately, as long as the parameters of each of its “subalgorithms” are well adjusted. In this
section, we compare these algorithms, taking into consideration not only theoretical aspects but also the
computer simulations. The values of the parameters of the algorithms in the simulations were adjusted
from experience with the hope that these simulations can replicate a realistic scenario.

We should also mention that, being all the algorithms based on several processors, it was only
possible for the author just to simulate them in a single computer, being the simulations in a multi–
processor environment beyond the scope of this thesis. The main focus here is the relative comparison of
the algorithms in terms of their features, and not to present absolute standards for comparing distributed
algorithms of this kind.

For a matter of simplicity, we will use the acronyms SMBBP, M/DQA and M/GS to designate respec-
tively algorithms 2 (Subgradient method for bounded BP), 5 (Multipliers/DQA) and 7 (Multipliers/Gauss–
Seidel).

The theoretical comparison of the algorithms is depicted in table 2.2, and the meaning of each row
is explained next.

Degree of parallelism. We want to define a measure that translates somehow the gain in time that we
would have in executing an algorithm if we increased the number of processors P . This measure must
not depend on P and the higher it is, the higher the gain.

To define a possible such measure, let ϕ designate the number of distributed processors that execute
the same task at the same time. Then, we can define the degree of parallelism of an algorithm as

Degree of parallelism := lim
P→+∞

ϕ

P
.

In the definition, we assume that, for a given algorithm, all the distributed processors are equal and that
no stopping criterion has been verified. As so, this definition must be applied only in a typical iteration.
Further, it can only be applied to algorithms in which the distributed processors take no decisions. This
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way, all the tasks have to be really performed at the same time (of course, only in theory) by all the
distributed processors. The term “distributed” was used in the definition to exclude central processors,
since we are not considering their replication. Note that all algorithms that we have seen, except the
M/GS (algorithm 7), have equal distributed processors that take no decisions. Thus, this definition makes
sense. It also makes sense for the M/GS, since in the typical iteration no stopping criterion is verified,
and consequently processor 1 can be seen as equal to the other processors.

Then, the degree of parallelism of the SMBBP and the M/DQA is 1 (all the distributed processors
work at the same time), whereas the degree of parallelism of the M/GS is 0 (only one processor can
work at each iteration).

Complexity of the processors. We also want to define a measure that indicates the difficulty in im-
plementing the tasks assigned to a processor. In the context of the algorithms presented in this thesis,
we can distinguish between two kinds of processors: the ones that only perform simple operations, such
as sums, multiplications and binary operations and have no interior loops; and the ones that, besides all
these simple operations, also execute minimizations that imply interior loops. We represent the simple
processors with symbol “−”, and the complex processors with the symbol “+”.

Communications requirements. When the algorithms were presented, we mentioned, for each one,
the size of the vectors exchanged between the processors in each iteration. We will only consider
here the communications involved in the iterative processes. For example, in the SMBBP only the
communications performed in the subgradient method phase of this algorithm are considered.

Although the size of the vectors exchanged can give a good idea of the demanded speed for the links,
this concept doesn’t translate the total quantity of information exchanged during the whole algorithm, as
it doesn’t take into account the number of iterations needed for the algorithm to converge.

Table 2.2: Theoretical features of the algorithms presented in chapter 2.

SMBBP M/DQA M/GS
Degree of parallelism 1 1 0
Complexity of distributed processors − + +
Complexity of central processor + −
Robustness to instantaneous link failures No No Yes
Size of vectors exchanged by iteration 2(m+ 1) 2(m+ n) m+ 1

Results from simulations. Although the SMBBP, the M/DQA and the M/GS solve the BP problem or
an heuristic to get to its solution, they use different architectures or very different approaches. While
the first one uses the dual space to select some columns of matrix A and then solve a smaller BP, the
M/DQA and M/GS algorithms solve directly the BP and both have a similar structure. So, there is no
difficulty in comparing these two algorithms. The real problem is in comparing them with the SMBBP.
As strong duality is verified in the bounded BP (2.3), we can use the dual cost function as a stopping
criterion for the SMBBP, in order to compare it with the other algorithms: firstly, we run the M/DQA and
the M/GS with exactly the same parameters and stopping criteria; then, we run the SMBBP and use
as a stopping criterion, for the subgradient loop, the value of the cost function H(λ) (2.7), that is, the
subgradient method stops when L(λ)(= −H(λ)) is close to p?, where p? is the optimal cost function for
both the algorithms M/DQA and M/GS. In table 2.3, we considered that the subgradient method found
an optimal dual solution when L(λ) ≥ 0.99p?.
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We must note that the results of the experiences depicted in table 2.3 didn’t take into account any
time spent in the communications.

Table 2.3: Experimental results from the simulation of the SMBBP, the M/DQA and M/GS. The num-
bers presented are the average of 10 random experiments in a simulation of a distributed environment
with P = 10 processors, each with 25 columns of a matrixA ∈ R50×250. The errors were measured taking
into account that the solution of the linear programming formulation of the BP, given by Yalmip/Matlab,
is the correct one. The parameters for the M/DQA and M/GS were εT = 0.1 and εK = 0.01, while the
stopping criterion for the SMBBP was L(λ) ≥ 0.99p?, where p? is the optimal cost given by the M/GS
algorithm.

SMBBP M/DQA M/GS
Error in x 3.11× 10−2 5.54× 10−3 8.58× 10−3

Error in f(x) 1.40× 10−2 1.72× 10−3 1.07× 10−3

Total Time [s] 2.28 1.03× 102 6.58
Time in Parallel [s] 1.72 1.02× 102

Estimated Time [s] 7.32× 10−1 1.20× 101 6.58
Inner Iterations 3.52× 102 4.71× 102

External Iterations 2.47× 103 9.00 7.56
Percentage Of Used Columns 15.1

The row “Error in x” represents the average of the absolute errors in the variable x, i.e., ‖x̂ − x∗‖,
where x̂ is the solution returned by any of the considered algorithms and x∗ is the solution returned by
the linear programming formulation (1.11) of the BP. Although the average of the error of the SMBBP
was higher than the average error of the other methods, we must say that in 50% of the experiences
the SMBBP returned the exact solution (errors of the order of 10−9), that is, we had Ω∗ ⊂ Ω (recall
the definitions of Ω∗ and Ω in subsection 2.1.2). Neither the M/DQA nor the M/GS returned the exact
solution once (with errors of magnitude 10−9).

The row “Error in f(x)” represents the same as the first row, but applied to the cost function.
The “Total Time” and the “Time in Parallel” are the average of the total time taken by the whole

algorithm and the respective estimated time spent in parallel tasks. This estimation, only for the SMBBP
and M/DQA (since in the M/GS the processors work one at each time), is done by summing the time
of all parallel tasks. With the total time and the parallel time, we can have an estimation of the time
that the algorithms would take if they had really been executed in a multi–processor environment. Such
estimation is given by

test = tT +
1− P
P

tp,

where test is the estimated time, tT is the total time, tP is the time spent in parallel and P is the number
of processors. The row “Estimated Time” contains this estimation measured in seconds for all the
algorithms.

The following rows contain the average of the internal iterations, if the algorithm has an inner loop,
and the average of the external iterations.

The “Percentage Of Used Columns” row only applies to the SMBBP and is the average of the reduc-
tion of columns from the matrix A to the matrix M , according to the decision criterion (2.16).

We must say that, although the values in table 2.3 result from 10 random experiments, its average
values, which are represented in the table, are representative of what happened in most of the experi-
ments.

Overall comparison. In terms of overall comparisons of the methods, for an architecture that has
a central processor (Figure 2.2), the SMBBP seems to be superior to the M/DQA in terms of time
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consumed; concerning the “error in x”, we can decrease the parameter ζ (increasing however the time
estimated) and have errors much inferior to those of the M/DQA.

We can do exactly the same observations concerning the comparison of the SMBBP and the M/GS.
However, the M/GS appears to be more competitive than the M/DQA, at least in the aspects featured
in table 2.3. Also note that the M/GS has a completely different architecture for the links from the other
algorithms (see Figure 2.11).

Estimated exchanges of information. Concerning the communications requirements, we can say
that, in average, the processors in the SMBBP algorithm communicated 4.94 × 103 blocks of m + 1
numbers, in the M/DQA communicated 6.97×104 blocks ofm numbers (taking into account that n = 10m)
and in the M/GS communicated 3.56 × 103 blocks of m + 1 numbers. These numbers can be obtained
from the information in tables 2.2 and 2.3.

Final conclusions. At this point, it is worth to say that the SMBBP is the more adequate to applications
where accuracy is more important than the time spent in solving the BP. Though this is not evident from
table 2.3, we know that if we increase the number of the iterations of the subgradient method in SMBBP
or even just decrease the parameter ζ, we will have, with great probability, the condition Ω∗ ⊂ Ω. This
means that the SMBBP will return the exact solution of the BP (recall theorem 3).

On the other hand, the M/GS is the more adequate to applications where the time is more important
than accuracy, being εT and εK , of the stopping criteria, the trade–off parameters.
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Chapter 3

Distributed BP With Vertical Partition

In this chapter we present a distributed algorithm for solving the basis pursuit (BP) problem

min
Ax = b

var : x ∈ Rn

‖x‖1, (3.1)

where A ∈ Rm×n and b ∈ Rm are given and x ∈ Rn is the optimization variable.
However, opposed to what was assumed in chapter 2, here we will assume that the matrix A is

partitioned vertically, where each of its blocksAp is stored on a single processor. As before, no processor
has full knowledge of this matrix, it just knows some (or even just one) rows of A instead.

There are situations for which this kind of partition of the matrix A makes all the sense. Imagine,
for instance, a sensor network whose goal is to measure a phenomenon that can be represented in the
vector form by x ∈ Rn. Each sensor has its own sensing device, represented by a row aj ∈ Rn of A, and
can only measure a single projection bj ∈ R of the vector x onto aj , i.e., bj = aTj x (here we have P = m

processors). If we know a priori that x is s-sparse and the matrix A has a restricted isometry constant
δ2s(A) <

√
2 − 1, then we can reconstruct x by solving (3.1), according to theorem 1 on page 6. Note

that, as we are assuming that m < n, we are actually reconstructing an n-dimensional vector from m

projections. (see Figure 3.1). Of course, the processors must be able to exchange information in order
to get to a consensus about the variable x.

x

a1

a2

R
3
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Changed with the DEMO VERSION of CAD-KAS PDF-Editor (http://www.cadkas.com).

Changed with the DEMO VERSION of CAD-KAS PDF-Editor (http://www.cadkas.com).

Figure 3.1: Graphical interpretation of the basis pursuit problem (3.1), where the matrix A is in R2×3.
Knowing that x is a sparse vector, i.e. it lies on some coordinate plane, it is possible to reconstruct it only
from the knowledge of the inner products aT1 x and aT2 x, provided that the matrix A = [a1 a2]T , which has
also to be known, satisfies some conditions.

The algorithm we present in this chapter, in spite of using many results of chapter 2, requires a
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different communication link architecture from those found in chapter 2. We will also see how to easily
adapt this algorithm to solve the BPDN, also in a distributed way.

3.1 Proposed Approach

To formalize, we assume that the matrix A has the following structure

A =



A1

...
Ap
...
AP



xy︸ ︷︷ ︸
n

m ,

where each submatrix Ap ∈ Rmp×n is stored on processor p, for p = 1, 2, . . . , P and with m = m1 +m2 +
. . .+mP . Also, we use the same partition for the vector b ∈ Rm:

b =



b1
...
bp
...
bP


,

where bp ∈ Rmp for p = 1, 2, . . . , P . Without loss of generality, we can assume that each submatrix Ap is
full–rank, i.e., its rows are linearly independent. We also assume, for convenience of notation, that each
block Ap contains adjacent rows of A. Otherwise, a re–ordering of the rows of A and b can be carried
out in order to verify this.

This way, we can write problem (3.1) as

min
A1x = b1

A2x = b2
...

APx = bP

var : x ∈ Rn

1
P
‖x‖1 +

1
P
‖x‖1 + . . .+

1
P
‖x‖1,
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and cloning the variable x into x1, x2, . . . , xP , this problem is equivalent to

min
A1x1 = b1

A2x2 = b2
...

APxP = bP

x1 = x2

x2 = x3

...
xP−1 = xP

var : (x1, x2, . . . , xP ) ∈ Rn × Rn × . . .× Rn

1
P
‖x1‖1 +

1
P
‖x2‖1 + . . .+

1
P
‖xP ‖1. (3.2)

We will solve problem (3.2) through its dual, by dualizing only the last P−1 equalities of its constraints.

Naive approach. If we used the ordinary Lagrangian, we would need additional constraints to guaran-
tee that the minimizer of each of its subproblems doesn’t lie at the infinity. To see this, note that the dual
function L : Rn × Rn × . . .× Rn︸ ︷︷ ︸

P−1

of (3.2) (by dualizing only the last P − 1 equalities) can be written as

L(λ1, λ2, . . . , λP−1) =
P∑
p=1

 inf
Apxp = bp

var : xp ∈ Rn

(
1
P
‖xp‖1 + (λp − λp−1)Txp

)
 , (3.3)

where, by definition, we make λ0 := λP := 0n (0n is the zero vector in Rn). It is clear that each
subproblem in (3.3) can have an optimal value of −∞. Imagine, for instance, that the vector (λp − λp−1)
has an entry with a number that has an absolute value greater than 1/P . Therefore, some kind of
restrictions, for example polyhedral, must be added to the constraints of each subproblem of (3.3).

Augmented Lagrangian. As previously discussed, this kind of constraints in the dual problem can be
avoided if we transform the dual Lagrangian function into a coercive function. We will do so by using
the augmented Lagrangian and, subsequently, we will apply the method of multipliers (algorithm 3, on
page 30) in order to minimize it.

The augmented Lagrangian La : Rn × Rn × . . .× Rn︸ ︷︷ ︸
P

×Rn × Rn × . . .× Rn︸ ︷︷ ︸
P−1

→ R of (3.2) associated

with the parameter ρ is

La(x1, . . . , xp, . . . , xP , λ1, . . . , λP−1) =
[

1
P
‖x1‖1 + λT1 x1

]
+ . . .+

[
1
P
‖xp‖1 + (λp − λp−1)Txp

]
+ . . .+

[
1
P
‖xP ‖1 − λTP−1xP

]
+ ρ‖x1 − x2‖2 + . . .+ ρ‖xP−1 − xP ‖2. (3.4)

From the coercivity and convexity of the `1-norm, it follows that the method of multipliers is well–defined
for problem (3.2), and by theorem 4 its convergence is established.

51



The next step is then to see how we can solve the problem in the step 1 of the method of multipliers:

(xk1 , . . . , x
k
p, . . . , x

k
P ) ∈ arg min

A1x1 = b1
...

Apxp = bp
...

APxP = bP

La(x1, . . . , xp, . . . , xP , λ
k
1 , . . . , λ

k
P−1), (3.5)

where this problem is solved for fixed dual variables λk1 , . . . , λ
k
P−1. Note that the updating of these

variables is done by
λk+1
p = λkp + ρk(xkp − xkp+1), (3.6)

for p = 1, 2, . . . , P − 1.
Problem (3.5) is not separable into P independent subproblems in the variables x1, x2, . . . , xP , owing

to the quadratical terms ‖xp−1 − xp‖2, for p = 1, 2, . . . , P − 1. Recall that we had exactly the same
problem in chapter 2 and we overcame it by using the DQA and the Nonlinear Gauss–Seidel algorithms.
Fortunately, both algorithms can be applied to (3.5) since their convergence is ensured for this problem.
This happens because the augmented Lagrangian (3.4) is convex, coercive and rigid on the primal vari-
ables x1, x2, . . . , xP , when the dual variables are fixed. Furthermore, (3.4) has unique block coordinate
minimizers as it strictly convex on each block variable xp, for p = 1, 2, . . . , P .

To see that, note that the rigidity of (3.4) follows directly from lemma 3 on page 33. The strict convexity
of each block coordinate xp in (3.4) can be proved if we write (3.4) as

P∑
p=1

1
P
‖xp‖1 + φλ1(x1 − x2) + φλ2(x2 − x3) + . . .+ φλP−1(xP−1 − xP ),

where φλp(z) = λTp z+ ρ‖z‖2, for p = 1, 2, . . . , P − 1. As each function φλp is strictly convex on the corre-
sponding block variables, xp and xp+1, it results that (3.4) is also strictly convex on each block variable.
This justifies the uniqueness of the block minimizers of the augmented Lagrangian (3.4). Concerning
the coercivity of this function, we note that there exists an m such that

φλ1(x1 − x2) + φλ2(x2 − x3) + . . .+ φλP−1(xP−1 − xP ) > m,

and, as a consequence,

La(x1, . . . , xp, . . . , xP , λ1, . . . , λP−1) >
1
P

P∑
i=1

(‖xp‖1 +m) .

If we consider the variable x := (x1, x2, . . . , xP ) ∈ Rn × Rn × . . . × Rn and fix the dual variables
λ1, . . . , λP−1, we have

La(x, λ1, . . . , λP−1) >
1
P

(‖x‖1 +m)

≥ 1
P

(‖x‖+m),

which tends to infinity as ‖x‖ → +∞. Thus, the augmented Lagrangian (3.4) is also coercive.
Consequently, theorems 5 and 6, that guarantee the convergence of the DQA and the Nonlinear
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Gauss–Seidel algorithms, respectively, remain valid for the optimization problem (3.5).1 However, we
will just explore the Nonlinear Gauss–Seidel algorithm for two reasons:

1. it has better convergence properties, namely the speed of convergence is known to be higher than
the speed of convergence of the DQA;

2. the minimum links between the processors that both algorithms require, unlike what happened in
chapter 2, are too alike.

Nonlinear Gauss–Seidel Approach

The Nonlinear Gauss–Seidel algorithm (algorithm 6 on page 39), applied to the augmented Lagrangian (3.4),
at the iteration k of the method of multipliers, yields

min
Apyp=bp

Lpa(yp),

where
Lpa(yp) :=

1
P
‖yp‖1 + (λkp − λkp−1)T yp + ρk‖xt+1

p−1 − yp‖2 + ρk‖yp − xtp+1‖2, (3.7)

for p = 1, 2, . . . , P . By definition, we make λ0 := λP := xP+1 := x0 := 0n. It is implicit in (3.7) that we
index each iteration of the Nonlinear Gauss–Seidel algorithm by the letter t.

Developing the quadratic terms, we can see that (3.7) is equivalent to

min
Apyp=bp

1
P
‖yp‖1 +

[
λkp − λkp−1 − 2ρk(xt+1

p−1 + xtp+1)
]T
yp + 2ρk‖yp‖2. (3.8)

In conclusion, the main task of each processor p is to solve problem (3.8). By using the epigraph
technique, (3.8) can be recast as a quadratic program. Thus, there exist popular software packages that
can solve this problem efficiently. In appendix B, an algorithm that solves directly problem (3.8) (in its
non–differentiable form) is provided.

Inefficiency problem. We are expecting that the algorithm that we are developing will be too inefficient
when compared to the algorithms that solve the original BP problem (3.1) in a centralized version, and
even to the algorithms from chapter 2. Indeed, note that (3.8) is equivalent to a quadratic program with
a variable of size 2n and 2n + mp constraints, whereas the BP (3.1) belongs to a simpler class, it is
equivalent to a linear program (see subsection 1.3.2), and has a 2n-dimensional vector as a variable
and 2n + m constraints. So, what we do here is to solve several times a harder problem, for each
processor. However, the merit of this algorithm is that it allows to solve the BP with a vertical partition of
the matrix A, and without the need of knowing the entire matrix.

A new architecture for the links. Note that, for a fixed k, from (3.8) we can see that the processor p at
the calculation of xt+1

p (i.e. the solution of (3.8)) only needs the vectors xt+1
p−1 and xtp+1 from its neighbors.

Because the extremal processors, 1 and P , only require the vectors xt2 and xt+1
P−1, respectively, the

minimal architecture for the links is only a single line, as it is depicted on Figure 3.2.
Also note that, for solving (3.8), the processor p only needs to know the dual variables λkp−1 and

λkp. As it accesses the variables xt+1
p−1 and xtp+1 (see Figure 3.2), the processor p can update the dual

variables λkp−1 and λkp by itself, that is, without exchanging any information with the neighbor processors
(see (3.6)).

1Although both theorems are proved for unconstrained minimization, its generalization to the constrained case can be easily
carried out, as long as we guarantee that the sequence of problems that we get has always a solution. This applies to our case
as, by assumption, each submatrix Ap is full–rank.
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Figure 3.2: Architecture needed for the implementation of algorithm 8; and illustration of the flow of
information in its inner cycle (Nonlinear Gauss–Seidel step).

Stopping criterion. As usual, the stopping criteria of either the method of multipliers or the Nonlinear
Gauss–Seidel algorithm can be based on a maximum number of iterations, or on the fact that the variable
calculated in the actual iteration doesn’t differ too much from the one calculated at the previous iteration
— for the Nonlinear Gauss–Seidel algorithm, the stopping criterion for the processor p can be ‖xt+1

p −
xtp‖ < εT ; and for the method of multipliers, it can be ‖xkp − xkp+1‖ < εK , for the dual2 variable λp (see
(3.6)).

However, how can a processor know that the other processors have converged (for any of the algo-
rithms)? The link architecture in Figure 3.2 doesn’t allow any circular flow of information, so we can’t
assign the task of verifying the convergence of the algorithms to a particular processor, as we did in sub-
section 2.2.3. What we propose is a method that propagates the local information only when needed.
That is, when a processor finds that a convergence criterion is satisfied, it transmits this information to
its neighbors. However, the neighbors only transmit this new information to their other neighbors if they
have also satisfied the same stopping criterion themselves. This way, we guarantee that when all the
processors have converged in some algorithm, they all know that the others have also converged. All
this information can be carried in a convergence vector vp ∈ RP .3 For instance, if each processor p has
its own convergence vector vp, then it can store all the information about the convergence of the other
processors in the following way: if vpl 6= 0, this means that the processor p knows that processor l has
already converged. Consequently, the processor p can update its convergence vector with the informa-
tion from the convergence vectors of its neighbors by summing all them (whether it is a logical sum or
not), i.e.

vp ← vp + vp−1 + vp+1.

Concatenating the method of multipliers, the Nonlinear Gauss–Seidel algorithm and the details we
have seen above we get the following algorithm:

Algorithm 8 (Multipliers/Gauss–Seidel for Vertical Partition).

• Predefined Parameters/Initialization:

– Ap and bp for each processor, p = 1, . . . , P ;

– Choose c ≥ 1 (for actualizing ρk);

– Choose K and T as the maximum number of iterations; and εK , εT for the stopping criteria;

– Choose x0
p ∈ Rn for p = 1, . . . , P ; λ0

p ∈ Rn, for p = 1, . . . , P − 1; ρ0 ∈ R+; and Q ∈ R\{0};
– Set the inner convergence vectors vp,T ∈ RP to zero, for p = 1, . . . , P ;

– Set the external convergence vectors vp,K ∈ RP to zero, for p = 1, . . . , P ;

– tp = 0, for all p = 1, . . . , P (we refer to tp instead of just t because these numbers are not
synchronous, hence each processor has its own internal counter tp).

2Note that this stopping criterion implies that a consensus about the solution of (3.1) has been reached among all the proces-
sors. In fact, we can guarantee with this stopping criterion that the distance between any pair of xp’s is majored by (P − 1)εT .

3According to this notation, a superscript letter indicates the “owner” or the iteration, while a subscript letter indicates the
number of the entry of a vector.
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• for k = 0 until K [Method of Multipliers]:

Procedure (for the processor p = 1, . . . , P ):

– If it receives xtp+1
p−1 and xtpp+1, and vp,Tp and vp,Kp are both different from zero,

1. Form the vector τp = λkp − λkp−1 − 2ρk(xtp+1
p−1 + x

tp
p+1);

2. Solve xtp+1
p = arg minApxp=bp(1/P )‖xp‖1 + τTp xp + 2ρk‖xp‖2;

3. Send x
tp+1
1 to processors p − 1 (if vp,Tp−1 6= 0 and vp,Kp−1 6= 0) and p + 1 (if vp,Tp+1 6= 0 and

vp,Kp+1 6= 0);

4. Check inner stopping criterion:

∗ If tp > T or ‖xtpp − xtp+1
p ‖ < εT , check external stopping criterion:

· If k > K or (‖xtp+1
p − xtp+1

p−1 ‖ < εK and ‖xtp+1
p − xtpp+1‖ < εK), make vp,Kp ← Q, and

try to transmit the vector vp,K to the neighbor processors in the next idle times.

· else, make vp,Tp ← Q, and try to transmit the vector vp,T to the neighbor processors
in the next idle times..

5. Make tp ← tp + 1.

– If the links to the processors p− 1 and p+ 1 are idle,

1. Transmit (if needed) or receive the external and the inner convergence vectors, vl,T and
vl,K , where l = p− 1 or l = p+ 1.

2. Update the convergence vectors: vp,T ← vp,T +vp−1,T +vp+1,T ; vp,K ← vp,K +vp−1,K +
vp+1,K ;.

3. If all entries of vp,K differ from zero, stop the algorithm.

4. else,

∗ If all entries of vp,T differ from zero,

· Make xkp = x
tp
p (the last calculated value);

· Make xkp−1 = x
tp
p−1 and xkp+1 = x

tp−1
p+1 (the last received values);

· Update λk+1
p = λkp + ρk(xkp − xkp+1) and λk+1

p−1 = λkp−1 + ρk(xkp−1 − xkp); and also
update ρk+1 = cρk.

· Make vp,T = 0P .

Although algorithm 8 is written for a generic processor p, we must take into account that for the
extremal processors, 1 and P , all kind of interaction of these processors with the processors p − 1
and p+ 1, respectively, should be ignored.

Degree of parallelism. One might wonder how this algorithm behaves globally, that is, how does the
fact that a processor is only capable of communicating with its neighbors affect the calculation of the new
variables xt+1

p ? As any kind of information takes a few hops from the processor 1 to the processor P ,
we might think that the number of iterations between the calculation of xtp and xt+1

p is about P iterations,
for any p = 1, . . . , P . Fortunately, this is not true during the steady phase of the algorithm. In this case,
only two iterations are needed. Table 3.1 shows the pattern of calculation of the new variables in the
inner cycle of algorithm 8 during six iterations, i.e. the variables which result from solving problem (3.8)
are shown with a circle around. From this table, we can observe not only that there exists a transient
initial phase, where the calculation of the new variables is done in a sequential order, but also a steady
phase where any variable is updated in two iterations (that is, two information exchange phases). See,
for example, the processor 3 at the end of the third iteration of the algorithm, after the reception of the
variable x1

2 from processor 2 (row 6 and column 3). In this iteration, processor 3 has access to the
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variables x1
2 from processor 1, x0

4 from processor 4 and its own x0
3. Thus, it can now solve problem (3.8)

and calculate the new variable x1
3. Afterwards, it sends this new variable to the neighbors, processors 2

and 4. Then, after receiving their new variables, it can solve again (3.8). This means that processor 3 can
calculate new variables in every two iterations. This same pattern is verified for all the other processors,
during the steady phase of the algorithm.

Consequently, using the definition given in page 45 the degree of parallelism of the algorithm 8
is 1/2. This is somewhat surprising because in algorithm 7, which is based on the same subalgorithms
of algorithm 8, the degree of parallelism is zero (the processors only work one at each time).

The fact of the degree of parallelism of this algorithm being 1/2, means that there are enough idle
times (50%) to transmit the convergence vectors between the processors, whenever it is needed.

Also note that the size of the exchanged vectors is n in most of the times, and P (convergence
vectors) in the last iterations of each cycle.

Table 3.1: Illustration of the execution of 6 iterations of an inner cycle (Nonlinear Gauss–Seidel) of the
algorithm 8, for P = 4. Each column refers to a variable that a processor p has access (its own xtp,
and the neighbor’s variables, xt+1

p−1 and xtp+1). Note that it is only possible to calculate xt+1
p when the

processor p has access to xt+1
p−1 and xtp+1. When this happens, the new variable, xt+1

p , appears circled
after the internal calculations, and the old variables xt+1

p−1 and xtp+1 are discarded. Note that after P − 1
iterations the algorithm enters a steady state.
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Characteristics of the algorithm. Using the concepts defined in section 2.3, we present the theo-
retical aspects of algorithm 8 in table 3.2. Note that, since the algorithms of chapter 2 are based on a
different partition of the matrix A, we shouldn’t compare the performance of those algorithms with the
performance of algorithm 8. In fact, we have already seen that this algorithm is very inefficient, but, until
so far, it was the only one that we could adapt to a vertical partition of A.

Table 3.2: Theoretical features of algorithm 8. All the used concepts are defined in section 2.3.

Degree of parallelism 1/2
Complexity of distributed processors +
Robustness to instantaneous link failures Yes
Size of vectors exchanged by iteration 2n

A curious aspect of this algorithm, though, is that before the processors update their dual vari-
ables λkp, they need to get to a “small consensus” first, independently of the value of the variable ρk (for
reasonable values of this variable, of course). This is evident from Figure 3.3, where the variables x0

p, for
five processors, were initialized with very different vectors (Figure 3.3(a)) and only after seven iterations
of the inner cycle of algorithm 8 they were almost equal, although very different from the optimal solution
(Figure 3.3(b)). We can see then, that the inner cycle is responsible for not keeping the variables very
different from each other, and the external cycle is responsible for “pushing” the variables of each pro-
cessor to near the optimal solution. In fact, when the variables are initialized with very different vectors,
the algorithm firstly tries to bring them close to each other, spending some iterations of the inner cycle.
And, after the variables being almost equal, the external loop brings them all in block close to the optimal
solution. In this last phase of the algorithm, few inner loops are spent.
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(a) Initial iteration.
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(b) 7th iteration of the Nonlinear Gauss–Seidel cycle.

Figure 3.3: Histograms of the errors of each variable xp, for p = 1, . . . , 5, during the execution of algo-
rithm 8. The variables were initialized in the following way: to x0

1 was assigned a random vector of norm
equal to 10; then, we made x0

5 = 2x0
4 = 2x0

3 = 2x0
2 = 2x0

1. The histograms show the distance of each
variable to the optimal one, x∗, at the initial iteration and at the 7th iteration of the Nonlinear Gauss–
Seidel cycle, both at the first iteration of the method of multipliers (no updating of the dual variables was
done).

3.1.1 Application to the BPDN

If, instead of the basis pursuit problem (3.1), we had the basis pursuit denoising problem

min
x∈Rn

1
2
‖b−Ax‖2 + β‖x‖1, (3.9)
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where A ∈ Rm×n and b ∈ Rm are given and x ∈ Rn is the optimization variable, we could also apply
algorithm 8 with minor modifications to solve it. Using the same block partition of the matrix A and the
vector b on page 50, we can write (3.9) as

min
x∈Rn

1
2
‖b1 − A1x‖2 +

1
2
‖b2 − A2x‖2 + . . . +

1
2
‖bP − APx‖2 +

β

P
‖x‖1 +

β

P
‖x‖1 + . . . +

β

P
‖x‖1.

Cloning the variable x into x1, x2, . . . , xP , we get problem (3.2) but for the BPDN:

min
x1 = x2

x2 = x3

...
xP−1 = xP

var : (x1, x2, . . . , xP ) ∈ Rn × Rn × . . .× Rn

P∑
p=1

(
1
2
‖bp −Apxp‖2 +

β

P
‖xp‖1

)
. (3.10)

Since the augmented Lagrangian of (3.10) is convex, coercive and rigid, if we take the same steps
used in pages 51-53 to get to (3.8), the result is the following optimization problem

min
yp∈Rn

1
2
‖bp −Apyp‖2 +

β

P
‖yp‖1 +

[
λkp − λkp−1 − 2ρk(xt+1

p−1 + xtp+1)
]T
yp + 2ρk‖yp‖2, (3.11)

which is equivalent to a quadratic program. This way, algorithm 8 solves the BPDN, (3.9), if we replace
problem (3.8) by problem (3.11) in this algorithm.
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Chapter 4

Fast Methods For BP and BPDN:
Future Research Topics

In this chapter we present possible new directions to solve the BP

min
Ax = b

var : x ∈ Rn

‖x‖1 (4.1)

and the BPDN
min
x∈Rn

1
2
‖Ax− b‖2 + β‖x‖1 (4.2)

problems in a fast way. The subjects approached in this chapter must not be seen as an extensive study
of some proposed algorithms, as it was done in the previous chapters, but instead they must be seen
as pointing to evidences that can lead to new efficient algorithms. To the best of our knowledge, such
evidences were never emphasized in the literature.

Throughout this chapter we present possible techniques for solving both the BP and the BPDN
with the underlying assumption that the matrix A ∈ Rm×n is available beforehand with respect to the
vector b ∈ Rm. This assumption allows us to make some precalculations before the “arrival” of the
vector b. Many applications, for example, where A is a known random matrix or some dictionary, give
practical validity to this assumption.

4.1 Ellipsoidal Approximation

The approach of approximating a complicated set by a simpler set simplifies many problems, and is
used in many contexts, such as optimization, system identification and control [14, 6]. In this chapter,
we will do this by approximating a polyhedron by an ellipsoid in the most general case, or by a ball in a
particular case.

This section, however, only concerns the more general case, in which the approximation is done by
an ellipsoid.
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Motivation of the approach. Recall that in subsection 1.3.3 we derived the dual program of the
BP (4.1), which we replicate here:

max
‖ATλ‖∞ ≤ 1
var : λ ∈ Rm

λT b. (4.3)

We have also seen in subsection 2.1.2 that the knowledge of the optimal dual variable λ∗, that solves (4.3),
can be used to discard the columns of the matrix A that aren’t activated by the optimal primal solution x∗.
As x∗ is expected to be sparse, it activates few columns, thus this reduction of columns can be signifi-
cant.

Being (4.3) a linear program, it would be interesting to see how we can obtain an approximate solution
or a good warm–start (for an interior–point method) with practically no cost, provided that the matrix A
is previously known, i.e., much sooner (offline) than b (online).

4.1.1 Ellipsoidal Approximation For The BP

Recall that the shape of the set P =
{
λ : ‖ATλ‖∞ ≤ 1

}
(see Figure 1.5) resembles an ellipsoid, spe-

cially if there are many constraints, i.e., if the matrix A has many columns. Besides that, P is always a
convex set. So, this observation allows us to replace problem (4.3) by an approximated version

max
λ∈E(B,d)

λT b, (4.4)

where E(B, d) = {Bx+ d : ‖x‖ ≤ 1} represents the ellipsoid with the shape matrix B (square and non-
singular) and center at d. The norm is the `2-norm. Another common representation of an ellipsoid is
Ealt(Balt, d) =

{
x : (x− d)TB−1

alt
(x− d) ≤ 1

}
, where Balt is symmetric and positive definite. We distin-

guish both representations by using the subscript “alt” on the latter, meaning alternative. One can easily
check that both sets E(B, d) and Ealt(Balt, d) are equal when B = B

1/2
alt

.
However, the ellipsoid in (4.4) is not any ellipsoid, but the one that best approximates the set P.

We can use many criteria to define what “approximating” means in this case. Löwner-John ellipsoids,
maximum volume inscribed ellipsoids [6, section 8.4], or even the linear combination of both are good
choices, but here we choose the maximum volume inscribed ellipsoid, i.e., the inner ellipsoid that best
approximates the set P. This choice has the advantage of every point of the ellipsoid is in the interior
of the polyhedron P. This is essential if we want to use an interior–point method to solve problem (4.4)
exactly, using the solution of (4.4) as a starting point.

Note that the set P is symmetric about the origin, therefore also the maximum volume ellipsoid that
best approximates it, meaning that d = 0. For this case, there is a bound for the error of approximation
of a polyhedron by the maximum volume inscribed ellipsoid: if we expand the ellipsoid by

√
m, where m

is the dimension of the ambient space, the expanded ellipsoid covers the whole polyhedron [6].
The problem of finding the maximum volume inscribed ellipsoid can be cast as a second–order cone

programming, nonetheless this approach, for a polyhedron characterized by many constraints and in
a moderate dimension ambient space, might not be useful even for an offline calculation. An iterative
algorithm that works well for this situation is presented in [14].

We still need to see how to solve (4.4). In order for this approach to be advantageous, the calculation
of the solution of (4.4) must have a low computational cost. But, as we will see, there is even a closed–
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form expression for it:

max
λ∈E(B,d)

λT b⇐⇒ max
‖x‖≤1

bT (Bx+ d)

⇐⇒
[

max
‖x‖≤1

(
BT b

)T
x

]
+ bT d

As we are maximizing an inner product in the unit–radius sphere, the optimal solution has the direction
of vector BT b and norm equal to one: xa = BT b

‖BT b‖ (see Figure 4.1). Therefore, the solution of (4.4) is:

B
T
b

{x : ‖x‖ ≤ 1}

xa

Figure 4.1: Maximization of an inner product (BT b)Tx over the unit–radius sphere {x : ‖x‖ ≤ 1}. The
solution is xa = BT b/‖BT b‖.

λa = Bxa + d

= B
BT b

‖BT b‖ + d. (4.5)

Figure 4.2 shows an example in two dimensions of the difference between the solutions of (4.3)
and (4.4). Note that λa, given by (4.5), seems to be a good warm–start for an interior–point algorithm
that solves the original linear program (4.3).

4.1.2 Ellipsoidal Approximation For The BPDN

Following the line of thought of subsection 4.1.1, we might wonder if a dual problem of the BPDN

min
x∈Rn

1
2
‖Ax− b‖2 + β‖x‖1 (4.6)

can lead to an optimization problem over the set P =
{
λ : ‖ATλ‖∞ ≤ 1

}
. If so, we might benefit from a

warm–start (due to an ellipsoidal approximation of this set) to solve exactly that dual of (4.6), whenever
the matrix A is previously available. In fact, we will see that a dual program of (4.6) is equivalent to the
projection of a point on the set P. We will also see that the knowledge of the optimal dual variable λ∗

allows us to discard the columns of the matrix A that aren’t activated by the optimal solution x∗, just like
what happens in the BP problem.

Point projection on P. First of all, if we introduce a new variable z ∈ Rm (recall that A ∈ Rm×n),
problem (4.6) is equivalent to

p? = min
Ax = z

var : (x, z) ∈ Rn × Rm

1
2
‖z − b‖2 + β‖x‖1. (4.7)
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Figure 4.2: Difference between the solutions of the linear program (4.3) and its approximated prob-
lem (4.4). The solution of (4.3) is represented by λ∗, while the solution of (4.4) is represented by λa. The
dimensions of the problem were: A ∈ R2×50, b ∈ R2. Note that, although there are 100 linear constraints,
only 6 of them define the ellipsoid.

The dual function of (4.7) is

L(λ) = inf
x

[(
ATλ

)T
x+ β‖x‖1

]
+ inf

z

[
1
2
‖z − b‖2 − λT z

]
. (4.8)

The infimum on x of the left–hand term of (4.8) is only finite when ‖ATλ‖∞ ≤ β, being zero in this case.
The right–hand term is differentiable on z, so we get z? = b+λ, being its infimum equal to − 1

2‖λ‖2−bTλ.
Therefore,

L(λ) =

{
− 1

2‖λ‖2 − bTλ , ‖ATλ‖∞ ≤ β
−∞ , ‖ATλ‖∞ > β

.

So, the dual problem of (4.7) is

d? = max
‖ATλ‖∞≤β

−1
2
‖λ‖2 − bTλ ⇐⇒ min

‖ATλ‖∞≤β

1
2
‖λ‖2 + bTλ,

and making the change of variable ν = −λβ ,

⇐⇒ min
‖AT ν‖∞≤1

β2

2
‖ν‖2 − βbT ν

⇐⇒ min
‖AT ν‖∞≤1

‖ν‖2 − 2
β
bT ν

⇐⇒ min
‖AT ν‖∞≤1

‖ν‖2 − 2
β
bT ν +

1
β2
‖b‖2 − 1

β2
‖b‖2

⇐⇒ min
‖AT ν‖∞≤1

‖ν − 1
β
b‖2, (4.9)

which is a problem of a point projection on a set. Namely, the solution of (4.9) is the point ν belonging to
set P =

{
µ : ‖ATµ‖∞ ≤ 1

}
that is closest to b/β.
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Again, we can solve the dual problem (4.9) by replacing the set P by its inner ellipsoidal approxima-
tion, E (B, d), and get an approximate solution. So, an approximation of the problem (4.9) is

min
ν∈E(B,d)

‖ν − 1
β
b‖2, (4.10)

where E(B, d) is the maximum volume ellipsoid inscribed in the set P. In appendix C.1, an algorithm that
solves (4.10) is described and proved to converge. That algorithm has the property of its convergence
being very fast.

Figure 4.3 shows a two–dimensional example of the difference between the solutions of (4.9) and (4.10),
for the same polyhedron of Figure 4.2. Again, note that the solution νa of (4.10) is a good starting point
for an interior–point algorithm that solves (4.9).
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Figure 4.3: Difference between the solutions of (4.9), represented by ν∗, and (4.10), represented by νa.
That is, the projection of a point on a polyhedron and on the inscribed ellipsoid that best approximates
that polyhedron.

Finding the optimal primal variable. We still need to see how the knowledge of the dual optimal
variable ν∗ can help us to find the optimal primal variable x∗, which solves (4.6).

For an optimal dual variable λ∗ = −βν∗, the infimum of the left–hand side term of (4.8):

x∗ ∈ inf
x

[(
ATλ∗

)T
x+ β‖x‖1

]
gives a corresponding optimal primal variable, x∗. Notice that the restriction set of (4.9) guarantees that
such infimum is always finite. Let ai be any column of the matrix A for i = 1, . . . , n. Then, by analyzing
the derivative of each function aTi λ

∗ xi + β|xi| for the cases when xi is positive, negative and zero, we
come to the conclusion that: 

x∗i > 0 =⇒ aTi λ
∗ = −β

x∗i < 0 =⇒ aTi λ
∗ = β

x∗i = 0 =⇒ |aTi λ∗| ≤ β

.
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Taking into account that we can’t have |aTi λ∗| > β, we can conclude that
aTi λ

∗ = −β =⇒ x∗i ≥ 0
aTi λ

∗ = β =⇒ x∗i ≤ 0
|aTi λ∗| < β =⇒ x∗i = 0

.

This means that, provided that we know an optimal dual variable λ∗, we can discard the columns of A
for which we already know that they aren’t activated by the corresponding optimal primal solution x∗.
Formally, if we define the set

Ω∗ = {i : |aTi λ∗| = β},

we can form the matrix M = A|Ω∗ , and solve

min
u∈Rn′

1
2
‖Mu− b‖2 + β‖u‖1, (4.11)

where the variable is u ∈ Rn′ , with n′ = |Ω∗|.
It is evident from the previous analysis that if u∗ solves (4.11), then the vector x in Rn such that x|Ω∗ =

u∗ and is zero elsewhere solves (4.6).
So, if we solve the dual rapidly (note that finding an approximation of the optimal dual variable can

be very quick), the solution of (4.6) can be obtained by solving (4.11). As the solution x∗ is expected to
be sparse, the reduction in the number of columns from matrix A to matrix M can be significant and, as
a consequence, we solve a BPDN in a much lower dimension.

4.1.3 Generalization Of The BPDN

We seize this opportunity to introduce a new problem, which is a generalization of the basis pursuit
denoising (BPDN):

min
x

1
2
‖Ax− b‖2P + β‖x‖1, (4.12)

where ‖y‖P =
(
yTPy

)1/2 is the P–quadratic norm, being P a symmetric and positive definite matrix.
We consider A ∈ Rm×n, b ∈ Rm, and β ∈ R.

The results from the previous subsection can be applied to solve (4.12) with a little additional effort.1

Using the previous approach (as for the `2-norm), (4.12) is equivalent to

p? = min
Ax = z

var : (x, z) ∈ Rn × Rm

1
2
‖z − b‖2P + β‖x‖1. (4.13)

The dual function of (4.13) is

L(λ) = inf
x

[(
ATλ

)T
x+ β‖x‖1

]
+ inf

z

[
1
2
zTPz − (Pb)T z − λT z

]
+

1
2
‖b‖2P .

Again, the left–hand term of the dual function is only finite (and equal to zero) when ‖ATλ‖∞ ≤ β. The
minimizer of the right–hand term is z? = P−1λ + b, leading to the infimum − 1

2λ
TP−1λ − bTλ − 1

2‖b‖2P .
This way, the dual of (4.13) is

d? = max
‖ATλ‖∞≤β

−1
2
λTP−1λ− bTλ,

1We also leave as a topic for future research finding applications where this problem can reveal important.
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which is equivalent to

min
‖ATλ‖ ≤ β
var : λ ∈ Rm

1
2
λTP−1λ+ bTλ. (4.14)

The optimization problem (4.14) is a generic quadratic program over a polyhedron. Again, we can
replace the set P =

{
λ : ‖ATλ‖∞ ≤ 1

}
by its maximum volume inner ellipsoid E (B, d), yielding

min
λ∈E(B,d)

1
2
λTP−1λ+ bTλ. (4.15)

We must notice that problem (4.15) is slightly different from problem (4.10). They are both quadratic
problems over an ellipsoid, but the matrix that affects the quadratical term in (4.10) is the identity ma-
trix. However, as P−1 is a symmetric and positive definite matrix, the solution of (4.15) can be easily
computed. The respective algorithm is described in appendix C.2.

If there is an interior–point algorithm that solves (4.14), the solution of (4.15), which can be computed
very quickly, can be used as a starting–point for that algorithm.

An optimal primal variable can be found using the method described in subsection 4.1.2.

4.1.4 The Quest For A “Perfect” Interior–Point Algorithm

In subsections 4.1.1, 4.1.2 and 4.1.3 we always relied on the existence of an interior–point method that
can solve linear programs (first subsection) or quadratic programs (other subsections). In fact, such
methods exist but become too slow for large scale problems. To exemplify, we will analyze an interior–
point method called the barrier method [6].

The barrier method. The idea of a barrier method is to solve a problem (which, here, we particularize
to a linear program)

min
Ax ≤ b

var : x ∈ Rn

cTx, (4.16)

where A ∈ Rm×n, x, c ∈ Rn and b ∈ Rm, by transforming it into a sequence of them

{min
x∈S

cTx− 1
tk

m∑
i=1

log(bi − aTi x)}, (4.17)

indexed by k. Each vector ai is a row of the matrix A, i.e.

A =



aT1
...
aTi
...
aTm


,

and S = {x : bi − aTi x > 0 , i = 1, . . . ,m}.
It seems that we replaced a simple problem by a sequence of complicated problems, but it turns out

that the minimization of each problem in (4.17) can be carried out using a very fast method: Newton’s
method [6, page 487]. The reason why we solve a sequence of problems instead of just one is because
Newton’s method requires a starting point. This way, at the iteration k + 1, we can use the solution
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found at the iteration k as a starting point. Note that, as tk approaches +∞, the optimal solution and
the optimal value of (4.17) approaches respectively the optimal solution and the optimal value of (4.16).
We don’t solve directly problem (4.17) for a large value of tk because, without a good starting point, that
problem becomes too hard to solve (the hessian of the objective becomes ill–conditioned).

Before proceeding, note that (4.17) is equivalent to

{min
x∈S

tkc
Tx−

m∑
i=1

log(bi − aTi x)}. (4.18)

Newton’s method requires the evaluation of the gradient and the hessian of the cost function of the
problem that we are minimizing. Let fk(x) be the objective of a problem of (4.18). Then, it can be shown
that

∇fk(x) = tkc+AT d(x)

and

∇2fk(x) =
m∑
i=1

1
(bi − aTi x)2

aia
T
i , (4.19)

where d(x) is the vector in Rm such that di(x) = 1/(bi − aTi x), for i = 1, . . . ,m.
Computer simulations show that the construction of the hessian ∇2fk(x), at each iteration k, is the

weakest point of this method, for the cases where m and n have high values, since it consumes most of
the time of the algorithm.

Thus, the research proposal that we make is either trying to overcome this hessian construction in
the barrier method, or developing interior–point algorithms that don’t require the evaluation of hessian
matrices of the kind of (4.19), i.e., that involve the sum of m matrices of size n × n, with m � n. In a
word, developing “fast ” interior point methods for large scale problems.

4.2 Ball Approximation

Recall that in Figure 4.2 we mentioned the fact that, although we had 100 linear constraints defining the
set P = {λ : ‖ATλ‖∞ ≤ 1}, only 6 of them really defined the polyhedron. This happened because the
columns of A had arbitrary norms.

However, if we restrict these columns to have unit–norm, the polyhedron P now resembles a ball
(see Figure 4.4). In this case, each linear constraint has a (small) contribution to define the polyhedron.
The assumption of unit–norm columns arises in many contexts and applications (see [18, 17, 6, 27]).

We will see that by replacing the set P by the unit–norm ball, B(0, 1) = {λ : ‖λ‖ ≤ 1}, in both
problems (4.3) and (4.9), we get an approximate solution of the respective dual optimal variable.

So, in the case where each column of A has unit–norm, the assumption of the previous knowledge
of the matrix A can be dropped, since the approximation can be done in real time. Indeed, we already
know what the best approximation is, hence we don’t need to do any precalculation before the “arrival”
of the vector b.

Approximating the set P. Figure 4.4 gives a good motivation for approximating the set P by a
ball B(0, R), centered at the origin and with radius R. Now, we will see that R = 1 is the best choice.

To find the maximum volume ball B(0, R) = {λ : ‖λ‖ ≤ R} that is inscribed inside the set P, one
can formulate the following optimization problem:

max
B(0,R)⊂P

R. (4.20)
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Figure 4.4: Polyhedron P, where the matrix A ∈ R2×50 is random.

Recall the definition of the set P: P = {λ : ‖ATλ‖∞ ≤ 1}. Let ai designate a column of the matrix A
and let also H−ai,1 designate the set {λ : aTi λ ≤ 1}, for i = 1, . . . , n. Then, the constraint of (4.20) can
be written as {

B(0, R) ⊂ H−ai,1 , for i = 1, . . . , n
B(0, R) ⊂ H−−ai,1 , for i = 1, . . . , n

.

Let now ri designate either ai or −ai. The condition B(0, R) ⊂ H−ri,1 can be written as[
max
‖λ‖≤R

rTi λ

]
≤ 1. (4.21)

The solution of the optimization problem in (4.21) is λa = R(ri/‖ri‖) (in Figure 4.1 there is a graphical
explanation of the solution of a similar problem). Replacing it in (4.21), we get R‖ri‖ ≤ 1. Therefore,
problem (4.20) is equivalent to

max
R ≤ 1

‖a1‖
...

R ≤ 1
‖an‖

R ≤ 1
‖−a1‖

...
R ≤ 1

‖−an‖

R.

Since ‖ai‖ = ‖ − ai‖ = 1 for all i = 1, . . . , n, we get

max
R≤1

R,

which has the obvious solution R = 1.

The resulting approximated problems. For the BP, if we replace the constraint ‖ATλ‖∞ ≤ 1 by λ ∈
B(0, 1) in problem (4.3), we get

max
‖λ‖≤1

bTλ. (4.22)

It is straightforward to see that the vector λa = b/‖b‖ solves it. Figure 4.5 shows the difference between
the solution of this approximated problem and the exact solution λ∗ of (4.3). Note that, unlike Figures 4.2
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and 4.3, in Figure 4.5 all the columns of A contribute to define the polyhedron P.
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Figure 4.5: Difference between the solutions of the approximated problem (4.22), represented by λa,
and the initial problem (4.3).

On the other hand, for the BPDN, if we replace the constraint ‖AT ν‖∞ ≤ 1, in (4.9), by ν ∈ B(0, 1),
the resulting problem is

min
‖ν‖≤1

‖ν − 1
β
b‖2. (4.23)

The solution of (4.23) is the point b/β, when ‖b/β‖ ≤ 1. When ‖b/β‖ > 1, the solution is b/‖b‖, i.e.,{
νa = b

β , if ‖ bβ ‖ ≤ 1

νa = b
‖b‖ , if ‖ bβ ‖ > 1

.

4.3 Ellipsoidal And Ball Approximations In Generic `1-norm Prob-
lems

This section concerns a generalization of the techniques that we have seen in this chapter.
We are interested in problems where we want to minimize a generic function on the variable x plus a

“sparsifying factor” ‖x‖1. Namely, problems of the kind

min
Ax = b

x ∈ domf

f(x) + ρ‖x‖1, (4.24)

where A ∈ Rm×n with m < n is a full–rank matrix, b is a given vector in Rm, f : Rn → R is a generic
convex function with domain domf and ρ ∈ R. The variable of the problem is x ∈ Rn.

Let the matrix A be arbitrary, in the sense that its columns have arbitrary norms. The particularization
for the case where these norms are unitary can be easily done, following the steps given in section 4.2.
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Solving (4.24) First of all, note that (4.24) is equivalent to

min
x1 ∈ domf

Ax2 = b

x1 = x2

f(x1) + ρ‖x2‖1. (4.25)

The Lagrangian function L : Rn × Rn × Rn → R of (4.25), if we dualize only its last constraint, is

L(x1, x2, λ) = f(x1) + ρ‖x2‖1 − λTx1 + λTx2

=
(
f(x1)− λTx1

)
+
(
ρ‖x2‖1 + λTx2

)
.

The corresponding dual function is

L(λ) = inf
x1∈domf

(
f(x1)− λTx1

)
+ inf
Ax2=b

(
ρ‖x2‖1 + λTx2

)
. (4.26)

Note that once the optimal dual variable λ∗ is known, one can recover the corresponding optimal primal
variable x∗1 = x∗2 = x∗ by solving either the left–hand term or the right–hand term of (4.26), with λ

replaced by λ∗.
Also note that

inf
x1∈domf

(
f(x1)− λTx1

)
= −f∗(λ),

where f∗ : Rn → R is the conjugate function of f [6, page 91]. So, the approach that we are taking works
well when the conjugate function of f is known and easy to evaluate at each point. Some examples
functions and its conjugate functions are in [6].

The right–hand side term of (4.26) isn’t always finite, so we must use a projection method to maxi-
mize L(λ), for example the projected subgradient method [5].

What is interesting about this problem is that, for each λ, we can reduce the dimensions of

inf
Ax2=b

(
ρ‖x2‖1 + λTx2

)
, (4.27)

by solving its dual
min

‖ATµ+λ‖∞≤ρ
bTµ, (4.28)

where the variable is µ ∈ Rm. Note that the constraint of (4.28) is a polyhedron {µ : ‖ATµ‖∞ ≤ ρ} cen-
tered at −λ. Therefore, if we have an approximation of this polyhedron beforehand, that approximation
remains valid for any value of λ, provided that we also center it at −λ. The knowledge of an optimal dual
variable µ∗ of (4.28) allows us to discard most of the columns of the matrix A that aren’t activated by the
respective primal optimal solution.

We leave the analysis of this algorithm for future research, as well as finding a simple description of
the condition that guarantees that (4.27) has a finite infimum.
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Chapter 5

Conclusions

Throughout this dissertation we have seen algorithms that solve the basis pursuit (BP) distributedly. The
BP is an important problem that arises when we want sparse representations of a phenomenon that
can be explained as a linear combination of some causes. We took for granted that we always knew
the matrix of causes A beforehand with respect to the phenomenon b. This fact, which makes sense in
many practical applications, allows us to “distribute” blocks of the matrix A by several nodes/processors
before the “arrival” of vector b. We considered two cases: an horizontal and a vertical partition of the
matrix A.

For the horizontal partition, we saw three different algorithms: one that solves a dual problem in order
to select the important columns of A and then solves a smaller version of the BP; and other two that
use the method of multipliers to find the primal (and also the dual) variable. In each step of this method,
there is the need of solving a non–separable optimization problem. To overcome this issue we used two
well–known methods that can induce separability: the Diagonal Quadratic Approximation (DQA) and the
Nonlinear Gauss–Seidel. Theoretically, these algorithms were known to converge only for differentiable
cost functions and, in our problem, we had a non–differentiable one. So, we developed a new concept
of functions to which we gave the name of rigid functions and proved that the DQA and the Nonlinear
Gauss–Seidel are still guaranteed to converge for this kind of functions. As a consequence, we also
proved convergence for our algorithms.

Concerning the vertical partition of the matrix A, we applied the previous results to ensure that the
method of multipliers, concatenated with either the DQA or the Nonlinear Gauss–Seidel, converged
when applied to a convex optimization problem with a rigid function as the objective. This way, we devel-
oped a distributed algorithm that solves the BP when the matrix A is partitioned into vertical blocks. We
have seen that the inefficiency of this algorithm is due to the formulation of the distributed optimization
problem: we transformed a problem with a “big size” variable into many of them. In terms of future
research, this is perhaps the most important subject to explore, since there are no other algorithms to
solve the BP with a vertical partition of A and the one that we have is too inefficient (slow). Also, this par-
tition of matrix A arises naturally in a new area that is having an increasingly importance in applications:
sensor networks.

Finally, the last part of this dissertation concerned the topic of centralized algorithms to solve the
BP and the basis pursuit denoising (BPDN) fastly. We didn’t present any new algorithm, instead we
just pointed out some evidences that might lead to it. In fact, if we assume that matrix A is known
beforehand with respect to b, this can provide us useful information or just prepare us better before the
vector b arrives. This issue hasn’t been properly explored in current literature, but we believe that it can
lead to very efficient algorithms.
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Appendix A

Example of a non-rigid function

In subsection 2.2.1, it is introduced the concept of a rigid function. It is easy to see that every convex
and differential function is rigid. Here, though, it will be presented a convex subdifferentiable function
that isn’t rigid. In fact, the point that makes this function non–rigid is also a stationary point of the DQA
algorithm presented in page 32. This means that, although this point minimizes the function along all
the coordinate axis, it is not a minimizer, not even a local one. Note that being non–rigid, theorems 5
and 6 cannot be applied.

The function is
f(x, y) = max

{
(x− 1)2 + (y + 1)2, (x+ 1)2 + (y − 1)2

}
.

Owing to the fact that f(x, y) is the maximum of two (strict) convex functions, f(x, y) is also convex.
Also, it is subdifferentiable over all R2. Its graph is plotted in Figure A.1.

Figure A.1: Graphics with different shadings of the function max
{

(x− 1)2 + (y + 1)2, (x+ 1)2 + (y − 1)2
}

.
Note that the function is non-differentiable along the line x = y. Though non-rigid, this function is convex
and subdifferentiable on all R2.

Any point along the line x = y could be used to prove that this function is non–rigid. We will use the
point (x, y) = (1, 1).

First of all, note that the minimum of f(x, y) is attained at (0, 0). This can be seen by noting
that f(x, y) = f(−x,−y) and

f(0, 0) = 2 ≤ f(x, y) + f(−x,−y)
2

= f(x, y).
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The above inequality follows from the fact that the minimum of

f(x, y) + f(−x,−y) = max{(x− 1)2 + (y + 1)2, (x+ 1)2 + (y − 1)2}
+ max{(x+ 1)2 + (y − 1)2, (x− 1)2 + (y + 1)2}

= (x− 1)2 + (x+ 1)2 + (y + 1)2 + (y − 1)2

is 4 (it is achieved for (x, y) = (0, 0)).
Let’s now see that (1, 1) is a minimizer along both x and y. Indeed,

f(1, 1) = 4 ≤ max
{

(x− 1)2 + 4, (x+ 1)2
}

= f(x, 1), ∀x∈R,

and
f(1, 1) = 4 ≤ max

{
(1 + y)2, 4 + (y − 1)2

}
= f(1, y), ∀y∈R.

On the other hand, the directional derivative along the vector v = (−1,−1) is negative:

f ′ ((1, 1); v) = lim
h↓0

f(1− h, 1− h)− f(1, 1)
h

= lim
h↓0

max
{
h2 + (2− h)2, (2− h)2 + h2

}
− 4

h

= lim
h↓0

h2 + 4− 2h+ h2 − 4
h

= lim
h↓0

2h− 2

= −2

< 0.

The conclusion is that f(x, y) is a non–rigid function.
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Appendix B

A Simple Subgradient Based
Algorithm For Quadratic Programming

In chapter 3 it is proposed an algorithm to solve the basis pursuit (BP) problem with a vertical partition
of the matrix A (see equation (3.1)). There, the final algorithm relies on the fact that each processor
involved in the optimization is able to solve problem (3.8), which we replicate here:

min
Apyp=bp

1
P
‖yp‖1 +

[
λkp − λkp−1 − 2ρk(xt+1

p−1 + xtp+1)
]T
yp + 2ρk‖yp‖2. (B.1)

Our purpose in this appendix is to present a very simple algorithm that can solve (B.1) and also that
can be implemented in simple processors.

To do that, we change the notation for simplicity purposes, and write (B.1) as

p∗ = min
Ax=b

‖x‖1 + vTx+ c‖x‖2, (B.2)

where A ∈ Rm×n, b ∈ Rm, v ∈ Rn and c ∈ R are constants, and x ∈ Rn is the variable of optimization.
The Lagrangian L : Rn × Rm → R of (B.2) is

L(x, λ) = ‖x‖1 + vTx+ c‖x‖2 + (ATλ)Tx− bTλ
= ‖x‖1 + (v +ATλ)Tx+ c‖x‖2 − bTλ

=
n∑
i=1

(
|xi|+ γi(λ)xi + cx2

i

)
− bTλ,

where the vector γ(λ) ∈ Rn is, by definition, γ(λ) := v + ATλ. Therefore, the dual Lagrangian function
can be written as

L(λ) =
n∑
i=1

[
inf
xi

(|xi|+ γi(λ)xi + cx2
i )
]
− bTλ. (B.3)

The solution of each subproblem of (B.3) can be found in closed form, if we consider the following
cases:

• If xi > 0 and the calculate the derivative of |xi|+ γi(λ)xi + cx2
i , we get

1 + γi(λ) + 2cxi = 0 ⇐⇒ xi = −1 + γi(λ)
2c

. (B.4)

As we assumed that xi > 0, we must have γi(λ) < −1.
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• If xi < 0 and we do the same procedure, we get

−1 + γi(λ) + 2cxi = 0 ⇐⇒ xi = −−1 + γi(λ)
2c

, (B.5)

which implies that γi(λ) > 1.

• Finally, when xi = 0, we have

0 ∈ [−1, 1] + γi(λ) ⇐⇒ γi(λ) ∈ [−1, 1]. (B.6)

By assumption, the linear system Ax = b is underdetermined and, also by assumption, the matrix A
has full–rank (see the context of problem (B.1) in chapter 3). Thus, Slater’s condition hold and, hence,
also strong duality. This way, the dual problem is

d∗ = p∗ = max
λ

n∑
i=1

fi(λ)− bTλ, (B.7)

where each function fi : Rn → R is given by

fi(λ) = inf
xi

(|xi|+ γi(λ)xi + cx2
i ),

for i = 1, . . . , n.
Note that (B.7) is equivalent to

min
λ

bTλ−
n∑
i=1

fi(λ). (B.8)

The cost function of (B.8) can be written as the supremum of differentiable functions. As so, it is not
differentiable itself, but is subdifferentiable. It is also convex on the variable λ. Thus, we are in conditions
to apply the subgradient method (algorithm 1 on page 14). The only thing we have to know in each
iteration is a subgradient of the objective of (B.8), for a fixed λk. In fact, it is straightforward to see
that gk = b−Ax∗(λk) is a subgradient of the objective of (B.8), where each component of x∗(λk) can be
evaluated using equations (B.4), (B.5) and (B.6).

In Figure B.1 a comparison between the performances of this algorithm (subgradient method applied
to (B.8)) and the algorithm used by Yalmip/Matlab is depicted. Note that, although the main focus here
was to illustrate the simplicity of an algorithm for solving (B.2), competitive results were achieved.
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Figure B.1: Comparison in terms of the relative error and time consumed of the solutions of the prob-
lem (B.2) given by the presented algorithm and by Yalmip/Matlab. The plots are parameterized by the
horizontal dimensions of the matrix A, n, although the vertical dimensions have also changed, accom-
panying n. In (b), it is represented the fraction t/tY , where t is the time consumed by the proposed
algorithm, and tY is the time consumed by Yalmip/Matlab. Each point in both plots is the mean of 50
random experiences for the respective dimensions. The high error for small dimensions can only be
explained by any outlier.
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Appendix C

Quadratic Program Over An Ellipsoid

C.1 Point Projection Over An Ellipsoid

In this section we describe an algorithm to solve the problem of projecting a point p ∈ Rn on an el-
lipsoid. In the meanwhile, we also prove that it converges. There are several ways of representing
mathematically an ellipsoid. Throughout chapter 4 we preferred to use the following:

E(B, d) = {Bx+ d : ‖x‖ ≤ 1} , (C.1)

where B is a non–singular and square matrix. However, the ellipsoid description that best fits our
purposes here is

Ealt(Balt, d) =
{
x : (x− d)T B−1

alt
(x− d) ≤ 1

}
, (C.2)

whereBalt is symmetric and positive definite. Note that (C.1) and (C.2) represent the same set whenever
B = B

1/2
alt

.
We can naturally consider that p /∈ Ealt(Balt, d), since the solution is trivial otherwise.
The point projection problem can be formulated as an optimization problem

min
(x−d)TB−1

alt
(x−d)≤1

1
2
‖x− p‖2, (C.3)

where the variable is x. We consider that Balt ∈ Rn×n, as well as x, d ∈ Rn. By multiplying the
constraining equation of (C.3) by 1/2, we get

min
1
2 (x−d)TB−1

alt
(x−d)≤ 1

2

1
2
‖x− p‖2. (C.4)

The KKT-system for (C.4) is

x? ∈ arg minx 1
2‖x− p‖2 + 1

2µ
? (x− d)T B−1

alt
(x− d)− 1

2µ
? (stationarity)

(x? − d)T B−1
alt

(x? − d) ≤ 1 (primal feasibility)

µ? ≥ 0 (dual feasibility)

µ?
[
(x? − d)T B−1

alt
(x? − d)− 1

]
= 0 (complementary slackness)

We denote, respectively, by x? and µ? the primal and the dual optimal variables (x∗ and µ∗ solve the
KKT-system).

Since the objective function in the stationarity equation is differentiable, we can replace it by the
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equation

∇x
(

1
2
‖x− p‖2 +

1
2
µ? (x− d)T B−1

alt
(x− d)− 1

2
µ?
)∣∣∣∣

x?
= 0⇐⇒ x? − p+ µ?B−1

alt
(x? − d) = 0

⇐⇒ x? − d+ µ?B−1
alt
x? − µ?B−1

alt
d = p− d

⇐⇒
(
I + µ?B−1

alt

)
(x? − d) = p− d,

where I is the identity matrix of dimension n. As I and Balt are both positive definite matrices (hence
also B−1

alt
), so is I + µ?B−1

alt
, also by the dual feasibility equation. Therefore, (I + µ?B−1

alt
)−1 exists.

⇐⇒ x? = d+
(
I + µ?B−1

alt

)−1
(p− d) .

(C.5)

We still need to figure out how to find the optimal dual variable µ?. We made the assumption at the
beginning that the point p belongs to the exterior of the ellipsoid. As a consequence, the optimal primal
variable x? must belong to the border of the ellipsoid. Then, (x? − d)T B−1

alt
(x? − d) = 1. Replacing (C.5)

in this equation, and noticing that the set of symmetric matrices is a subspace and that the inverse of a
symmetric matrix is also symmetric, we have

(x? − d)T B−1
alt

(x? − d)− 1 = 0⇐⇒
[(
I + µ?B−1

alt

)−1
(p− d)

]T
B−1
alt

[
(I + µ?Balt)

−1 (p− d)
]
− 1 = 0

⇐⇒ (p− d)T
(
I + µ?B−1

alt

)−1
B−1
alt

(
I + µ?B−1

alt

)−1
(p− d)− 1︸ ︷︷ ︸

φ(µ?)

= 0. (C.6)

As B−1
alt

is symmetric and positive definite, it can be decomposed in the product QΛQT , where Q is an
orthogonal matrix and

Λ =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 � 0,

i.e., λi > 0, for i = 1, . . . , n. Note that

(
I + µ?B−1

alt

)−1
=
[
Q (I + µ?Λ)QT

]−1

=
(
QT
)−1

(I + µ?Λ)−1 (Q)−1

= Q (I + µ?Λ)−1
QT .

Using this fact on (C.6) yields

φ (µ?) = (p− d)T Q (I + µ?Λ)−1
QTQ︸ ︷︷ ︸
I

ΛQTQ︸ ︷︷ ︸
I

(I + µ?Λ)−1
QT (p− d)− 1

= (p− d)T Q (I + µ?Λ)−1 Λ (I + µ?Λ)−1
QT (p− d)− 1. (C.7)
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Due to its diagonal structure, the matrix (I + µ?Λ)−1 can be expressed as

(I + µ?Λ)−1 =


1

1+µ?λ1
0 · · · 0

0 1
1+µ?λ2

· · · 0
...

...
. . .

...
0 0 · · · 1

1+µ?λn

 .

And, consequently, the matrix product (I + µ?Λ)−1 Λ (I + µ?Λ)−1 can be written as

Ψ = (I + µ?Λ)−1 Λ (I + µ?Λ)−1 =


λ1

(1+µ?λ1)2
0 · · · 0

0 λ2
(1+µ?λ2)2

· · · 0
...

...
. . .

...
0 0 · · · λn

(1+µ?λn)2

 .

Making the change of variable y = QT (p− d), (C.7) equals

φ (µ?) = [(p− d)T Q]︸ ︷︷ ︸
yT

Ψ [QT (p− d)]︸ ︷︷ ︸
y

−1 = yTΨy − 1.

Finally, equation φ (µ?) = 0 is equivalent to

n∑
i=1

λi

(1 + µ?λi)
2 y

2
i − 1 = 0. (C.8)

Equation (C.8) defines implicitly the optimal dual variable µ?: it is a zero of the function φ.
Before proceeding, let’s see what the first and second order derivatives of φ look like:

φ̇ (µ) =
d

dµ

[
n∑
i=1

λi

(1 + µλi)
2 y

2
i − 1

]

=
n∑
i=1

d

dµ

(
λi

(1 + µλi)
2 y

2
i

)

= −2
n∑
i=1

λ2
i

(1 + µλi)
3 y

2
i ; (C.9)

φ̈ (µ) =
d

dµ

[
−2

n∑
i=1

λ2
i

(1 + µλi)
3 y

2
i

]

= −2
n∑
i=1

d

dµ

(
1

(1 + µλi)
3

)
λ2
i y

2
i

= 6
n∑
i=1

λ3
i

(1 + µλi)
4 y

2
i . (C.10)

One of the properties of the orthogonal matrices is that they are full–rank, meaning that its null–space
is {0}. As we are assuming that the point p lies outside the ellipsoid Ealt(Balt, d), we have p 6= d, where d
is the center of the ellipsoid. Thus, y = QT (p − d) 6= 0. Equivalently, we can say that the vector y has
always a non–zero component, yi > 0. Therefore, from equation (C.9), we can conclude that φ̇ (µ) < 0,
for any µ ≥ 0. This means that the function φ is strictly decreasing for µ ≥ 0. Concerning the second
order derivative, from the previous observation, we can conclude that φ̈ (µ) > 0, for all µ ≥ 0, that is, φ is
strictly convex over this domain.
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The previous properties of the function φ allow us to use the Newton–Raphson method [21] for
solving non–linear systems of equations.

Algorithm 9 (Newton–Raphson Method). Let φ : R −→ R be a continuously differentiable function.
Then, the Newton–Raphson method consists on:

• Choose t0 ∈ R;

• Iterate on k:

– If φ̇ (tk) = 0, choose another starting point t0, or report failure;

– Otherwise, tk+1 = tk − φ(tk)

φ̇(tk)
.

The following lemma ensures that the Newton–Raphson method applied to the function φ, defined
in (C.6), converges for any positive starting point t0.

Lemma 4. Let φ : R −→ R be a twice continuously differentiable, strictly decreasing and strictly convex
function. Assume that there exists t? such that φ (t?) = 0. Also assume that, for any k ≥ 0, we
have tk 6= t?. Then, the Newton–Raphson method converges to t?.

Proof. In the first place, let’s see that the condition φ (tk) > 0, for any k, implies that tk+1 > tk

and φ (tk+1) > 0. The first inequality holds because φ is strictly decreasing:

tk+1 = tk −

>0︷ ︸︸ ︷
φ (tk)
φ̇ (tk)︸ ︷︷ ︸
<0

=⇒ tk+1 > tk.

By using the second order Taylor expansion of the function φ, and due to its strict convexity, we can
confirm the second inequality:

φ (tk+1) = φ (tk) + φ̇ (tk) (tk+1 − tk)︸ ︷︷ ︸
=0

+
1
2

(tk+1 − tk)2︸ ︷︷ ︸
≥0

φ̈ (t)︸︷︷︸
>0

> 0,

where t ∈ [tk, tk+1]. Furthermore, we can conclude that φ (tk+1) > 0 even if φ (tk) < 0. So,

φ (tk) > 0, for any k ≥ 1. (C.11)

By the assumption of the lemma, t? exists (φ (t?) = 0). By (C.11), together with the fact that φ is
strictly decreasing, we conclude that tk ≤ t?, for any k ≥ 1. We also have that the sequence {tk}+∞k=1 is
strictly increasing. Thus, the sequence {tk}+∞k=1 has a limit point, which we will designate by t̄.

Let’s now prove that φ (t̄) = 0, and therefore t̄ = t?, due to the injectivity of φ. Making the passage to
the limit in

tk+1 = tk −
φ (tk)
φ̇ (tk)

,

we get

t̄ = t̄− φ (t̄)
φ̇ (t̄)

,

which is equivalent to φ (t̄) = 0, since φ̇ (t̄) < 0 (strictly decreasing).
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Note that, owing to the fact that φ̇ (µ) < 0, for any µ ≥ 0, the Newton–Raphson method never reports
failure. Algorithm 10 gathers all the steps that we have seen.

Algorithm 10 (Point Projection On A Ellipsoid).

• Predefined Parameters/Initialization:

– Matrix Balt and vector d that define the ellipsoid by

Ealt(Balt, d) =
{
x : (x− d)T B−1

alt
(x− d) ≤ 1

}
;

– The eigenvalue decomposition of B−1
alt

: B−1
alt

= QΛQT ;

– Tolerance ε for the stopping criterion of the Newton–Raphson method.

• Procedure:

– Receive p, the point we want to project on the ellipsoid;

– If (p− d)T B−1
alt

(p− d) ≤ 1, return x? = p.

– Else

1. Calculate y = QT (p− d);

2. Choose µ0 ≥ 0; and set k = 0;

3. Find the optimal dual variable µ? using Newton–Raphson method (iterate on k):

∗ Evaluate

φ (µk) =
n∑
i=1

λi

(1 + µkλi)
2 y

2
i − 1.

∗ If |φ (µk) | < ε, break cycle;

∗ Else, evaluate

φ̇ (µ) = −2
n∑
i=1

λ2
i

(1 + µλi)
3 y

2
i ;

and set
µk+1 = µk −

φ (µk)
φ̇ (µk)

.

4. Set µ? = µk and return
x? = d+

(
I + µ?B−1

alt

)−1
(p− d) .

A few things must be said about algorithm 10: firstly, as it is well–known, Newton–Raphson method
converges very fast, and so does algorithm 10. In a couple of iterations we get a very accurate solution.

Another aspect of this algorithm is that the evaluation of the functions φ and φ̇ can be made in parallel,
if we have P < n processors. The sum of the P numbers could be carried out in a central processor, or
in a circular message–passing architecture.

Even though, without parallelization, the algorithm has a very low computational cost, mostly because
of the fast speed of convergence of the Newton–Raphson method.

C.2 Strictly Convex Quadratic Program Over An Ellipsoid

In this section, we focus on solving a generic quadratic program over an ellipsoid. However, we consider
that the matrix involved in the quadratic term is positive definite. So, the problem that we want to solve is

min
y∈Ealt(Balt,d)

yTMy + vT y, (C.12)
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where M is a square matrix of size n, with M � 0 and MT = M ; Ealt (Balt, d) is a generic ellipsoid in Rn

centered at d and with Balt � 0. The variable is y ∈ Rn.
We can transform problem (C.12) into a problem of the kind of (C.3) by a suitable change of variables.

Namely, we introduce the variable x that satisfies x = M1/2y. Note that this change of variables is well–
defined as the matrix M is positive definite (hence also the matrix M1/2).

Concerning the cost function of (C.12), it becomes

yTMy + vT y = ((M1/2)T︸ ︷︷ ︸
=M1/2

y)T (M1/2y) + vT y

= xTx+ vT (M−1/2)x

= xTx+ vT (M−1/2)x+
1
4
‖M−1/2v‖2 − 1

4
‖M−1/2v‖2

= ‖x− (−1
2
M−1/2v)‖2 − 1

4
‖M−1/2v‖2.

The constraining equation of (C.12), on the other hand, becomes

(y − d)TB−1
alt

(y − d) ≤ 1⇐⇒ (M−1/2x− d)TB−1
alt

(M−1/2x− d) ≤ 1

⇐⇒
[
M−1/2(x−M1/2d)

]T
B−1
alt

[
M−1/2(x−M1/2d)

]
≤ 1,

and as (M−1/2)T = M−1/2,

⇐⇒ (x−M1/2d)TM−1/2B−1
alt
M−1/2(x−M1/2d) ≤ 1

⇐⇒ x ∈ Ealt
(
M1/2BaltM

1/2,M1/2d
)
.

Therefore, to solve problem (C.12), we first find x? by solving problem

min
x∈Ealt(M1/2BaltM1/2,M1/2d)

‖x− (−1
2
M−1/2v)‖2,

using the algorithm 10 in section C.1; and then we make y? = M−1/2x?.
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