lﬁ INSTITUTO SUPERIOR TECNICO

Algoritmos Distribuidos Para Problemas De
Aproximacao Esparsa

Joao Filipe de Castro Mota

Dissertagao para obtencédo do Grau de Mestre em
Engenharia Electrotécnica e de Computadores

Juri
Presidente: Prof. Carlos Jorge Ferreira Silvestre
Orientadores: Prof. Jodo Manuel de Freitas Xavier
Prof. Pedro Manuel Quintas Aguiar
Vogal: Prof. Méario Alexandre Teles de Figueiredo

Setembro 2008

lﬁ INSTITUTO SUPERIOR TECNICO

Distributed Algorithms For Sparse Approximation

Joao Filipe de Castro Mota

A Dissertation submitted in fulfillment of the requirements for the
degree of Master of Science in:

Electrical and Computer Engineering

September 2008

Agradecimentos

Em primeiro lugar, gostaria de agradecer aos meus orientadores neste projecto, ao Prof. Jodo Xavier
e Prof. Pedro Aguiar, ndo sé por me contagiarem com o entusiasmo que cada pequena descoberta
cientifica desperta, mas também pelos valiosos comentarios sobre questdes técnicas fundamentais
relacionadas com esta tese. Em particular, agradeco ao Prof. Jodo Xavier as sucessivas e excelentes
revisdes da dissertacdo, bem como a disponibilidade para as fazer e tirar ddvidas. Também agradeco
ao Prof. Mario Figueiredo os esclarecimentos prestados sobre o funcionamento do algoritmo GPSR.
Gostaria de frisar que este projecto foi financiado em parte pela Fundagédo para a Ciéncia Tecnologia.

Ainda relacionado com a tese, gostaria de agradecer a Dragana por me ter dado a conhecer um
artigo sobre o método de DQA, e que acabou por dar um rumo ao que haveria de ser esta tese. Ao
colega e amigo Pedro Guerreiro gostaria também de dar uma palavra de agradecimento, ndo s6 pelo
companheirismo, mas também pelas centenas, se ndo milhares, de conversas fascinantes, técnicas e
nao técnicas, que tivémos ao longo destes anos.

Aos amigos e familiares que sempre me apoiaram, mas cujo nome nao mencionarei sob pena de
me poder esquecer de alguém, deixo-lhes um obrigado muito sincero. Destaco a minha irma Renata e
o Tiago pelo apoio sempre presente.

Aos meus pais, pelas condi¢cdes que sempre me proporcionaram ao longo da vida, dedico-lhes esta
tese que, ainda que simbolicamente, representa o culminar de varios anos de estudo. Por isso, como
sinal de gratidao, dedico-lhes este trabalho.

Finalmente, gostaria de agradecer a Filipa, ndo s6é o amor e carinho com gque me prendou durante
estes anos, mas também pela paciéncia e compreensdo demonstradas aquando da realizagao desta
dissertagao, que muito tempo de atencao lhe roubou.

Resumo

Muitas aplicagbes requerem o conhecimento de uma combinagao linear esparsa de sinais elementares
que aproxima um dado sinal. Este problema é conhecido por “problema de aproximagédo esparsa’
e surge em diversos contextos em ramos da Engenharia Electrotécnica e da Matematica Aplicada. A
grande dificuldade em lidar com este tipo de problemas é a falta de convexidade ou a ndo—diferenciabilidade
das medidas de esparsidade.

A grande contribuigao desta tese € propdr, analisar e comparar algoritmos distribuidos que permitem
resolver um problema de aproximacgéo esparsa conhecido pelo nome de “basis pursuit’. Ha interesse
consideravel em resolver este problema de forma distribuida pela sua aplicabilidade em telecomuni-
cagles, computagéo e redes de sensores. Todos os algoritmos propostos baseiam—se na existéncia de
uma particao da matriz que contém a descrigao dos sinais elementares. Essa particao pode ser horizon-
tal ou vertical e os respectivos blocos da matriz estdo armazenados em diferentes processadores. Con-
tudo, cada algoritmo, estando associado a uma determinada arquitectura de ligagdes entre os varios
processadores disponiveis, opera sob essa arquitectura para resolver o “basis pursuit”.

Também sao apresentadas provas de convergéncia para todos os algoritmos propostos na tese.
Com esta finalidade, as provas conhecidas de convergéncia para os métodos “Diagonal Quadratic Ap-
proximation” e “Nonlinear Gauss—Seidel” tiveram de ser generalizadas de modo a abranger uma nova
classe de fun¢des nao—diferenciaveis. Essa nova classe é definida, e é-lhe dado o nome de “funcdes
rigidas”.

Por altimo, sdo apresentados possiveis caminhos na futura investigacao de algoritmos que resolvam
0 “basis pursuit” e uma sua versdo mais robusta, “basis pursuit denoising”, de forma centralizada, mas
rapida.

Palavras Chave: Basis Pursuit, Algoritmos Distribuidos, Nonlinear Gauss—Seidel, Diagonal Quadratic
Approximation, Método de Subgradiente, Fungdes Rigidas.

Abstract

Many applications require the knowledge of a sparse linear combination of elementary signals that can
explain a given signal. This problem is known as the “sparse approximation problem” and arises in
many fields of electrical engineering and applied mathematics. The great difficulty when dealing with
sparse approximation problems is the lack of convexity or the non-differentiability inherent to the sparsity
measures.

The main contribution of this thesis is the proposal, and in—depth analysis, of some distributed al-
gorithms that solve a sparse convex approximation problem known as the “basis pursuit” problem. The
interest in solving this problem distributedly concerns applications such as communications, computing
and sensor networks. All the proposed algorithms assume that the matrix which contains the descrip-
tion of elementary signals is partitioned either horizontally or vertically among the several processors
available. Nevertheless, each algorithm is based on a particular architecture for the links between the
processors and must operate upon that architecture in order to solve the basis pursuit.

This thesis also provides proofs of convergence for all the proposed algorithms. This required ex-
tending the well-known results of convergence of the Diagonal Quadratic Approximation and the Non-
linear Gauss—Seidel methods to cover a new class of non-differentiable functions, which we call “rigid
functions”.

Finally, we also point out new possible directions in the research for centralized but fast algorithms to
solve, not only the basis pursuit, but also the “basis pursuit denoising” problem.

Keywords: Basis Pursuit, Distributed Algorithms, Nonlinear Gauss—Seidel, Diagonal Quadratic Ap-
proximation, Subgradient Method, Rigid Functions.

Contents

1 Introduction
1.1 Contributions
1.2 Thesis Organization e
1.3 Preliminaries e
1.3.1 Why is sparsity usually associated with the ¢;-norm?
1.3.2 BPasalinearProgram
1.3.3 TheDualOf The BP e

2 Distributed BP With Horizontal Partition
2.1 Subgradient Method
2.1.1 Dual Approach For Solving The Bounded Basis Pursuit Problem
2.1.2 Solving The Bounded BP Problem Through Its Dual
2.1.3 The Resulting Algorithm

O W > o

2.2 Multiplier Methods e
2.2.1 Method of Multipliers As An ExternalLoop
2.2.2 Nonlinear Jacobi Approach
2.2.3 Nonlinear Gauss—Seidel Approach

2.3 Comparison Of The Methods

Distributed BP With Vertical Partition

3.1 Proposed Approach
3.1.1 Applicationtothe BPDN

Fast Methods For BP and BPDN: Future Research Topics

4.1 Ellipsoidal Approximation
4.1.1 Ellipsoidal Approximation For TheBP
4.1.2 Ellipsoidal Approximation For The BPDN
41.83 Generalization Of The BPDN
4.1.4 The Quest For A “Perfect” Interior—Point Algorithm

4.2 Ball Approximation

4.3 Ellipsoidal And Ball Approximations In Generic ¢;-norm Problems

Conclusions
Example of a non-rigid function
A Simple Subgradient Based Algorithm For Quadratic Programming

Quadratic Program Over An Ellipsoid

C.1 Point Projection Over An Ellipsoid
C.2 Strictly Convex Quadratic Program Over An Ellipsoid

List of Figures

1.1 Graphics of the functions |ul, u? and card(u). 4
1.2 Alternative explanation of the sparsity inducing property of the ¢;-norm. 5
1.3 Graphical description of the constants Cy and C1, which appear in the theorems 1 and 2. 6
1.4 Plot of the functions |z;| and al') z; for two situations. 9
1.5 Graphical depiction of the dual program (1.15). 10
2.1 Graphical interpretation of the solution of problem (2.10) 16
2.2 Architecture of the links between the processors for the subgradient method for bounded

BP (algorithm 2). e 23
2.3 Typical behavior of the inner product a! * along the iterations of algorithm 2. 24
2.4 Filtering along the iterations of algorithm 2. 24
2.5 Evolution of the inner product a7 * along the iterations of the algorithm 2 when the cor-

respondent component z isclosetozero. 25
2.6 Example of a “false alarm” in the iterations of the algorithrm2. 25
2.7 Comparison between an exact solution of (2.1), z*, and the solution returned by algo-

thmM 2, &, . e e e e e 26
2.8 Inner product al' * along the iterations of the subgradient method, where a; is the column

that was wrongfully discarded in the experience of the Figure2.7. 27
2.9 Evolution of the cost function H(*) along the iterations. 27
2.10 Same inner product a! * of the Figure 2.8 (missing column), but where we used a value

forthe bound Rof 1.48insteadof 3. 28
2.11 Required architecture for the implementation of the algorithm 7. 44
3.1 Graphical interpretation of the basis pursuit problem (3.1), where the matrix A is in R?*3. 49
3.2 Architecture needed for the implementation of algorithm 8; and illustration of the flow of

information in its inner cycle (Nonlinear Gauss—Seidel step). 54
3.3 Histograms of the errors of each variable z,, for p = 1,...,5, during the execution of

algorithm 8. L 57
4.1 Maximization of an inner product (B7b)” x over the unit-radius sphere {z : ||z|| <1}. .. 61
4.2 Difference between the solutions of the linear program (4.3) and its approximated prob-

lem (4.4). . . . 62
4.3 Difference between the solutions of (4.9) and (4.10), i.e., the projection of a point on a

polyhedron and on the inscribed ellipsoid that best approximates that polyhedron. 63
4.4 Polyhedron P, where the matrix A € R2**®israndom. 67
4.5 Difference between the solutions of the approximated problem (4.22), represented by A,,

and the initial problem (4.3). 68
A.1 Graphics with different shadings of the function max { (z — 1)% + (y + 1)2, (z + 1)® + (y — 1)?}.

73

B.1 Comparison in terms of the relative error and time consumed of the solutions of the prob-

lem (B.2) given by the presented algorithm and by Yalmip/Matlab. 77

vii

List of Tables

2.1

2.2
2.3

3.1

3.2

Different types of behavior of |a7' *| along the iterations of the subgradient method phase

of algorithm 2. e 25
Theoretical features of the algorithms presented in chapter2. 46
Experimental results from the simulation of the SMBBP, the M/DQA and M/GS. 47
lllustration of the execution of 6 iterations of an inner cycle (Nonlinear Gauss—Seidel) of

the algorithm 8, for P =4. e e 56
Theoretical features of algorithm 8. 57

viii

Acronyms

BP

BPDN

RBP

DQA

SMBBP

M/DQA

M/GS

Basis pursuit

Basis pursuit denoising

Reduced basis pursuit

Diagonal quadratic approximation
Subgradient method for bounded basis pursuit
Multipliers/Diagonal quadratic approximation

Multipliers/Gauss—Seidel

Chapter 1

Introduction

Over the last half century, society has benefited a lot from the significant advances in signal process-
ing. Ranging from image and audio processing to genetics and bioengineering, its applications are
numerous. So, it is no surprise that developments on these application areas can be observed almost
everyday. Nevertheless, the field of signal processing itself is far from being static. The topic of sparse
representation of signals is a quite recent and promising one [27, 28].

Sparse representation arises in so many fields that it is impossible to mention all here. Exam-
ples include signal reconstruction and restoration, denoising, regularization, estimation and fitting, in-
terpolation, channel coding and compressed sensing. It is worthwhile to mention that compressed
sensing provides a more efficient alternative to the Shannon-Nyquist sampling for a broad class of sig-
nals [16, 2, 12, 7]. However, most of the theoretical results found in the area of sparse representation
are relatively recent and, consequently, advances in its related areas of application are expected in the
near future.

At the same time, the computing architecture paradigm is changing towards more distributed envi-
ronments, where computational resources are not just concentrated in a single place but over many.
Sensor networks are just an example, having (real-time) applications such as security, surveillance,
smart classroom, robotics, aerospace and medical monitoring [15, 19]. While the hardware for parallel
computing has had great developments, there is still lot of space for advances in the parallelization of
algorithms. A parallelizable algorithm has always a certain hardware architecture associated, and may
not be suitable for other architectures. Therefore, it is of considerable interest to develop algorithms that
can be used over several architectures.

The main difficulty encountered when dealing with sparse representation problems is the non-convexity
or the non-differentiability of the sparsity measures. In this thesis, we are interested in two important
problems that arise in the context of sparse representation:

min lz|l1 (BP)
Ax =10

var : x € R
and

1)
min oAz = b" + Bllz]]:. (BPDN)

Although both problems are convex, it will be shown in subsection 1.3.1 that (BP) is a convex relaxation
of a combinatorial problem involving the /,-quasi norm; and (BPDN) is a more robust way of solving (BP).
Problem (BP) is known as the basis pursuit problem. It consists in finding a vector € R” that has

the least ¢;-norm (||z|; := >, |z;]) and at the same time verifies the linear equation Az = b. A is a
real-valued matrix m x n and b is a vector in R™. We can assume, without loss of generality, that the
rows of A are linearly independent. Thus, this problem only makes sense when m < n, i.e., there are
more unknowns than equations, being Az = b an underdetermined system. When m = n, the only
feasible point is = A~'b.

A closely related problem is (BPDN), which is called basis pursuit denoising [13]. In fact, this is an
heuristic to find a vector 2 € R™ that is both sparse and close to verify equation Ax = b, where A € R™*"
and b € R™. In this thesis, when we write || - || we always refer to the ¢5-norm, unless otherwise stated.
So, in (BPDN), we try to find a solution such that Az — b is small in the ¢5-norm sense, and x is small
in the ¢;-norm sense. The number g is the trade-off parameter between the two objectives that we are
trying to minimize. Unlike (BP), this problem makes sense for any relationship between the dimensions
of A, m and n.

1.1 Contributions

Problems (BP) and (BPDN) belong to well-established classes of optimization problems. While (BP)
can be written as a linear program, (BPDN) can be recast as a quadratic program. However, when one
of the requirements is to solve these problems in a distributed/parallelized way, there are no references
in the literature, to the best of our knowledge, of algorithms that fulfill this requirement.

In this thesis, we tackle the problem of solving the BP in a distributed environment and take for
granted the fact that no single processor knows the entire matrix A. We consider both the cases where
this matrix is partitioned horizontally and vertically. In the first case, we propose, analyze and compare
three algorithms that differ, not only in the approaches, but also in the supporting architecture for the
links between the processors. In the second case, we propose and analyze just one algorithm, although
another one is possible but more inefficient, that relies on a link architecture different from those found
in the algorithms that are based on a horizontal partition of A. Still in the latter case, we show how to
easily adapt that algorithm to solve the BPDN.

Concerning the technical aspects of this work, we give for each algorithm a proof of convergence
and define its conditions of applicability. The main difficulty in solving the BP and the BPDN in a dis-
tributed/parallelized way is the lack of guarantees of convergence, for non—differentiable functions, of
well-known methods that induce parallelization. We extend the proofs of convergence of such meth-
ods (Diagonal Quadratic Approximation and Nonlinear Gauss—Seidel algorithms) to include a new kind
of non—differentiable functions: the “rigid functions”. The concept of rigid functions is defined in the
text as being part of the class of subdifferentiable functions that share a particular property with the
differentiable functions.

Throughout this thesis, we also propose several possible topics of research in the area of algorithms
that solve the BP and the BPDN. The case where centralized but fast algorithms are required is also
addressed, bur we only emphasize details that can lead to new efficient algorithms.

1.2 Thesis Organization

In section 1.3, we present some useful material for the comprehension of this thesis, concerning not
only recent theoretical results, but also some problem analysis.

In chapter 2, we tackle the problem of solving the BP with an horizontal partition of the matrix A.
Three different algorithms are proposed, analyzed and compared.

Chapter 3 concerns the case when the matrix A is partitioned vertically for the resolution of both the
BP and the BPDN.

Finally, in chapter 4, future research topics are proposed concerning the development of centralized
fast algorithms to solve either the BP or the BPDN.

1.3 Preliminaries

This section provides some background, some analysis and some recent theoretical results on the basis
pursuit (BP) and basis pursuit denoising (BPDN) problems. We will show that BP is a linear program
as well as interpret its dual, thus collecting information for the analysis of the proposed algorithms.
Furthermore, we will also explain the relationship between BP and BPDN, and the reason why these
two problems are usually related to sparse approximation.

1.3.1 Why is sparsity usually associated with the /,-norm?

The basis pursuit problem

min 1] 1, (1.1)
Az =10

var: x € R"

where the data are A € R™*"™ and b € R™, and the variable is + € R", is considered a least—-norm
problem

min Izl (1.2)
Ax =

var: x € R"

where ||z|| is any norm. Nevertheless, we will just consider three types of the well-known ¢,-norms
(p=0,p=1and p =2). The £,-norm of a vector z € R" is defined by

(S i) i 0 <p < +oo
lzllp:==q [{i:2;#0}] Lif p=0 :
max;—1,.nlx;| ,if p=+4oc0

where |S] is the cardinality of a finite set S. Strictly speaking, || - ||, is @ norm only for p > 1.

We can interpret problem (1.2) as a way of solving an ill-posed linear equation Az = b, and finding
its smallest solution (measured in the respective norm). When the chosen norm is the ¢/5-norm, (1.2)
has a unique solution called the least—squares solution, which can be easily obtained. However, the
least-squares solution is rarely sparse'. On the other hand, if we use the ¢;-norm we will get sparse
solutions very often.

Let's examine why this happens [6, page 296]. Interpreting the objective function ||z|| on (1.2) as a
penalizing term, we seek the least penalized solution. As problem (1.2) is equivalent to

min ||xH2,
Az =0
var: x € R"

By a sparse vector we mean a vector that has few non—zero entries.

making « = (z1, 22, ..., z,) and using the ¢>-norm we get

min R L (1.3)
Az =b

var : x € R”
In its turn, the basis pursuit (1.1) can be written as

min |x1| + |x2| + ... + |znl- (1.4)
Az =b

var: x € R"

Therefore, we can restrict our analysis to R, by comparing the functions ¢1,¢2 : R — R, ¢1(u) = |u|
and ¢o(u) = u?. When |u| = 1, ¢1(u) = ¢2(u) = 1. When |u| > 1, we have ¢;(u) < ¢2(u), meaning
that the large values of each component of are much more penalized using the ¢;-norm than using
the ¢,-norm. Finally, when |u| < 1, we get ¢1(u) > ¢2(u), so the ¢;-norm puts much more emphasis on
small values of the components of x than the /5-norm (see Figure 1.1). As a consequence, the solution

A

card(u)

1 T

Figure 1.1: Graphics of the functions |u|, u? and card(u) (cardinality of the vector u, which is equivalent
to the ¢y-quasi norm in R) in order to illustrate the difference in the penalization of small and large
components of u.

of (1.4) has more small or near zero components and perhaps a few large non—zero components, than
the solution of problem (1.3).

Figure 1.2 gives another popular explanation (in the plane) why the ¢;-norm is preferred to the /5-
norm in order to generate sparse vectors. The optimal solution in both cases is the first point of the
corresponding norm ball to “touch” the set {z : Az = b}, as if we were swelling up the ball. It happens
that the ¢;-norm ball is larger on the coordinate axis directions than in the other directions, while the
¢s-norm ball is isotropic.

So if we seek a solution with lots of small (near—zero) components, the ¢;-norm is a good choice.

Actually, any (quasi) ¢,-norm with 0 < p < 1, would lead to the same results. But from these (quasi)
norms, the only convex one is the ¢;-norm (p = 1) — recall that non-convex problems are the hardest to
solve. Nevertheless, as the cardinality of a vector is measured by the ¢y-quasi norm, the sparsest vector
that solves the linear equation Az = b is the solution of (1.2) with the £y3-quasi norm

min 1]l o- (1.9)
Ar=b>
var : x € R™

{x : Az = b}

(a) £1-norm (b) £2-norm

Figure 1.2: Alternative explanation of the sparsity inducing property of the ¢;-norm.

It is interesting to note that problem (1.1) is actually a convex relaxation of the problem (1.5). In
Figure 1.1, we can see that the ¢,-norm that best approximates the ¢,-quasi norm near the origin, and
is convex, is the ¢;-norm. This approximation can reveal very useful in the sense that we replace a
combinatorial problem by a linear program (see subsection 1.3.2) — the simpler class of optimization
problems.

Even more surprising is the fact that there are results that state that problems (1.1) and (1.5) are
equivalent under certain conditions. To understand when this equivalence occurs, we need to use the
concept of restricted isometry constants, introduced in [10] and refined in [11, 8].

Definition 1 (Restricted isometry constants). For each s = 1,2,...,n, the restricted isometry constant
ds(A) of a matrix A € R™*" js the smallest number such that

(1= a5 (ADfl* < [|Az]* < (1+65(A))|=]%, (1.6)

holds for all s-sparse vectors®. Similarly, the s, s'—restricted orthogonality constant 6, . (A) is defined for
s+s' =1,2,...,n as the smallest number such that

| < Az, Ax' > | < 05,0 (A) - [l2]l[|2"]], (1.7)

holds for all s-sparse vector x and all s'-sparse vector 2/, where < a,b >:= %", a;b; fora,b € R".

The numbers §,(A) and 6, .- (A) measure how close any s-sparse collection of the columns of the
matrix A behaves like an orthonormal system. In particular, the smaller these constants are, the closer
this collection of columns is to an orthonormal system.

To see how important the restricted isometry constants are, we can see, for instance, that if 625(A4) <
1, problem (1.5) has a unique s-sparse solution. Instead of proving this claim, let's see what happens
when d25(A4) = 1. In this case, there exists a vector 2s-sparse h such that Ah = 0. We can then
decompose h as = — z’, where both z and 2’ are both s-sparse, meaning that Ax = Az’. This equation
tells that if = is a solution of (1.2), so 2’ is.

Imagine a communication setting® in which the sender wishes to communicate a vector z to the
receiver, but, instead of sending = (a large vector of size n), it just sends the vector b of size m < n,
satisfying Az = b. Matrix A is known by the receiver. Furthermore, the receiver knows that the vector z
is s-sparse. In this case, if the matrix A has a restricted isometry constant d,,(A) < v/2 — 1, the receiver
can solve either problem (1.1) or problem (1.5), since both problems have the same solution. That is,

2A vector is s-sparse if it has at most s non—zero entries.
3t could be any situation that consisted in finding a sparse solution of an ill-posed linear system. For more situations see, for
example, [12, 27, 2].

the convex relaxation of problem (1.5) (which is (1.1)) is exact. A more generic result, in which z is
not necessarily s-sparse but completely generic, involves the best sparse approximation that one could
obtain if one knew exactly the locations and the amplitudes of the s—largest absolute entries of . This
result is in [8] and is given by

Theorem 1. Letx be an arbitrary vector in R™; A a real matrix m by n with a restricted isometry constant
825(A) < /2 — 1; and b a vector in R™ such that b = Axz. Denote the vector which is equal to = only at
the s—largest absolute entries and zero elsewhere by ;. Then the solution x* to (1.1) obeys

lz* — || < Cos™ 2w — g,

where Cy is a constant depending on d.,(A). In particular, if x is s-sparse, the error is zero.

We add that this theorem is only useful for values of d25(A) smaller than about 0.4; and that the
constant Cy is rather small for d25(A) < 0.3 (see Figure 1.3). Similar results, with different conditions,

0 L L L L L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
523

Figure 1.3: Graphical description of the constants Cy and C, which appear in theorems 1 and 2, as a
function of d24(A). Co given by Cy = 2(1+ p)/(1 — p), where p = v/2625(A)/(1 — 625(A)); and C; is given
by C1 = 2a/(1 — p), where o = 24/1 + d25(A) /(1 — 25(A)).

are proved in [11, 9], and also explained in [7]. The same articles also refer which kind of matrices
have “good” restricted isometry constants, namely Gaussian random matrices with i.i.d. entries, Fourier
ensembles and general orthogonal measurement ensembles. Still covering this issue, we mention [1].
This analysis would not be complete without mentioning the articles [27, 26], which provide a different
analysis for the same problem.

Concerning the practical implications of this theory, [10, 2] state that we can code without loss (with
an overwhelming probability) all the information of a s-sparse vector = of size n into a vector b of size m,
with m = O(slog(n/s)), just by doing b = Ax, where A is a random matrix of the kind of the ones that
were mentioned above.

The Basis Pursuit Denoising

Here, it will be explained the role of the basis pursuit denoising (BPDN) problem in the context of sparse
approximation. Some recent theoretical results will also be presented.

Imagine again that we are in a communication setting, as explained in page 5, but now the signal b,
known by the receiver, is contaminated with noise: b = Ax + z, where z is any perturbation for which we

know a magnitude upper—bound ¢, i.e. ||z|| < e. If we know a priori that x is sparse, it makes sense to
solve a slightly different version of the basis pursuit

min]| 1 (1.8)
Az — b < ¢

var : x € R"

This problem, however, is not equivalent to a linear program anymore. It belongs to the class of the
second—order cone programs [6, page 156]. The next theorem, proved in [8], shows that by solving
problem (1.8) the receiver can reconstruct z in a stable way.

Theorem 2. Letx be an arbitrary vector inR™; A a real matrix m by n with a restricted isometry constant
82s(A) < V2 —1; and b a vector in R™ such that b = Ax + z, being z arbitrary noise, but bounded by
€, i.e. ||z]] < e. Denote the vector which is equal to = only at the s—largest absolute entries and zero
elsewhere by x;. Then the solution x* to (1.8) obeys

lz* — 2|l < Cos™'2 ||z — @l + Cre,

where Cy is the same constant of theorem 1 and C, is another constant that also only depends on
025 (A). In particular, if x is s-sparse, the error is only bounded by Cie.

The two constants Cy and C; are plotted in Figure 1.3. Again, we note that theorems 1 and 2 only
have practical interest for values of d25(A) smaller than about 0.4 or less, depending on the desired
accuracy.

We still need to know how to relate problem (1.8) to (BPDN). The KKT-system [6, page 243] for (1.8)
will be used to prove that a solution of (1.8), which always exists according to Weierstrass’s theorem, is
either z = 0 or a solution of (BPDN), for some 3 > 0.

The constraint of (1.8) can be equivalently written as 1/2|| Az —b||> < 1/2¢2. This way, the Lagrangian
function L : R™ x R of (1.8) is

u
Lia,) = 2l + 5l Ax = o] = 5
and the corresponding KKT-system is

a* € argming (u*/2)|| Az — b]|* + [Jz[|1 — (1*/2)€?
[Az* —b]| <€

pe=0

p* ([[Az* — bl —€) =0

where z* and p* are the optimal primal and dual variables, respectively.
If u* > 0, the first equation of (1.9) is equivalent to

1 1
x* GargminiHAzc—bHQJrEHle. (1.10)

In this case, we have || Az* —b|| = ¢, from the last equation of (1.9). We also have that a solution of (1.8),
provided that it exists and strong duality holds?, is also a solution of (BPDN), for 5 = 1/u*.

On the other hand, if u* = 0, then the optimal primal variable minimizes ||z||1, due to the first equation
of (1.9). So, the only solution is z* = 0.

4t suffices that there exists at least a vector z € R™ such that ||[Az — b|| < e (Slater’s condition). In our case, as we are
assuming that the rows of A are linearly independent, there exists always an z such that Az = b, thus strong duality is always
satisfied and (1.8) is always feasible.

As it is difficult to find the optimal dual variable p* of (1.9), what is done in practice if one wants to
solve (1.8) through the BPDN, is to solve (BPDN) for several values of 3 and choose the solution with
the desired sparsity.

1.3.2 BP as a Linear Program

Using standard techniques in optimization [6], we can reformulate the basis pursuit (BP) as

min 17, (1.11)
—t<x<t
Az =1
var:(z,t) € R" x R”

which is clearly a linear program. 1,, stands for the column vector of size n with all its entries equal to
one. Notice that the size of the variable is now 2n.

1.3.3 The Dual Of The BP

In this subsection we will derive the dual of the basis pursuit problem

p* = min l||1- (1.12)
Ax =0

var : x € R™

The dual program of an optimization problem provides a lower bound d* to the optimal value of the
primal problem p*, i.e, d* < p*. However, if the primal program is convex and verifies some constraint
qualification, e.g. Slater’s condition [6, page 226], strong duality holds, meaning that d* = p*. Moreover,
when strong duality holds, by solving the KKT-system, one can find simultaneously the optimal primal
and dual variables, thus the solution of the optimization problem.

It is easy to see that (1.12) is convex and satisfies Slater’s condition (its constraints are affine),
so solving its dual will reveal profitable if we want to get to its optimal solution. By representing the
Lagrangian function by L : R™ x R™ — R (a notation used throughout the text), the steps to get to the
dual program are:

1. L(z,\) = ||lz]l1 + \Tb— \T Az

2.
. T\ T T
L(\) = inf [||:a||1 — (A7) x} +Th (1.13)

:Z [inf|xi| —a;?F)\xi] + ATy (1.14)

=1 L
We designated each column of the matrix Aby a; fori =1,...,n, i.e,
| |
A=l a a - an |,

thus, we can write

al\
al A
AT\ = _
al)
This, together with the decomposition = = (21, 22, . . ., z,,) justifies the passage from (1.13) to (1.14).
Now, we have to evaluate the infimum of the function |x;| — al A z;, foreach i = 1,...,n. Based on

the plots of the functions |z;| and al'\ z;, which are in Figure 1.4, we can see that the infimum is
only finite when |a] \| < 1, being zero in that case. Note that

WP <1, Vier,. = [ATA|le <1

Therefore, we can write

ATh AT | <1
-0, otherwise
3. Finally, the dual program is
ATh AT) | <1
& — p* — raax AN <
A -0, otherwise
which is equivalent to
d* = max b, (1.15)
1A A < 1
var: A € R™

lamA > 1 oy

/ ‘(l,;T)\l <1

Figure 1.4: Plot of the functions |z;| and af \ z;; for two situations: when the absolute value of the slope
of the line ol \ z; is greater than one, [al'\| > 1, the infimum of the function |z;| — al A z; is —oo; when
laF'A| < 1, the infimum is 0, being the origin a minimizer, i.e. =} = 0.

As expected, the dual of the BP (1.12) — which is itself equivalent to a linear program — is a linear
program. Note that the corresponding linear programs are a little bit different in the size of the variables
and in the number of constraints: while (1.11) has 2n + m linear constraints and the size of its variable
is 2n, (1.15) has 2n linear constraints and the size of its variable is only m.

In Figure 1.5, which represents graphically problem (1.15), we are considering that the polyhedron
P ={X: |ATA||x < 1} is bounded. In fact, it can be shown that the linear independence of the rows

of A implies that P is bounded.

m
AR

[P = A AT < 1)

Figure 1.5: Graphical depiction of the linear program (1.15). The dashed lines represent the level curves
of the objective function. One of the optimal points is always a vertex of the polyhedron.

This set P represents n inequalities of the form |a7'A| < 1, for i = 1,...,n, which are actually 2n
linear inequalities. It is important to note that if we used any optimization method that minimizes a
constrained optimization program based on projections on the constraining set (for instance, gradient [3,
page 223] and subgradient [5] projection methods), it would be cumbersome to project a point on the set
P, just because this set is characterized by too many constraints (2n) — recall that (BP) only becomes
interesting for large values of n.

There are several methods that solve large-scale linear programs, such as simplex, interior-point or
affine scaling methods. However, these methods are not readily adapted for a multi-processor/distributed
environment.

10

Chapter 2

Distributed BP With Horizontal
Partition

In this chapter, we propose, analyze and compare some algorithms for solving the basis pursuit (BP)
problem

min 1], (2.1)
Az =D

var: x € R"

where x € R", A € R™*", b € R™ and ||z|1 = |z1]| + |22| + ... + |x,| is the ¢,-norm. The variable
is x, whereas A and b are given. We have already seen that (2.1) can be cast as a linear program in
subsection 1.3.2. However, in this chapter, we consider the case where the matrix A € R™*™ is not
concentrated in a single computer, thus standard methods for solving linear programs cannot be readily
applied. This can happen if, for example, the dimensions of A are too large, or just because it's not
practical to have A stored on a single computer.

In this chapter we assume that the matrix A is partitioned horizontally. Recall that A can be seen as
an over—complete dictionary, perhaps integrating many families of functions. Each column of A, then,
may represent a function. So, an horizontal partition makes sense when we want to operate each family
of functions on different computers, for example to adapt each computer architecture to a particular
family of functions.

We will then use several computers (or devices with some memory and computing power, which will
be called processors, computers or nodes indistinctly) to try to solve problem (2.1).

Nowadays, distributed systems are becoming more and more important in applications such as com-
munications, computing, or even sensor networks [4, 25, 19]. So, it shouldn’t be too difficult to find
an environment in applications where we have available several processors that can communicate with
each other relatively fast.

To formalize, we assume that the matrix A is stored among the P computers available, being parti-
tioned horizontally

A= Al Ap AP m

n

into P blocks, each with n, columns for p = 1,..., P, throughout the rest of this chapter. As each
block A, is stored on a single processor, we are assuming that no processor knows the entire matrix A.
Nevertheless, the processors have to cooperate to get to an optimal solution of (2.1).

11

We also assume that each block A,, contains adjacent columns of A, only for convenience of notation.
In any case, it is always possible to re-order the columns so that this happens.

2.1 Subgradient Method

Here, we will try to solve (2.1) through its dual

max AT, (2.2)
[ATA | <1

var: A € R™

inequalities. As we have already stated in subsection 1.3.3, the main difficulty here is the presence of
the polyhedral constraints. The use of methods that project points on a polyhedron with many equations
becomes inefficient, therefore it sounds a good idea to get rid of the constraint | AT)\||,, < 1.

In fact, that constraint comes up when it is imposed that the dual function L()) (on page 8, equa-
tion (1.14)) has a finite infimum. There are two ways of guaranteeing this without imposing restrictions
on the variable \:

nonetheless using a “trick” to get rid of the polyhedral constraint | AT)|, < 1, which represents 2n linear

e By transforming the dual Lagrangian function into a coercive function' with respect to the primal
variable, for example, by adding a strictly convex quadratic term. Recall that a continuous coercive
function has always a finite infimum (this method will be approached later);

e By guaranteeing that the primal constraint set is compact, and making use of Weierstrass’s theo-
rem.

This second way can be followed if a bound for the optimal solutions of (2.1) is known. Namely, we
assume that there exists a sufficiently large R such that z* belongs to the interior of B, (0, R), where
Bx(c,R) = {z : ||z — ¢||lc < R} stands for the ¢, ball centered at ¢ with radius R, and z* denotes
any solution of (2.1). Indeed, any norm for the ball would fit, but for our purposes the /., is the more
adequate one, and simply means that the absolute value of any component of x* cannot be larger than
R.

In general, the introduction of the constraint z* € B, (0, R) in (2.1) increases its optimal value but,
provided that R is large enough, (2.1) is equivalent to the bounded basis pursuit

min [l]) 1 (2.3)
Az =1

2 € Boo(0,R)
var: x € R"

Note that one can easily find an R such that all the optimal solutions of (2.1) are in the interior
of B(0, R): take any point & € R" that satisfies A% = b; then, R can be equal to n||Z|| + ¢, where e > 0
is some small number. This can be seen from the identity: ||z] < ||z]1 < n||z| o, for any z € R™.

Indeed, if Z is a feasible point of (2.1) and z* any of its optimal solutions, we have

[2*|loo < [l2* 1
<[|2[

< 2]

"We say that a function f : R™ — R is coercive if lim|| | — 400 f(2) = +00.

12

2.1.1 Dual Approach For Solving The Bounded Basis Pursuit Problem

By partitioning the variable z into P variables, © = (z1, z2,...,2zp), and by using the convention for A on
page 11, (2.3) is equivalent to

pr= min [z1fls + l22llr + - + llzp |- (2.4)
Ajxq1 +Asxo+ ...+ Apxrp =0

[zplle <R, p=1,2,...,P

Let’s now derive the dual program of (2.4) by dualizing only the equality constraint:

1. The Lagrangian function L : R™ x R"2 x ... x R"? x R™ — R is given by

M~

L(.ﬁl,ﬂ?g,...,ﬂfp,)\) =

P
lzplls +ATb — AT (Z A,,acp>

1 p=1

=
Il

Il
M~

(llpll = AT Apap) + ATh

p=1
2. The corresponding dual function is
L\ = inf L(zy,x9,...,2p,\)
zplle < R
p=12,...,P
P
=Y [in ||/J;p||1 =M A4,2,) | + AT (2.5)

p=1

3. Note that, under the assumption that R is large enough and A is full-rank, Slater’s condition holds
for (2.3) for any vector b, hence also strong duality:

pr=d" = = max L(\) = —)\rgﬂlgr}n —L(N).

Let H(\) be equal to —L()\). Now, the goal is to solve

/\rgﬂlgn H()), (2.6)
where
H\) = -\Tb— Z [I 1an<R [zpll1 — AT Apzy) | - (2.7)

Here, we note that H(\) can be written as a supremum of functions. Let be

r(\z) = - ATb+ AT Az — ||z, (2.8)

Then,
H(A) = sup r(\z).
lzlloc <R
In this equation, x must be seen as indexing the family of functions r(-,z). As H()) is the pointwise
supremum of convex differentiable functions it is convex but it may not be differentiable at every point.
However, (2.6) can be solved using a non-descent algorithm called subgradient method? [5]. The only

2As the subgradient method is an iterative method, we should use, from now on, the notation A* to make clear that every

13

requirement for the function H(\) is to be subdifferentiable. It is known [23, Theorem 3.1.13] that if a
function is closed and convex at an interior point of its domain, then it is subdifferentiable at that point.
In fact, H(\) is closed on all R™, since it is a continuous and convex function. We can conclude, then,
that H()) is subdifferentiable.

Subgradient Method. We now present the canonical format of the subgradient method. Let f : R” —
R be a subdifferentiable function over R™. Then, the subgradient method for the minimization of a
function consists on:

Algorithm 1 (Subgradient Method).
Initialization
o 20 ¢ R™;
e a sequence of step sizes, {a*};
o k=0.

Step 1 Compute a subgradient of f at the point z*: g¢* € of(z*).
Step 2 2"t = 2F — aFgh.
Step 3 £ — k+ 1 and return to Step 1.

The notation df(x) is used to designate the subdifferential of the function f at the point z, i.e., the
set of all subgradients of f at that point.

There are many choices for the step sizes o*. For some examples, we refer the reader to [5], where
proofs of convergence are also provided.

Concerning the stopping criterion of the subgradient method, as [5] says, there is no “formal stopping
criterion”. However, there are good indicators that the convergence has already been attained. For
example, if the subgradient ¢* is too close to zero, that may mean that we are close to an optimal point.
This follows from the fact that if a subdifferentiable convex function f : R™ — R has the zero vector in its
subdifferential at a point =*, then this is equivalent to saying that z* is a global minimizer of f. Formally,

0€df(z*) <= 2" is a global minimizer of f.

Another good evidence that might indicate that the algorithm has already converged is the fact that the
cost function hasn’t been decreasing for some iterations.

A subgradient of H()\). Returning to our problem, let X be the index set

Xo={z: sup r(\z)=r(\2)},
lelloc <R
i.e., the set of indices in = such that the supremum of (),) subject to ||z||.c < R is attained for a
given A. The subgradient method only requires the availability of one subgradient of H(\) at each point.
This way, as the subdifferential of a supremum of functions contains the convex hull of the union of the
subdifferential of each function where the supremum is attained, i.e.,

co(U 8)\7'()\,x)> C ONH(N),

x€EX

operation involving the variable X is indexed to the iteration k of the subgradient method. However, we will not do so in this
subsection, just for simplicity of notation. We will merely use the simple notation .

14

we have that, for z € X,
g€ or(\x) = ge H(\).

In the above expressions, co(S) represents the convex hull of the set S and 9, f()\) represents the
subdifferential of the function f(\) with respect to the variable .

In fact, r(X, x) is differentiable with respect to A, for a fixed z. So, dxr(A,z) = {Var(A,z)}, where
Var(A,) represents the gradient of »(\, x), with respect to \. By (2.8), Var(\, &) = AZ — b, thus
AT —be O H()N), for & € X,.

Finding z € X,. However, we have not seen yet how to find an z in X . Since z depends on A, we will
use the notation z(\) to make it clearer. This is where all the P processors come in.
From (2.7),

Zp(A) € arg | Iﬁlin<R l2plls — AT Apy, for p=1,2,..., P, (2.9)

which can be computed in parallel by all the P processors. Then, a central node would collect all the
Z,(A)’s and would form Z(X\) = (Z1(N), Z2(A), ..., Zp(A)). Note that the existence of the solution of (2.9)
is guaranteed by Weierstrass’s theorem.

Inits turn, every processor has to solve problem (2.9). Writing =, as (z},...,2,"),forp=1,2,..., P,
and being a’, j = 1,...,n,, each column of the submatrix

A, = all7 ap” |,
| |
we have the following equivalence
np
H:v;ﬂloijlgR lzpll — (Ag)\)Txp = 2 Iwr”?lignR (\:L;,| - (a{,T/\> xi,) . (2.10)

The solution for the jth component of z,, in (2.10) can be found in closed—form and is given by

{0} it fa"A <1
. ;T . -T
) € {R.slgn(a;,)\)} if |a;TA| >l 211
[—R,0] it oA = -1
[0, R] it a)A = 1

where the function sign(z) returns the sign of z. Figure 2.1 gives the graphical explanation of this
solution. This way, we can find an () in X.

If we want to implement or simulate this method, we must decide which value to choose for /()
on (2.11) when |agT>\\ = 1. We opt to choose the extremal ones, R or —R, for no particular reason. So,
when agTA = —1, we make & (\) = —R; when agT)\ =1, we make Z7(\) = R; and (2.11) becomes

7 ! ioja A< 1 (2.12)
xp() - R . Sign (a%TA) ,lf |Q%T)\| Z 1 3 J=1,.. .,np. .

In subsection 2.1.2 we will see that the optimal dual variable * verifies |a§,T>*| < 1 for all j and for
all p. In other words, A* belongs to the set P = {\ : ||[AT\|| < 1}. However, along the iterations of the
subgradient method, we don’t have any guarantee that A € P. This is the reason why (2.12) includes
the possibility of A ¢ P.

15

Figure 2.1: Graphical interpretation of the solution of problem (2.10), for each component of z,. The
solid line shows the function |27 |, while the dashed lines show the linear function —(a;T/\)xg, for the two

relevant cases: when the absolute value of the slope —a;T/\ is smaller than one, the optimal solution
is Z7 (\) = 0; otherwise, if that number is greater than one, Z/()) lies on one of the extremal points, R
or —R.

Cost function. We might be interested in using the cost function (2.7) in a stopping criterion of the
subgradient method. Now, we will see how to evaluate it, assuming that at each iteration of the subgra-
dient method the optimal point Z()), given by (2.12) for all j and for all p, is known. Replacing it in (2.7),

we get
P

H(A) ==2Tb =" (Ilz,(M)ls — AT A,3,(N)) |

p=1

and taking into account that ||2(A\)||1 = |21(A) |1 + |Z2(A)|1 + - .- + |2p(A) |1, and

A171(N) + Aois(N) + ...+ Apip(N) = AT(N),

HN) = =Mbo4+2TAz00) — |20V
= Ag"— 2V,
N—_——
R|Q|

being Q2 the set of indices for which the components of Z(\) are non-zero; |Q] its cardinality; and ¢* =
AZ(N\) — b € 0\H(\) a subgradient of H(\) at A.

Transmission issue. From what we have seen until now, the only information that the processors have
to transmit to the central processor in each step of the subgradient method is the product 4,7, (*) to
calculate a subgradient (and the number of the non-zero entries of 7,,(A*), if the central processor wants
to evaluate the cost function).

16

2.1.2 Solving The Bounded BP Problem Through Its Dual

In this subsection, we will see how to find an optimal primal variable of the bounded BP (2.3); first by
assuming that we know an optimal dual variable A*, and then adapting it to the practical case, where
we only have available an approximation of A*. The notation x=* will be used to designate any solution
of either (2.1) or (2.3). Indeed, both problems have the same solutions if the assumption taken at the
beginning, that R is large enough, holds.

An optimal dual variable is known. We now assume that we know an optimal dual variable A*, which
solves (2.6).

Since strong duality holds, the optimal solution z* can be obtained by solving the KKT-system
for (2.3):

(2.13)

a* € argming, | <p N0+ S0, (lzi] —al V)
Az =

Note that now we are not considering the partition of the variable z into P subvariables as before,
but into n subvariables in R instead®.

We now claim that A* must belong to the polyhedron P = {)\ : [|[AT)\| . < 1}, ie., it satisfies
laFA*| < 1foralli =1,...,n. Indeed, suppose that |al A*| > 1 for some i. Then, according to (2.13)
we would have |zf| = R for any solution z* of (2.3). But this contradicts our initial assumption that the
solution set of (2.1) lies in the interior of B, (0, R) (we recall that the solution sets of (2.1) and (2.3) are
the same).

Let’s see what we can find about each component i of the solutions of (2.13).

o If z7 > 0, then

(zi — af N*=;)

o =0=1-0a/X"=0

dl‘i i
= ad) =1 (2.14)
o If 27 <0, then
d T =0 1—alX* =0
dl‘i (_.'I;l - a/i xl) I: — <:> - - a/i —
—=al\=-1 (2.15)
e Finally, when z¥ = 0, we have a7 *| < 1.
This implies that if [al *| < 1, we have x} = 0; if al * = 1, then =¥ > 0; and when al' * = —1, we

have «} < 0.

From this, we can see that z* cannot be found only from the knowledge of the optimal dual variable *
together with the first equation of (2.13). The only thing we can know with this information is the sign of
each of its entries. Apparently this is not too valuable, but it allows us to discard some columns of the
matrix A and solve a smaller problem, i.e., if |al *| = 1, we already know that the corresponding column
of 4, a;, can be activated by z}; if |al *| < 1, it won't. So, the second equation of the KKT-system (2.13)
can be solved much easily, in a lower dimension, using only the columns of A for which |al *| = 1.

As we are expecting that the optimal solution is sparse, the reduction of the dimensions of the prob-
lem can be immense.

3The numbers of the processors don’t matter here, so we change the index of a column and the index of a variable into the
subscript notation throughout this subsection.

17

Only an approximation of * is known. We now admit that only an approximation of A* is available.
Let that approximation be A. This situation is the most common in practice and arises mainly because
of the bang—bang solution we adopted for #(A\¥), at the iteration % of the subgradient method, i.e., the
non-zero components of #(A¥) can only assume extremal values: R or —R. In fact, this originates a
ripple in the inner products a! *, along the iterations of the subgradient method (see Figures 2.3-2.6
from the simulations). As a consequence, we need to establish a threshold £ > 0 in order to tell, when
the subgradient method has converged and we have access to)\, whether each number |7)| is smaller
or equal to 1. This way, we have to adopt the following decision criterion

)) < . (2.16)
Column a; is kept, if JafA > 1-¢

{ Column a; is discarded, if [aTA] < 1-¢
Assuming that)\ is accurate and that ¢ is well adjusted, with the information from (2.16) the bounded
BP (2.3) becomes
min ||ul|1, (2.17)
Mu=b

a problem which we will call the reduced basis pursuit (RBP). Note that we dropped the constraint ||« <
R, as we don’t need it anymore. Indeed, we only used it as a “trick” to solve a dual problem and get an
approximation of the dual variable. In problem (2.17), M is the matrix formed by the chosen columns
of A, through the decision process (2.16). To formalize, we define the set

Q={i:|afA|>1-¢},
and designate its cardinality by »’. This way, matrix M lies in R™*"" and is defined by
M= A|,.
For later use, we also define the set
Q" = {i : a} # 0},

where z* is a solution of (2.1) (or (2.3)). Note that we have, in general, that Q@ # Q*, for any optimal
set Q*, not only due to the error in the dual variable, |A — *||, but also because we must choose
an ¢ > 0. Actually, the incidence of these kinds of errors that lead to Q # Q* are the major drawback of
this method.

Is RBP important? We can ask, however, if solving the RBP is really necessary. Actually, the answer
can be yes and no. In the most interesting practical cases, when the optimal solution is quite sparse,
the matrix A has good properties, the parameter ¢ is well adjusted and the subgradient method finds
an accurate dual variable), we don’t need to solve (2.17) since the linear system Mu = b has a single
solution; it just suffices to solve that linear system. The following lemma translates this into mathematical
terms.

Lemma 1. Letd;(A) designate the restricted isometry constant of the matrix A for s. Let alson’ be the
number of columns of the matrix M. If 6,,(A) < 1 and the linear system

Mu=b (2.18)

has a solution, then that solution is unique.

18

Proof. By assumption, (2.18) has at least one solution.
Now, admit that there exist two different solutions, i.e., @& and @ both in R™ such that & # @ and
M4 = Mu = b. This means that M (4 — @) = 0.
On the other hand, we have 4, (M) < é,.(A) < 1, which means that the columns of M are linearly
independent. Therefore, it doesn’t exist any i € R \{0} such that Mh = 0. We reached a contradiction.
O

The condition 6,-(A) < 1 usually holds if n’ is small (that is, if the decision process (2.16) returns few
columns), and if the matrix has practical interest (recall the motivations that make us try to solve (2.1)
in subsection 1.3.1). For example, if A is a random matrix in R™ x R™, and n’ < m, then this condition
holds with high probability. Recall, however, that evaluating the restricted isometry constant of a matrix
is impractical in most cases. Nevertheless, we will assume, from now on, that it is possible to know a
certain integer L such that

<L = 64 <Ll (2.19)

In the worst case, when no information of the matrix A is available at all, L = 1 works. But this is an
extreme case, with no practical interest. For example, for random matrices, an L equal to the number of
rows, m, guarantees that (2.19) holds with high probability.

When has (2.18) at least one solution? The condition that the linear system (2.18) has at least one
solution isn’t easy to ensure in practice. It depends on a “good” stopping criterion of the subgradient
method, as well as on a “good” adjustment of the parameter ¢ (of course, if we take ¢ close to 1,
surely (2.18) has at least one solution, but we don’t benefit from the small reduction of dimensions
from A to M). It is intuitive that the existence of any optimal Q* such that Q* C Q is sufficient for (2.18)
have at least one solution.

Lemma 2. If it exists any Q* such that Q* C €, then the linear system (2.18) has at least one solution.

Proof. Let x* be an optimal solution of (2.1) (by the assumption on the rank of A, it exists). As z* is a
feasible point,
Arx* = A

*
Q- U =Db,

where v* = z*|o-. Recall the definition of M: M = Alg. If Q* C Q, then Ag- is a submatrix of M, in
the sense that all columns of A are contained in M. Therefore, the vector @ defined in R™ (n’ = [])
that verifies @ = =*|o+« and is zero elsewhere solves (2.18). O

Overcoming the infeasibility. We will see in the simulations that the subgradient method, together
with (2.16), usually generates more columns than the needed ones, i.e., n' = || > |Q*|, for any optimal
set 2*. When the reason for choosing a non—optimal column is inherent to the subgradient method we
say that a “false alarm” occurred (see Figure 2.6 for an illustration). Even though, in the case when we
choose more columns than needed, we might have Q* ¢ Q, for all Q*. When this happens, we don’t
even have any guarantees that either the linear system (2.18) or the problem (2.17) are feasible. In this
situation, perhaps it is more prudent to solve a problem like the BPDN instead:

1
min | Mu = b + Bllulls, (2.20)

for some value of 3. The standard procedure would then be solving (2.20) for several values of 5 and
then choosing the more appropriate solution, i.e., the one we were expecting the most.

19

Though actually, when the number of columns »n’ of the matrix M is small enough, there is a value
for 3 that yields good results: 3 = 0. Indeed, the solution is already sparse, so we don’t need the term
that induces sparsity, 3||u||1. Moreover, the resulting problem

min | Mu — b||?, (2.21)

besides having a closed—form solution, has a single solution, with zero as an optimal value, if the con-
ditions * C Q and §,/(A) < 1 hold. This follows directly from lemmas 1 and 2. Also note that the
computational complexity in solving either the linear system (2.18) or the least—squares (2.21) is similar.
On the other hand, when ' isn’t small, for instance greater than m, now there is a great probability of
the vector b being in the span set of M, making the RBP (2.17) have at least one feasible point. Besides
that, if Q* C Q, then the RBP returns an optimal solution v*. We define an optimal solution v* as being

* *
Ut =T g,

that is, the vector that collects all the non—zero entries of a solution of (2.1), z*.
A procedure to find Z. After solving the dual of the bounded BP, we must do our best in order to find
a vector z that is close to an optimal solution z* of the BP (2.1). Not even always we can guarantee that

we find an z*.
So, a possible procedure to try to find an z* is the following:

Procedure 1 (Calculate).
Input:

e The set) and the matrix M = A|q € R™*";

e the vector b and the number L.

Step 1 Solve the least—squares problem
¢ = min ||Mu — b]|, (2.22)

and designate the found solution by v'.
Step 2 Ifqg > 0orn’ <L, maked =’ and go to step 4.

Step 3 Else (¢ = 0), solve the RBP
min |Jully, (2.23)
Mu=b

and designate the found solution by 1.
Step 4 Form i € R™ by making &| = u and equating all the other entries to zero.

One positive aspect of this procedure is that it always evaluates the feasibility of (2.23) before trying
to solve it. Moreover, the uniqueness of its feasible set is also checked by the condition n’ < L also
before trying to solve it. If ¢ = 0 and n’ < L we have already found the solution of (2.23) in step 1.
On another hand, when it is found that the matrix M is incomplete in the sense that it can’t span b, the
vector that is closest to verify the linear system Mw = b is returned.

The following theorem establishes an important result about procedure 1.

20

Theorem 3. Procedure 1 returns & equal to an optimal solution x* if and only if an optimal set Q* is
contained in Q, i.e.

*

Jo: Q* C — T=1z"
where Q* is any optimal set that doesn’t necessarily correspond to x*.

Proof. Admit that Q* C Q. From lemma 2 the linear system Mwu = b has at least one solution. Hence,
¢ = 0. Following the same steps of the proof of lemma 2, we will prove that the vector @ in R such that
i)+ = u* and is zero elsewhere is a solution of the linear system Mwu = b. Note that, by the definition
of u*, we have

Az = A

Q* u* =b.
This proves that Mu = b, since M contains A|,. as its submatrix. There are two options now:

e If n/ < L, then the vector @ is the only solution of the linear system Mu = b, as follows from
lemma 1. Since we have ¢ = 0, the vector v’ found in step 1 must be equal to @. It follows that
step 4 generates z*, by the definition of @, @ and u*.

e Otherwise, if n’ > L, the vector @ solves the RBP (2.23), because ||i|; = ||u*||1 = ||z*||:. This
way, step 4 generates an optimal solution x*, even if there is another v # 4 that solves (2.23).

To prove the converse implication, suppose that procedure 1 returned an z* and that Q* ¢ Q for all
optimal sets Q*. Without loss of generality, pick one of those sets. If Q* is the empty set, then there is a
contradiction since the empty set is contained in any set. Assume now that Q* # (. As Q* ¢ Q, there
is a k € Q* such that k ¢ 2. By the definition of 2*, we have «}, # 0. This contradicts the step 4 of the
procedure.

O

At this point, we can say that for the case when no optimal set Q* such that Q* C Q exists and
procedure 1 executes its 4th step, then this procedure returns not necessarily a vector close to an
optimal solution, but the one that has the least ¢;-norm in the available linear space {u : Mu = b}.

Additional sign information From theorem 3 we see that the optimal solution can only be found
running procedure 1 if there exists an Q* such that Q* c Q. The information about the sign of the entries
of the vector &, which can be obtained from the dual variable using (2.14) and (2.15), isn’t used in this
procedure.

We can code it mathematically by the introduction of the restriction ®u > 0, where & = Diag(r) and r
is a vector in R” such that

1 if uy
= it >0 , fori =1,...,n. (2.24)
-1 ,if u; <0

The notation Diag(v) is used to designate the square matrix Q by Q (if v € R?), where its diagonal
equals the entries of the vector v and is zero elsewhere, i.e.

vy 0 - 0
0 wg -+~ 0
Diag(v) =
0 0 - wvg

If we have Q* C) for any optimal set Q2*, then theorem 3 guarantees that the procedure 1 finds the
optimal primal variable z*. So, in this case, there is no benefit in using the inequality ®u > 0.

21

What about when it doesn't exist any Q* such that Q* ¢ Q7? In this case, theorem 3 says that we
can't have & = x*, for any optimal solution x*. But does the inequality ®u > 0 help anyway?

In fact, it doesn’t. If we add any restriction to (2.22) we might be “loosing feasibility” and even
“gain infeasibility”, whereas if we add any restriction to (2.23) we might be “loosing optimality” (note
that [[2([1 = [|al]1).

This way we conclude that it isn’t worthy to use this information about the sign of the entries of z, the
variable returned by procedure 1. When & # z*, where x* is any solution of (2.1), we don’t have any
guarantee that we will find a better solution than .

Transmission issue. After all the processors cooperate to get to a dual variable A (subgradient
method), from what we have seen in this subsection namely in procedure 1, it is straightforward to
see that the only information that the processors p = 1,..., P need to transmit to the central processor
is the set © and the matrix M = A|q.

2.1.3 The Resulting Algorithm

Gathering all that we have seen in the previous subsections, we finally can write the overall algorithm for
solving the BP (2.1).

Algorithm 2 (Subgradient Method For Bounded BP).

e Predefined Parameters/Initialization:

- A, for each processor,p=1,...,P;

— A bound R for ||z*||~; the maximum number of iterations, K ; the parameter 0 < ¢ < 1 for
choosing the interesting columns: a; is interesting if a7 | > ¢ (note that (= 1 — £); an
integer L such that (2.19) is verified.

— Choose \°.

e Procedure (for central processor):

— Receive b (from outside);
— fork =0 until K [subgradient method cycle]
61 Send * and R to each processorp =1,...,P;

§1 Receive Api,(A*) (and possibly || = ||,(A\¥)||o), from each processor;
Compute g* = A1 2, (\¥) + ... + Apip(AF) — b;

A O DN =~

Check stopping criterion (if based on the cost function, evaluate H(*) = <7 gk —
R 25:1 2%, and break the cycle if verified;

5. Choose step size, o*;
6. N1l = Nk _ ok gk;
— A=)
- §2 Send \ and ¢ to each processorp =1,...,P.

— §2 Receive Q, = {i : &; # 0, and i is in the index range of the processor p} and AP\QP from
each processor p.

— Form the matrix M = [Allﬂ1 AP\QP]-

— Run procedure 1.

22

— Return z.

e Procedure (for each processorp=1,...,P)
There are two modes (referenced above as §1 and §2):

— Mode 1:

1. Receive * and R;

2. Compute ¢ = Azf/\’c (A, Is stored internally);

3. Setx? =0if|?| <1,andx? = R -sign(c?) if|c?| > 1, forj=1,...,np;

4. Return A,z,(N*), where i,,(*) = (2',...,2") (and possibly |QF| = ||z, (X*)]lo)-
— Mode 2:

1. Receive \ and (;

2. Compute c = AT\ (A, is stored internally);

3. Return the interesting columns of A, Ap|Qp, where
Q, = {t : & # 0, and i is in the index range of the processor p}, and also return the
set(l,.

In Figure 2.2 there is a possible architecture for the implementation of algorithm 2. Note that the
operations that each processor must be able to do are relatively simple: multiplications, additions and
some binary operations. Moreover, there might be situations in which the products A,7,(*) and Ag/\k
can be computed very fast, using the internal structure of the matrix A,. Nonetheless, each processor
must be able to store a matrix A,. It operates in two modes: Mode 1 is run at most K times, receiving
m + 1 numbers and returning equally m + 1 numbers, where m is the number of rows of A; mode 2 is
run only once, receiving m + 1 numbers, and returning a variable number of columns of A for further
calculations at the central processor.

Processor P

O

Processor 1

Processor 2

O [Central

Processor

Figure 2.2: Required minimal architecture of the links between the processors for the implementation
of the subgradient method for bounded BP (algorithm 2). There is a central node which doesn’t know
any column of A. In fact, A isn’t stored in a single processor; its columns are stored throughout P
processors, which solve distributedly a (dual) problem in order to determine which columns should be
used for solving a reduced equivalent problem. This reduced problem is then solved at the central
processor.

23

14

12

1

0.8

Tyk
a; A

0.6

0.4

0.2 1 -1.2

0

. A
0 50 100 150 200 250 300 350 400 450 500 0 50 100 150 200 250 300 350 400 450 500
Number of iterations, k Number of iterations, k

(@) =¥ > 0. (b) =7 <O.

Figure 2.3: Typical behavior of the inner product oI’ * along 500 iterations of algorithm 2, in which a; is
a column of A associated with a non-zero coefficient of z*.

Ripple in the iterations. Variable (is really needed in algorithm 2 because of the ripple found in the
inner product eI’ * along the iterations of the subgradient method, for each column i = 1,...,n. This
happens because we adopted a bang—bang solution for #(*), i.e., its non-zero components can only
assume extremal values: R or —R. In Figure 2.3, it is plotted the evolution of aZ * for columns a; of A
which are known to have a non-zero contribution for the exact solution, i.e., z} # 0, where z* is the exact
solution of (2.1), which can be obtained by software that solves its linear program formulation (1.11).
Due to this behavior, if the parameter (is too close to one, we might be loosing interesting columns for
the subsequent least—squares problem (2.22) or RBP (2.23) in procedure 1. So, not only a moderate
value for ¢ is advised, but also a filtering of the inner products a? * over the iterations. Figure 2.4 shows
an example. One can also consider the mean of the last T" values.

The adaptation of the algorithm for this situation is trivial: each processor has to keep track of the
last value of the filtered values, or of the last T values, of a * for each of its stored columns. When the
processors are called in mode 2 they wouldn’t use ¢ = Ag)\k, but the filtered products or the mean for
the last T' components instead.

14

12}

1t SRR

0.8+

T \k

S osf

0.4

0.2+

0

.
0 50 100 150 200 250 300 350 400 450 500
Number of iterations, k

Figure 2.4: Same example as in Figure 2.3(a), but with filtering along the iterations. The used filter was
an exponential weighted moving average one: f**1 = val Ak + (1 —) f*, with f° = 0, and v = 0.1.

Figure 2.5 shows the typical behavior of al' * for the situation where x; = 0 in the optimal solution.
Note that in Figs. 2.3 and 2.4 the number of iterations was deliberately reduced for the transient period
be visible. Of course in both plots the behavior is maintained no matter how much we increase the

“Note that while we use x* to designate the solution of (2.1), we use the notation # to designate the output of algorithm 2.

24

number of iterations.

0.35

0.3

0.25F

0.2r

T/\k

S o1
01f

0.05

0
0 100 200 300 400 500 600 700 800 900 1000

Number of iterations, k

Figure 2.5: Evolution of the inner product al' * along the iterations of the algorithm 2 when the corre-
spondent component =} is close to zero. Note that it doesn’t approach 1 or —1 in general, it approaches
an arbitrary number between them instead.

However, there are awkward situations in which columns with a practically null contribution to the
optimal solution exhibit the same behavior as a column with a moderate contribution. That is, both inner
products have similar behaviors over the iterations (see Figure 2.6). This means that there are some
“false alarm” situations (we choose more columns than the ones we need) when the number of iterations
is too high. This fact validates some of the options taken when we designed the procedure 1.

0 0
-0.2 -0.2
-0.4 -0.4
0.6 -0.6f
< <
~< ~<
S S
S —og S —og
| " -1
-1 -1
_14 14
0 100 200 300 400 500 600 700 800 900 1000 0 100 200 300 400 500 600 700 800 900 1000
Number of iterations, k Number of iterations, k
* —12 * -2
(@) o7 = —4.95 x 10712, (b) &7 = —4.72 x 102

Figure 2.6: Inner product of a column of A with * over 1000 iterations of the algorithm 2, for two
different situations: in (a) the corresponding column has no contribution for the optimal solution; in (b)
the corresponding column has a moderate contribution. Nevertheless, they exhibit the same behavior
over the iterations. Note that max; |x}| = 1.49 for this example.

So, we are able to distinguish four different situations, depicted on table 2.1. In general, there

Table 2.1: Different types of behavior of |a! \¥| along the iterations of the subgradient method phase of
algorithm 2.

Ex Behavior of [af \¥|
large converges to 1 rapidly
moderate converges slowly to 1
small usually doesn’t converge to 1
small few situations when it converges to one, but slowly

are some “false alarms”, but not even always the subgradient method together with the decision pro-

25

cess (2.16) “catches” all the necessary columns in order to find an optimal solution, i.e., Q* C Q. Fig-
ure 2.7 illustrates an example of this by showing the superposition of the plots of the exact solution
of (2.1), z*, and the result of the algorithm 2, Z. Note that, in the case of Figure 2.7, after the decision
process, it didn’t exist any Q* such that Q* C , in spite of the cardinality of Q2 being 16 (that is, the
subgradient method returned 16 columns) and the cardinality of Q* for the z* of the figure being only 10.
Nevertheless, the relative error of the vector 2 returned by algorithm 2 in comparison with an optimal
solution z* was only 1.7%.

Actually, just one column indexed by Q* is missing in 2. That missing column has a moderate
contribution in z* (—4.12 x 10~2), thus the behavior of the corresponding inner product a! * is similar to
the one in Figure 2.6(b). This suggests that either we executed few iterations of the subgradient method,
or we chose a too high value for . Figure 2.8 shows the behavior of that missing column. There, it is

—© Algorithm solution, &

Optimal solution, 2* ||

ir o)

@]

0 50 100 150 200 250

Figure 2.7: Comparison between an exact solution of (2.1), z*, and the solution returned by algorithm 2,
Z. The parameters of this experience were (the same for Figs. 2.3-2.9): m = 50 (number of rows of A),
n = 250 (number of columns of A), P = 10 (number of processors), R = 3 (majorant of ||z*||«), K = 1000
(number of iterations), v = 0.1 (exponential moving average filter) and ¢ = 0.9 (decision process); and
the step used in the subgradient method was « = 10~2/||g*||; The column reduction resultant from the
decision process was about 94%, having the matrix M just 16 columns. Notice that card(z*) = 10. The
relative error of & was 1.7%, and we also had || Az — b|| = 0.27.

evident that just 1000 iterations of the subgradient method weren’t enough for the inner product a! X to
get close to —1.

Guarantees of convergence. Concerning the guarantees of convergence of the subgradient method
phase of algorithm 2 for the choices made in Figs. 2.3-2.9, we must say that this is dependent on the
number of iterations, as well as on the spectral norm of the matrix A, on the vector b and even on R.

First, we note that [5] allows us to conclude that the step length chosen (10~2/||¢¥||) guarantees that
|H(M*) — H(*)| | 1072G/2, as k — +o0. G is a bound for the norm of the subgradient g* = Az (*) — b,
along all the iterations carried. We can estimate G by noticing that

lg"(I = [AZ(A*) — b
< JAZAS)| + (1o
< Tmax(A) [ZA)[| + b (2.25)
< max (A) V| Z(A*)[| o + [B]] (2.26)
< Omax(A)Ry/n + b)), (2.27)

26

2
0 1000 2000 3000 4000 5000 6000 7000 8000
Number of iterations, k

Figure 2.8: Inner product al' * along the iterations of the subgradient method, where a; is the column
that was wrongfully discarded in the experience of the Figure 2.7. It is quite clear that 1000 iterations
aren’t enough for letting this inner product to get close to —1. On the other hand, if we had executed 8000
iterations of the subgradient method, the column reduction would only be 86% (35 columns returned by
the subgradient method and by the decision process with ¢ = 0.9).

where o,.x(A) is the largest singular value of the matrix A. From (2.25) to (2.26) we used the fact
that ||z|| < v/n||z|| holds for any vector z € R™. Inequality (2.27) follows obviously from ||Z(*)||.. < R.
Thus, we can make G = opax(A)Ry/n + ||b]]. The matrix used in those graphics is a random matrix
with onmax(A) < 22.5. Therefore, we can conclude that the subgradient method in algorithm 2 solves
the dual problem (2.6) with an error on the cost function of 5.46 (the norm of b is less than 25.2 and we
chose R = 3), as long as k is large enough.

As we can see, this bound on the dual cost function and the number of iterations of the subgradient
method weren’t enough to guarantee that exists an optimal index set of columns Q* such that Q* c Q.
If such set existed, theorem 3 would have guaranteed that we had found an optimal solution.

Cost function H(\F)

M TR T T YT STHNT)

0 200 400 600 800 1000
Number of iterations, k

Figure 2.9: Evolution of the cost function H(*) along the iterations. The parameters are the ones
described in Figure 2.7.

The cost function. Finally, the cost function H(X¥) = A" g% — [|#(\%)||; along the iterations of the
subgradient method is plotted in Figure 2.9. Note that it isn’t always decreasing, since the subgradient
method is a non—descent method. Indeed, it has the same rippling characteristic that the inner products
al'\¥ have. Also note that the cost function only decreases slightly when some components al' * are
still converging to +1 (confront Figures 2.6 and 2.9). Therefore, care must be taken when choosing a
stopping criterion for the subgradient method on algorithm 2 that depends on the cost function H.

27

A final remark should be done. Any stopping criterion based on the fact that the norm of the subgra-
dient g* = Az (\F) — b is smaller than some threshold, wouldn’t work very well in this case. This is so,
because the values that the entries of Z take are extremal values, and don’t give a good indication that
we are close to find a solution of the linear system Az = b.

Future research. We can pose the following question: is there a way of updating the bound R for the
{~-norm of the optimal solution z*, during the subgradient method phase of algorithm 2? Apparently,
the answer to this question seems simple: if during this phase of the algorithm we can calculate an z
that satisfies AZ = b and ||| < R, then we can take a new R equal to n||Z|« + €, where ¢ is a small
positive number (of course, if the number n||%|| - + € is smaller than the previous value of R). However,
the subgradient method phase of the algorithm 2 doesn’t produce any feasible point (probably unless if it
has already converged). An updating of R can increase the speed of convergence of the algorithm and
perhaps reduce the rippling that we have talked about. Figure 2.10 shows the same inner product a?) of
the Figure 2.8, but where we reduced R from 3 to 1.48 (we already new that ||x*||o. = 1.4725). This shows
that an updating of R can really decrease the number of needed iterations. Also, notice that a refinement
of R also produces a refinement in the bound of the error of the cost function by reducing (2.27).

Another possible topic for future research is to study the behavior of the algorithm if we set a
bound R; € R for the absolute value of each coordinate of z*, instead of setting a global bound for
all coordinates (that’s what we do when we use the ¢..-norm).

0 500 1000 1500 2000 2500 3000
Number of iterations, k

Figure 2.10: Same inner product a? * of the Figure 2.8 (missing column), but where we used a value for

the bound R of 1.48 instead of 3 (used in the experience that originated Figure 2.8). Note the significant
reduction in the number of iterations.

28

2.2 Multiplier Methods

In this section we present two different algorithms for solving the basis pursuit problem
min 1], (2.28)
Ar =D

var: x € R"

when the matrix A € R™*" is partitioned horizontally according to the convention used in page 11.

A= Ay |- [Ay |- | Ap m

n

Each block matrix A,, p =1,2,..., P, contains n, consecutive columns of the matrix A. Obviously, the
numbers n, must verify n =n; +na + ... + np.
2.2.1 Method of Multipliers As An External Loop

By partitioning the variable x into (z1, z2,...,zp), Wwhere z, € R"»,forp=1,2,..., P, we can write (2.28)
as

min lz1ll1 + [|z2ll + .-« + |lzp||1- (2.29)
Ajzi+Asza+...+Apxp=b
The variable is now (z1,zs,...,2p) € R™ x R" x ... x R"P,

We will try to solve (2.28), with the format of (2.29), through its dual again. If we proceeded the
calculation of the Lagrangian dual of (2.29), we would find a polyhedral constraint there. In order to
avoid this constraint, we will not use the ordinary Lagrangian, but the augmented Lagrangian instead.
Recall the discussion on page 12, where we stated that one way of avoiding this polyhedral constraint
was to transform the dual Lagrangian function into a coercive one.

To see how we get the augmented Lagrangian, note that problem (2.28) is equivalent to

. P _ 2
min [zl + 5o — Azl (2.30)

where p is a positive scalar parameter. The augmented Lagrangian L, of problem (2.28) is actually
the ordinary Lagrangian of (2.30). Let’s now calculate this augmented Lagrangian but with the variable
decomposition of (2.29): L, : R™ x ... R"? x R™ — R,

P P P
p
Lo(x1,...,2p,\) = ; |2pll + ATb — AT <pz—:1 Apa:p> + 56— ;A,,x,,||2

P P
p
=MbY (llaplh — A" Ayz,) + Sllb— > Ay, (2.31)
p=1 p=1
We must have always in mind that, considering « = (1,22, ...,2p), (2.31) is equivalent to
L (z,\) = AT + ||z —)\TAm+g\|b—A:r||2, (2.32)

29

where L] : R® x R™ — R.
Notice that (2.32) is coercive with respect to the primal variable z, i.e., for a fixed A. To see that,
write L/ (z, \) as
Li(x,A) = |lz]l1 + (b — Az),

where ¢(z) = ATz + (p/2)||z]|?. Since the hessian V2¢(z) = pl,, is positive definite (I,, is the matrix
identity in R™), there exists a finite m such that ¢(z) > m for any z € R™. Therefore,

Lo(2,A) = [lzfy +m

2 [lz]| +m,

which tends to +oo as ||z|| — +oo, for a fixed A. This proves the coercivity of L (x, \) with respect to x.

As stated on [3, page 388], there are two mechanisms by which the minimization of (2.32) in the
variable x can yield points close to the optimal point of (2.28), z*: one is by taking X close to the optimal
dual variable A*; and the other is by taking a very large p.

Method of multipliers. However, there is an algorithm, known as the method of multipliers ([4, page 244]
and [3, page 398]), that allows us to find simultaneously the optimal primal and dual variables, z* and
A*, in an iterative way. In fact, this algorithm integrates both mechanisms.

Algorithm 3 (Method of Multipliers).
Consider a convex and coercive function f : R™ — R; a real-valued matrix A € R™*"; a vector b € R™
and the optimization problem

min f(z). (P)
Az =b

var:x € R"

Let L{ : R® x R™ — R be the augmented Lagrangian of (P) with parameter p. Then, the method of
multipliers is well—defined and consists on:

Initialization
e N0 ecR™;

o two real numbers p° >0 andc > 1;

e k=0.
Step 1 Fix *, and find
z* € argmin LI (z, \F). (2.33)
Step 2 Update * and p*,
)\k-‘rl —)\k: +pk (b _ Axk) ’ pk+1 _ Cpk.

Step 3 k — k + 1, and return to Step 1.

When we say that the method of multipliers is well-defined, we mean that there exists at least one
solution of (2.33). This is due to the coercivity and convexity of the augmented Lagrangian L (z, *) in z
for any value of *. The coercivity of L/ (x, \¥) can be proved using similar arguments to those used for
proving that L (x, \) is also coercive. Note that the sum of coercive functions is also coercive. It can
also be proved that a coercive and continuous® function has always a global minimizer.

5Note that a convex function finite everywhere is continuous everywhere.

30

In the algorithm, note that the parameter of the augmented Lagrangian is p*, and is being updated
in every iteration, although we don't refer it explicitly in the expression of L/ (z, A¥).
The convergence of the method of multipliers is established by

Theorem 4 (Convergence of the method of multipliers).

e Every accumulation point of the sequence {z*} generated by the method of multipliers solves (P);
and every accumulation point of the sequence {*} generated by the same algorithm converges
to some optimal dual solution of (P).

e furthermore, the objective values of those sequences also converge to their optimum values.

The proof of this theorem can be based on the fact that the method of multipliers is, in fact, equivalent
to another method, called the proximal method [4, page 244], for which convergence can be proved [4,
page 233].

Considering the stopping criterion of the method of multipliers, we can consider at least three:

o if at the iteration k£ we have ||b — Az*|| < X for some predefined ¥ (feasibility criterion);

e if the dual variable didn’'t change more than a predefined ¢ from the previous iteration: ||* —
)\k‘—lH S €

e or if the cost function L/ hasn’t been decreasing too much (predefined value) for some iterations.

We will use preferably the feasibility criterion.

Application to our problem. So far, we have seen how to find the optimal primal and dual variables of
the problem (2.29). Nonetheless, we transformed this problem into a sequence of successive minimiza-
tions of the augmented Lagrangian (2.31) in the variables xy, xs,...,xp. If the main problem of (2.29)
was the existence of the coupling term Ele Apx, = b, we haven't solved this problem yet. In fact,
(2.31) is not separable into P independent functions, as we wished. Any z; is always coupled to x;, for
Jj # 1, by the quadratic term (p/2)||b — Zle A,xp||?. However, the positive aspect of the approach taken
is that the domain of the augmented Lagrangian (2.32), for any fixed), is the full space. Recall that the
domain of a function is the set of inputs which do not evaluate to infinity. This fact allowed us to avoid
any kind of polyhedral constraints.

Now, we are going to see two well-known methods that can minimize the augmented Lagrangian (2.31)
in a separable way, for each variable z,, p = 1,2,..., P. These methods are known to converge for dif-
ferentiable functions, thus those results don’t apply to (2.31), as this function isn’t differentiable. Even
though, we will prove that they still converge in this case.

Throughout the next subsections we will always refer to the dual variable as *. We do so to em-
phasize that the minimization of the augmented Lagrangian (2.31) is only a single step of the method of
multipliers.

2.2.2 Nonlinear Jacobi Approach

In order to minimize (2.31) in each variable z,, forp = 1,2, ..., P, we define the function

Lg(xayp) = La(xlv'“aypa"'axP?)‘k)

T T
— gl = N Apyy = NS A+ 2o — Ay, — S Ay (2.34)
i#p 2 i#p

31

We consider this function only for notational purposes: when we say that we are minimizing L2 (z, y,)
with respect to y,,, we are actually referring to the minimization of the augmented Lagrangian (2.31) with
respect to x,,, while keeping the other block variables,

L1y Tp—1,Tptls---, TPy

and * constant (with the values of the previous iteration).

Note that we dropped the dependence of * (and p*) in the definition; and we did that just for
simplicity of notation.

The algorithm we propose for the minimization of (2.31), in the variables =, forp = 1,2..., P, is akind
of a Nonlinear Jacobi algorithm [4, page 207] and is usually named Diagonal Quadratic Approximation
Method [29, 24], or simply DQA. The DQA differs from the ordinary Nonlinear Jacobi in the updating of
the variables (it is done in a filtering way, with a kind of an exponential moving average filter).

The DQA algorithm. To present the DQA algorithm, let f : R® — R be a convex and coercive
function. Decompose a variable = € R™ into P subvariables in R"», je. = = (x1,22,...,2p), Where
zp € R, forp=1,2,..., P. Using a notation similar to (2.34), define foreachp =1,2,..., P

fp(xvyp) = f(xla' -3 Tp—1,Yps Tp+1s- - - 737}3)'

As the DQA is an iterative algorithm, we will index each variable involved in an iteration of this algorithm
by the superscript ¢.

Algorithm 4 (DQA).

Initialization
o 20 c R,
e Fix T, a real number such that0 < = < 1/P, where P is the number of subvariables of x;
o t=0.

Step 1 Find
y, € arg o fo(2', yp), (2.35)

forallp=1,...,P.
Step 2 Form the vector y* = (yi, ys, ..., yb).

Step 3 Update z?,
et =at 41yt — 2. (2.36)

Step 4 ¢t — t + 1, and return to Step 1.

Again, this algorithm is well-defined for coercive and convex functions, since (2.35) has always at
least one solution in this case; thus, DQA is also well-defined if we apply it to LZ(x, y,,), at each iteration
of the method of multipliers.

A possible stopping criterion for this algorithm can be based on either the cost function (if it doesn’t
decrease after some iterations) or on the equation (2.36) (for example, ||y’ — 2t < e for some small 7).

While it's proved to converge for differentiable functions [29], we don’t have any guarantees of con-
vergence of the DQA algorithm if we apply it to L2(x, y,). It is easy to see that the term responsible for
the non—differentiability of (2.34) is the ¢;-norm, which is, however, subdifferentiable. Nevertheless, we
will prove the convergence of the DQA for a special kind of non—differentiable convex functions.

32

Convergence and rigid functions. The main reason why we can'’t apply the convergence results of
DQA for differentiable convex functions to a subdifferentiable convex function f : R® — R is the fact
that, for the latter, a point z* that minimizes f along all the coordinate directions® might not be a global
minimizer of f. Formalizing, if d; is a subgradient of f at a point «* along the coordinate direction e;, i.e.

flay,. gy) > f(ay, .2,) —|—d;fr(ui —) YV, eR,

then there is no guarantee that the vector [dy, . ..,d,]”, formed by the subgradients of f at z* along all
the coordinate directions, is a subgradient of f at that point.

Note that the same doesn’t apply to the differentiable functions. If f : R — R is a differentiable
convex function, and is minimized at the point z*, along all the coordinate directions, we have

Of (x)
8(Ei

=0, foralli=1,2,...,n. (2.37)

r=x*

In fact, (2.37) is equivalent to V f(z*) = 0, which means that =* is a global minimizer of f.
We will designate the functions for which this happens as rigid functions’ .

Definition 2 (Rigid Function). Let f : R — R be a subdifferentiable and continuous function over R™.
We say that f is arigid function if, for any point x* € R", we have

0 € argmin f(@* 4 hey), Vie1,..n = 0€0f(z"), (2.38)

where e; is a canonical direction in R™.

If f: R™ — R is aconvex function, then there is an alternative way of writing that a point 2* minimizes
f,i.e. 0 € 8f(z*). In particular, z* is a global minimizer of f if and only if the directional derivative® of f
at z* is non—negative for all directions, i.e. if f : R™ — R is convex, then

x* is a global minimizer of f = f(@%0) >0, Vyern. (2.39)

Note that every directional derivative of a convex function over R™ is guaranteed to exist [3, page 709].

Although every convex and differentiable function is rigid, there are subdifferentiable convex functions
that aren’t rigid. In appendix A an example is provided. However, when the non-differentiability is only
due to an adding term like ||z||1, there is always rigidity, as the following lemma proves.

Lemma 3. Every function f : R™ — R of the type
f(x) = g(@) + ||z,

where g : R™ — R is a convex and differentiable function, is a rigid function.

Proof. f is obviously subdifferentiable and convex. Let z* be a point for which 0 € arg min,, f(z* + he;),
fori = 1,2,...,n, where ¢; is a canonical direction in R™. This is equivalent to saying that, for all