
UNIVERSIDADE TÉCNICA DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

CARNEGIE MELLON UNIVERSITY

Communication-Efficient Algorithms

For Distributed Optimization

João Filipe de Castro Mota

Advisors

Pedro Aguiar, Instituto Superior Técnico, Technical University of Lisbon

Markus Püschel, ETH Zurich & Carnegie Mellon University

João Xavier, Instituto Superior Técnico, Technical University of Lisbon

Thesis approved in public session to obtain the dual PhD degree in

Electrical and Computer Engineering

October 2013

ii

Doctoral Dissertation Committee:

Professor Pedro Aguiar (Advisor), Instituto Superior Técnico, Technical University of Lisbon

Professor José M. F. Moura, Carnegie Mellon University

Professor Markus Püschel (Advisor), ETH Zurich & Carnegie Mellon University

Professor Alejandro Ribeiro, University of Pennsylvania

Professor João Xavier (Advisor), Instituto Superior Técnico, Technical University of Lisbon

Keywords: Distributed algorithms, distributed optimization, alternating direction method

of multipliers, sensor networks, compressed sensing, model predictive control, support vector

machines, network flows, communication-efficiency, network coloring.

Palavras-chave: Algoritmos distribúıdos, optimização distribúıda, método alternado

dos multiplicadores de Lagrange, redes de sensores, aquisição comprimida de sinais, con-

trolo preditivo, máquinas de aprendizagem automática, redes de fluxos, efficiência nas co-

municações, coloração em redes.

. . . to my parents, Lúıs and Helena.

iv

Resumo

Esta tese aborda o desenho de algoritmos distribúıdos para resolver problemas de optimização. O

cenário é uma rede com P nós, onde cada nó tem acesso exclusivo a uma função de custo fp; todos

os nós devem cooperar a fim de minimizar a soma de todas as funções, f1 + · · · + fP . Inúmeros

problemas nas áreas de processamento de sinal, controlo, e aprendizagem automática podem ser

formulados desta maneira. Como critério de desempenho, adoptamos o número de comunicações

entre os nós, já que comunicar é frequentemente a operação que mais energia consome e, muitas

vezes, também a mais lenta. As duas principais contribuições desta tese são um esquema de

classificação de problemas de optimização distribúıdos e um conjunto respectivo de algoritmos

eficientes.

A classe de problemas de optimização que consideramos é bastante geral, já que assumimos

que cada função pode depender, não necessariamente de todas as componentes da variável de

optimização, mas de um número arbitrário de componentes. Esta assumpção permite-nos ir além

do que é normalmente assumido em optimização distribúıda e criar estrutura adicional que pode ser

explorada para reduzir o número de comunicações. Esta estrutura forma a base do nosso esquema de

classificação, que identifica casos particulares mais simples; por exemplo, o problema mais comum

em optimização distribúıda, onde cada função depende de todas as componentes.

Os algoritmos que esta tese propõe são distribúıdos no sentido em que não há nenhum nó

central a controlar a rede ou a realizar cálculos de forma centralizada, todas as comunicações

ocorrem exclusivamente entre nós vizinhos, e a informação associada a cada nó é sempre processada

localmente. Ilustramos os nossos algoritmos em várias aplicações, entre as quais consenso de médias,

máquinas de aprendizagem automática (support vector machines), redes de fluxos, e vários cenários

distribúıdos em compressed sensing. A tese também propõe um novo paradigma para modelar

problemas de controlo distribúıdo usando o conceito de model predictive control. Através de um

conjunto extensivo de resultados experimentais, mostramos que os algoritmos propostos requerem

menos comunicações para convergir do que os algoritmos distribúıdos mais eficientes da literatura,

incluindo algoritmos desenhados especificamente para uma aplicação particular.

v

vi

Abstract

This thesis is concerned with the design of distributed algorithms for solving optimization problems.

The particular scenario we consider is a network with P compute nodes, where each node p has

exclusive access to a cost function fp. We design algorithms in which all the nodes cooperate to

find the minimum of the sum of all the cost functions, f1 + · · · + fP . Several problems in signal

processing, control, and machine learning can be posed as such optimization problems. Given

that communication is often the most energy-consuming operation in networks and, many times,

also the slowest one, it is important to design distributed algorithms with low communication

requirements, that is, communication-efficient algorithms. The two main contributions of this

thesis are a classification scheme for distributed optimization problems of the kind explained above

and a set of corresponding communication-efficient algorithms.

The class of optimization problems we consider is quite general, since we allow that each function

may depend on arbitrary components of the optimization variable, and not necessarily on all of

them. In doing so, we go beyond the commonly used assumption in distributed optimization and

create additional structure that can be explored to reduce the total number of communications.

This structure is captured by our classification scheme, which identifies particular instances of the

problem that are easier to solve. One example is the standard distributed optimization problem,

in which all the functions depend on all the components of the variable.

All our algorithms are distributed in the sense that no central node coordinates the network,

all the communications occur exclusively between neighboring nodes, and the data associated with

each node is always processed locally. We show several applications of our algorithms, including

average consensus, support vector machines, network flows, and several distributed scenarios for

compressed sensing. We also propose a new framework for distributed model predictive control,

which can be solved with our algorithms. Through extensive numerical experiments, we show that

our algorithms outperform prior distributed algorithms in terms of communication-efficiency, even

some that were specifically designed for a particular application.

vii

viii

Acknowledgments

This thesis is the result of a complicated sequence of events. I would like to take the opportunity

to thank here some of the people who, directly or indirectly, influenced, changed, or caused those

events.

The direct causers of the main events were, undoubtedly, my advisors: João Xavier, Pedro

Aguiar, and Markus Püschel. The three of them gave me the support, the insight, and the knowledge

that made this thesis possible. I learned a lot from them, both academically and non-academically.

Most importantly, no matter how busy they were, they could always find time to answer my

questions, to take care of bureaucracy that involved me, and to meet in our regular meetings. Also,

I want to say that I had lots of fun in those yearly (work!) trips to several towns in Portugal.

Thank you for all of that!

I would like to thank my thesis committee members, José Moura and Alejandro Ribeiro, for

all the insight and suggestions. During my PhD, and especially during the years I spent in CMU,

José was always very supportive. On the few occasions that we discussed research, José showed me

how to look at my research from a different perspective. I would also like to thank Alejandro for

arranging everything when I visited him in Philadelphia.

The person who convinced me to enter the CMU/Portugal PhD program was João Paulo

Costeira. He has always been in the background, doing whatever is needed to make this pro-

gram great, and providing a comfortable layer between all the bureaucracy that lies under such a

big program and the students (including myself). He has also put me in contact with people and

projects from the real world! Another early causer of the events that led to this thesis was Victor

Barroso, who invited me to participate in research meetings at ISR, and subsequently introduced

me to 2/3 of my future advisors.

During my PhD, I had the opportunity to collaborate and to discuss research with several people.

I would like to thank them for that. Some of these people are Michael Rabbat, João Miranda

Lemos, Gabriela Hug, André Martins, Mário Figueiredo, Petros Boufounos, Qing Ling, Ricardo

Lima, Bruno Sinopoli, Stephen Boyd, Soummya Kar, Aurora Schmidt, Pedro Guerreiro, Ricardo

Cabral, Christian Conte, Stefan Richter, Paul Goulart, Christian Berger, Jerónimo Rodrigues,

ix

Claudia Soares, Brian Swenson, Dusan Jakovetić, Dragana Bajovic, Sabina Zejnilovic, Pinar Oguz,

Dario Figueira, June Zhang, Qixing Liu, Matthias Althoff, Alysson Bessani, Paulo Oliveira, Bruce

Krogh, Marija Ilić, Susana Brandão, Nicholas O’Donoughue, Nikos Arechiga, Kyri Baker, Aliaksei

Sandryhaila, Marek Telgarsky, Augusto Santos, Bernardo Pires, Ceyhun Eksin, Divyanshu Vats,

Akshay Rajans, Ehsan Zamanizadeh, Jhi-Young Joo, Sanja Cvijic, Lúıs Brandão, Franz Franchetti,

Xiahui Wang (Eeyore), Luca Parolini, Rohan Chabukswar, Joel Harley, Rodrigo Belo, Joya Deri,

Jim Weimer, and Sérgio Pequito. Also, thank you to Daniel McFarlin and Vas Chellappa for helping

me out with several issues with GNU/Linux and MPI. Some of the experiments shown in this thesis

were run on a computer cluster kindly provided by Florin Manolache.

Conducting research while jumping back and forth over a large ocean is not possible with-

out proper funding and an excellent team “taking care of things.” So I would like to thank

the CMU/Portugal program and Fundação para a Ciência e Tecnologia (FCT) for the grant

SFRH/BD/33520/2008, provided through the Carnegie Mellon/Portugal Program and managed

by the Information and Communication Technologies Institute (ICTI). Some work was partially

funded by the FCT grants CMU-PT/SIA/0026/2009 and PEst-OE/EEI/LA0009/2009. I am also

grateful to all the staff involved at CMU, IST, and the CMU/Portugal program, especially to Ana

Mateus, Carolyn Patterson, Susana Santana, Alexandra Araújo, Ana Santos, Filomena Viegas,

Lori Spears, Claire Bauerle, Tara Moe, Elaine Lawrence, and Samantha Goldstein.

No single piece of this thesis would be possible without the early support of both of my parents,

Lúıs and Helena, who always encouraged me no matter what direction I chose. Their support has

been a constant throughout my entire education and, for this and other reasons, the minimum I

can give back is to dedicate this thesis to them.

My sister, Renata, has also always provided constant encouragement, kept me in a good mood,

and was a source of inspiration. My uncle Manuel and aunt Fátima, and my uncle Alexandre

and aunt Lili, and cousin Afonso have always encouraged me in my studies and instilled in me an

interest in science from an early age. I would also like to thank the family friends Lourdes and

Francisco Celestino for their support and friendship.

Finally, I have no words to describe my gratitude to my wife, Kate. Thank you for all your

support, kindness, and love. Thank you also for making sure that, during the writing of this thesis,

I had proper nutrition, rest, and also fun; thanks for proofreading some parts of the thesis also.

Now I promise that I’ll do my homework for our piano lessons.

x

Contents

Resumo v

Abstract vii

Acknowledgments ix

1 Introduction 1

1.1 Overview . 1

1.2 Goals of the thesis . 10

1.3 A classification scheme for distributed optimization 11

1.3.1 Communication network . 12

1.3.2 Variable classification . 13

1.4 Contributions . 16

1.5 Organization . 17

2 Background and Related Work 19

2.1 Building blocks: non-distributed, parallel algorithms 19

2.1.1 Decomposition methods . 20

2.1.2 Block-coordinate minimization methods . 23

2.1.3 Augmented Lagrangian methods . 24

2.2 Distributed algorithms . 29

2.2.1 Global class . 29

2.2.2 Star-shaped class . 36

2.2.3 Mixed class . 39

3 Global Class 41

3.1 Problem statement . 41

3.2 Applications . 43

xi

3.2.1 Inference problems . 44

3.2.2 Sparse solutions of linear systems . 45

3.3 Algorithm derivation . 56

3.4 Experimental results . 62

3.4.1 Average consensus . 64

3.4.2 Row partition: BP and BPDN . 67

3.4.3 Column partition: reversed lasso . 69

3.4.4 SVM . 71

4 Connected and Non-Connected Classes 73

4.1 Problem statement . 73

4.2 Applications . 74

4.2.1 Distributed model predictive control . 75

4.2.2 Reversed lasso with a row partition . 80

4.2.3 Network utility maximization . 81

4.2.4 Network flow problems . 85

4.2.5 State estimation in the power grid . 87

4.3 Algorithm derivation . 89

4.3.1 Connected variable . 90

4.3.2 Non-connected variable . 97

4.4 Experimental results . 100

4.4.1 Network flow problems . 101

4.4.2 D-MPC . 105

5 Conclusions and Future Work 111

5.1 Major contributions . 111

5.2 Current limitations . 113

5.3 Future work . 113

A ADMM-based Algorithms For The Global Class: Derivation 115

A.1 Network identities . 115

A.2 Derivation of Algorithm 1 . 117

A.3 Derivation of Algorithm 2 . 119

B Some Conjugate Functions 123

C ADMM-based Algorithm For The Connected Class: Derivation 125

xii

Bibliography 129

xiii

xiv

List of Tables

3.1 Network models. 62

3.2 Network parameters, average degree, and number of colors. 63

4.1 Networks used in the D-MPC experiments. 106

xv

xvi

List of Figures

1.1 Illustration of the main problem of the thesis. 2

1.2 The two steps of a distributed algorithm. 3

1.3 Two instances of (P) for a variable with 3 components. 4

1.4 Illustration of how the algorithms operate according to the coloring of the network. . 7

1.5 Comparison of the performance of a proposed algorithm with prior algorithms for

the average consensus problem. 9

1.6 Example of a generic connected variable and a mixed connected variable. 13

1.7 Our classification scheme for the variable of problem (P). 14

3.1 Row partition and column partition of A into P blocks. 46

3.2 Construction of a directed graph from the coloring scheme of an undirected graph. . 60

3.3 Comparison of several algorithms for the average consensus problem in a geometric

network with P = 2000 nodes. 65

3.4 Results for the average consensus problem for all the networks of Table 3.1. 66

3.5 Results of the simulations for BP, reversed lasso, BPDN, and SVM. 69

4.1 Two D-MPC scenarios. Solid lines represent links in the communication network

and dotted arrows represent system interactions. 76

4.2 Example of a geometrical pattern used in formation for minimizing the effect of drag

forces or for escorting a moving object. Solid lines indicate direct communication,

while dashed lines indicate dynamic coupling, but not necessarily direct communi-

cation. 78

4.3 (a) Example network with 3 source nodes s1, s2, and s3, that use predetermined

routes to send packets to three recipient nodes r1, r2, and r3; (b) Bipartite graph

obtained from (a): each link from (a) with a capacity associated is represented as a

circular node in (b). 81

xvii

4.4 Example of a network flow problem. Each edge has associated both a variable xij

and function of that variable, φij(xij). The goal is to minimize the sum of all the

functions, while satisfying conservation of flow constraints. 85

4.5 Illustration of five connected areas in a power network. 86

4.6 Example of an optimal Steiner tree. 98

4.7 Results of our experiments for the network flow problems. 104

4.8 Results for D-MPC with a connected variable. 108

4.9 Results for D-MPC with a non-connected variable. 109

xviii

Chapter 1

Introduction

Optimization theory has contributed to many fields in engineering by providing efficient algorithms

that solve nontrivial real world problems. Notable examples can be found in signal processing,

control engineering, and machine learning [1, 2, 3]. On the other hand, over the last years, some

computation platforms on which these algorithms may be executed have become distributed. For

example, computers are now equipped with several processing devices, allowing for parallel com-

putation. Also, complex systems such as power grids or water distribution systems are composed

of several interconnected components, each with some processing power, and thus are distributed

by nature. In addition, the data to be processed is often generated at different locations as, for

example, in sensor networks, or in the internet. All these factors ask for algorithms that process

data or control systems in a distributed way. However, it is challenging to design optimization al-

gorithms that are matched to distributed resources. Part of the reason is that efficient centralized

algorithms, such as for example interior-point methods, cannot be easily adapted to distributed

scenarios. The high-level goal of this thesis is to advance the design of distributed algorithms for

solving optimization problems.

1.1 Overview

Figure 1.1 will help us describe the main problem addressed by this thesis. The figure shows a

network with 10 nodes, where each node p holds a function fp. Our goal is to make all nodes

cooperate in order to find a minimizer of the sum of all the functions:

minimize
x∈Rn

f1(xS1) + f2(xS2) + · · · + fP (xSP
) . (P)

1

2 1. Introduction

1

f1

2

f2

3

f3

4

f4

5

f5

6

f6
7

f7

8

f8

9

f9

10

f10

Figure 1.1: Illustration of the main problem of the thesis: each node in the network holds a private function
and the goal is to minimize the sum of all the functions.

where x ∈ R
n is the optimization variable. Each function fp in (P) depends on the components

of the variable x that are indexed by the set Sp ⊆ {1, . . . , n}, and we use xSp to denote those

components. For example, if the function at node 3 depends on components x1, x5, x8, and x10,

then S3 = {1, 5, 8, 10} and f3(xS3) = f3(x1, x5, x8, x10). We require each function fp to be private

to node p, i.e., no other node in the network has access to it. The edges of the network represent

communication links; this means, for example, that node 3 in Figure 1.1 can communicate only

with its neighbors: nodes 2, 4, and 8. Given such a network, an algorithm that solves (P) is

considered distributed if it uses no central node, no all-to-all communications, and if the privacy

requirement for each function fp is satisfied. In this thesis, we aim to solve (P), and related

problems, with distributed algorithms that are communication-efficient, i.e., that use a minimal

amount of communication. Communication-efficiency is an essential requirement, for example,

when the nodes are battery-operated devices, such as in sensor-networks, since communication is

usually very energy-demanding.

Simple example. Consider an inference problem on a sensor network [4, 5], and suppose

that each function fp depends on all the components of the optimization variable x ∈ R
n, i.e.,

Sp = {1, . . . , n}, for all p or, more compactly, ∩P
p=1Sp = {1, . . . , n}. While each node in the network

represents a sensor with computing abilities, each edge indicates direct sensor communication, for

instance, through a wireless connection. We want to estimate a parameter θ̄ ∈ R
n (e.g., a set

of environmental parameters [6]), by using noisy measurements from all nodes. Let θp be the

measurement of θ̄ taken at node p. Assuming the noise is independent across nodes, finding the

maximum log-likelihood estimate of θ̄ can be written as (P) with ∩P
p=1Sp = {1, . . . , n}. For example,

if the noise is Gaussian with zero mean and its covariance is the identity matrix, each fp(x) is given

by (1/2)‖x − θp‖2, and the resulting problem is known as the average consensus problem [7]. In

this case, the solution to (P) is simply x⋆ = (1/P)
∑P

p=1 θp, that is, the maximum log-likelihood

1.1. Overview 3

(a) Computation (b) Communication

Figure 1.2: The two steps of a distributed algorithm. The nodes iteratively perform (a) computations and
(b) broadcast the results of those computation to their neighbors.

estimation of θ̄ is the average of all the measurements. However, in our distributed scenario, node p

is the only node who knows θp, and this makes computing the above average challenging. This

simple example shows that to compute a solution of (P) the nodes have to communicate, either

by exchanging their private data or by exchanging their estimates of the problem’s solution. What

they exchange and how they do it is determined by the distributed algorithm they use.

Distributed algorithms. A distributed algorithm computes a solution x⋆ of (P) while sat-

isfying the requirement that each function fp remains private to node p. Typically, each iteration

of a distributed algorithm consists of the two steps shown in Figure 1.2: (a) a computation step,

and (b) a communication step. In the computation step, all nodes update their estimates of the

components of x⋆. Usually, each node p updates its estimates by combining information given by

its private function fp with information given by the estimates of its neighbors from the prior com-

munication step. All these estimates are then exchanged in the subsequent communication step.

Although all nodes in Figure 1.2 are performing each of the two steps in parallel, this is not required

for a distributed algorithm. Actually, as we will see, in environments such as wireless networks it

might be impossible to perform the communication step (b) in parallel, because of packet collisions.

In the average consensus example given above, a popular choice for the computation step (a) is

to linearly combine the estimate of node p with the estimates of its neighbors Np. That is, the

estimate of node p, xp, is updated as

xk+1
p = app xk

p +
∑

j∈Np

apj xk
j , (1.1)

where each apj is a positive number, app +
∑

j∈Np
apj = 1, and k denotes the iteration number. The

computation scheme (1.1) implies that the nodes exchange their estimates xk
p at each communication

4 1. Introduction

1

2

3
4

5

6

f1(x1, x2, x3)

f2(x1, x2, x3)

f3(x1, x2, x3) f4(x1, x2, x3)

f5(x1, x2, x3)

f6(x1, x2, x3)

(a) Global variable

1

2

3
4

5

6

f1(x1, x2)

f2(x2, x3)

f3(x1, x2, x3) f4(x1, x3)

f5(x1, x2)

f6(x2)

(b) Non-connected variable

Figure 1.3: Two instances of (P) for a variable with 3 components, x = (x1, x2, x3). In (a), the variable
is global (and thus connected) because all the functions depend on all the components. In (b),
the variable is non-connected because x1 induces a subgraph that is not connected.

step (Figure 1.2(b)). This family of algorithms for the average consensus problem has been widely

studied in the literature [7, 8, 9, 10, 11, 12].

In this thesis, we propose algorithms that solve not only the average consensus problem, but

the entire class (P). We will see that this class contains several other problems that are relevant in

signal processing, control theory, machine learning, and other areas. Solving (P) in full generality,

however, is challenging because the sets Sp are arbitrary. Our approach consists of identifying

particular cases of (P) that are easier to solve, designing algorithms for those cases, and then

generalizing them to the most difficult cases. To do that, we introduce a scheme to classify instances

of (P), as overviewed next. The outcome of our approach will be an algorithm solving (P) in full

generality. Despite its generality, our algorithm achieves performances better than prior distributed

algorithms, even including some that were designed for a particular application.

Classification scheme. The most popular instance of (P) is illustrated in Figure 1.3(a): each

function depends on all the components of the variable, ∩P
p=1Sp = {1, . . . , n}. Rewriting (P) for

this case, we have

minimize
x

f1(x) + f2(x) + · · ·+ fP (x) , (G)

which is the instance of (P) for which most distributed algorithms have been designed. In our

classification scheme, formally introduced later in Section 1.3 and visualized in Figure 1.7, we say

that problem (G) has a global variable. Although many applications can be written as (G), many

others are instances of (P) with a non-global variable. In fact, our main motivation for considering

the generic problem (P) stems from its ability to model problems where each node is interested

only in a subset of the problem’s parameters or variables, rather than in all of them. This is

typical in large-scale systems, for example, in large plants, in the power grid, and in the internet.

1.1. Overview 5

A fundamental assumption we make is that if node p depends on components xSp , then that node

is interested in computing the optimal value for those components only, and not for any of the

other components. For example, node 4 in Figure 1.3(b) depends on components x1 and x3, which

means that it will compute the optimal value for these components, but not for x2. The flexibility

introduced in (P) by the sets Sp, however, produces instances that are difficult to solve, given the

previous assumption. Figure 1.3(b) shows an example: the component x1 appears in the functions

of nodes 1, 3, 4, and 5, but not in the functions of nodes 2 and 6. This means that node 1 is

“isolated” from all the other nodes that also depend on x1; indeed, nodes 2 and 6 are not interested

in computing an optimal value for x1, let alone exchanging estimates of it. In other words, the

subgraph of the nodes that depend on x1 is not connected and, for this reason, we say that the

variable in this case is non-connected. Of course, computing an optimal solution of (P) in this

case will invariably require selecting one of the nodes 2 or 6 to retransmit estimates of x1, so that

all the nodes depending on this component can agree on an optimal value for it. In the small

example of Figure 1.3(b), it is indifferent to select either node 2 or node 6 for this task, but in

larger networks, and for arbitrary sets Sp, we should select the nodes in such a way that the total

number of communications is minimized. Our solution for this problem involves computing Steiner

trees and is explained in Chapter 4.

The concepts of global variable and non-connected variable are concepts of the classification

scheme we introduce in this thesis. These concepts and the ones of connected, mixed, and star-

shaped variable will be formally defined in Section 1.3, but their relation can be visualized in

Figure 1.7. Roughly, the variable of (P) is divided into two classes: connected and non-connected.

These are, in fact, the most relevant classes in our classification scheme for two reasons: they form

a partition of the all the instances of the variable of (P), and addressing them requires completely

different techniques. These two classes thus comprise the first level of our classification scheme. The

second level consists of the following subclasses: global, star-shaped, and mixed. These subclasses

neither are mutually disjoint nor do they cover all instances of the variable of (P). However, they

are relevant both because they are much simpler instances of (P), and because they have been

solved with several distributed algorithms. Most of the algorithms that solve these subclasses,

however, cannot be easily generalized to solve the entire connected and non-connected classes. In

this thesis, we propose an algorithm that solves (P) for all classes and subclasses of variables.

Overview of some applications. In this thesis we will consider several applications that arise

in distributed contexts and that can be written as instances of (P). The recent field of compressed

sensing [13, 14] provides a rich collection of such problems: basis pursuit (BP) [15], basis pursuit

denoising (BPDN) [15], and the least absolute shrinkage and selection operator (lasso) [16], among

others. These compressed sensing problems are convex and provide heuristics for finding sparse

6 1. Introduction

solutions of linear systems. Although finding the sparsest solution of a linear system is NP-hard,

compressed sensing theory establishes conditions under which the previous problems find an optimal

(i.e., sparsest) solution. There is an increasing interest in solving compressed sensing in distributed

scenarios, where either the columns or the rows of the matrix defining the linear system are spread

over several nodes. We reformulate the above compressed sensing problems as (P), some with

a global variable and others with a mixed one; some of these reformulations are novel and are

presented in this thesis for the first time.

We will see that training a support vector machine (SVM)[17, Ch.7] requires solving an opti-

mization problem that can be easily recast as (G). Roughly, given a database with two classes of

datapoints, the goal in training an SVM is to find the hyperplane that best separates the two classes

of datapoints. When the datapoints are distributed among several sites, training an SVM arises

naturally as a distributed optimization problem. Therefore, solving this problem with a distributed

algorithm has the advantages of not requiring the transmission of the private databases to a remote

location, and of providing more robustness (if one node fails, the remaining nodes can still train

the SVM, yet, with less data).

Many systems can be modeled as networked dynamical systems [18]. Specifically, each system

is seen as the node of a network and has associated a state, a control input, or both. The state of

a given node is influenced not only by its own state and control input (or simply, input), but also

by the states and inputs of its neighbors. An effective control strategy for this type of systems is

distributed model predictive control (D-MPC) [19], which consists of the following. First, at each

time instant, each node senses its own state; then, the nodes collectively solve an optimization

problem that finds the best set of control inputs for a future time-horizon. These inputs are

computed in such a way that their application to the systems will lead the nodes’ states to a given

goal and, at the same time, they will minimize some “energy function.” Although the nodes know

an optimal set of inputs for all the time instants in the time-horizon, they will only use the input

for the next time instant. The reason is to mitigate the impact of modeling and sensing errors. So,

in the next time instant, after applying the previously computed input, each node senses its state

and cooperates with the other nodes to solve the D-MPC optimization problem, now with new

data. This procedure is repeated at each time instant. In this thesis, we provide a new framework

for formulating D-MPC problems, and also communication-efficient algorithms to solve them.

We also mention that several network flow problems can be recast as (P) with a star-shaped

variable. These are optimization problems formulated on directed networks where physical items

can flow through the edges of the network. As a consequence, certain conservation laws have

to be satisfied and are typically written as problem constraints. Network flow problems arise in

several contexts [20], for example, in determining best energy policies in the power grid. After

1.1. Overview 7

1

2

3
4

5

6

1

3

1
2

1

2

(a) Step 1

1

2

3
4

5

6

1

3

1
2

1

2

(b) Step 2

1

2

3
4

5

6

1

3

1
2

1

2

(c) Step 3

Figure 1.4: Illustration of how the algorithms operate according to the coloring of the network. The
coloring scheme has three colors: nodes 1, 3, and 5 have color 1, nodes 4 and 6 have color 2,
and node 2 has color 3.

some reformulations, network flow problems can be recast as (P) and, hence, can be solved with

the algorithms we propose here.

Overview of the proposed algorithms. Problem reformulation plays a key role in the design

of distributed optimization algorithms. In fact, we will see throughout this thesis that it impacts

significantly the final algorithm. Our strategy for solving instances of (P), and ultimately (P) in full

generality, consists of reformulating those instances into a format such that well-known centralized

optimization algorithms become naturally distributed.

Our reformulations make use of a concept that has rarely appeared in high-level distributed

algorithms, such as the ones considered in this thesis. That concept is network coloring, an assign-

ment of colors to the nodes of a network such that no two neighboring nodes have the same color

(for convenience, instead of colors, we just use natural numbers). Assuming that a coloring scheme

is available beforehand is realistic in many distributed scenarios, especially in wireless networks.

For example, wireless networks require protocols known as media access control (MAC) to avoid

packet collisions, i.e., that one node receives two messages at the same time and in the same fre-

quency (assuming there is only one receive antenna). Some MAC protocols, such as time division

multiple access (TDMA), rely on network coloring.

Figure 1.4 shows how the algorithms we propose work as a function of the coloring scheme.

The network in this figure has three colors: nodes 1, 3, and 5 have color 1, nodes 4 and 6 have

color 2, and node 2 has color 3. The algorithms we propose are iterative, and each iteration is

divided into a number of steps equal to the number of colors. Figure 1.4 thus has 3 subfigures,

each one corresponding to a step. In each step, all the nodes with the same color perform the

same tasks in parallel, as illustrated in subfigures 1.4(a), 1.4(b), and 1.4(c). These subfigures show

the communication pattern occurring in each step. From an high-level point of view, the tasks

8 1. Introduction

performed by node p consist of:

1. finding new estimates for the components that fp depends on, by solving

minimize fp(·) + “quadratic term,”

that is, node p minimizes the sum of fp and a quadratic term. That quadratic term depends

on the network structure as well as on previous estimates of the neighbors of node p. Solving

the above optimization problem corresponds to evaluating the proximity operator of the

function fp and, many times, this can be done in a simple way.

2. sending the new estimates to the neighboring nodes.

Finally, we note that the concept of network coloring required by our algorithms coincides with the

concept of network coloring commonly used in low-level communication protocols, namely, MAC

protocols [21, Ch.6]. The goal of MAC protocols is to avoid packet collisions due to the hidden

node and the exposed node problems [21, §6.2.2]. For example, in Figure 1.4(a), node 6 is receiving

simultaneous messages from nodes 1 and 5. If the messages are in the same frequency and node 6

has one antenna only, this results in a packet collision and the nodes have to retransmit their

messages. Time division multiple access (TDMA), for example, is a MAC protocol that avoids

packet collisions by using a second-order coloring scheme: each node cannot have the same color

as its neighbors and as its neighbors’ neighbors. Such a coloring scheme works for our algorithms

as well and, for this reason, the high-level structure of our algorithms is not altered by low-level

protocols when they are implemented in networks that use TDMA as a MAC protocol.

The strategy we use to derive our distributed algorithms consists of reformulating the problems

we want to solve in such a way that we can apply well known centralized optimization algorithms.

Regarding our choice for these algorithms, we will focus on the Alternating Direction Method of

Multipliers (ADMM), more specifically on an extended version of it: the multi-block, or extended,

ADMM [22]. ADMM was proposed in the seventies by [23, 24] to solve linearly constrained opti-

mization problems, using a “divide-and-conquer” approach. In the eighties and nineties, ADMM

was shadowed by the popular interior point methods, which solve small- and medium-sized prob-

lems very efficiently, but in a centralized way. Lately, ADMM has regained attention from the

optimization community, because of its wide applicability and its ability to deal with large-scale

and distributed scenarios. Notably, ADMM has been applied to solve some of the problems ad-

dressed in this thesis, in particular, instances of (P) with a global variable and with a star-shaped

variable. In spite of that, little is still known about its behavior. For instance, partial results on

the convergence rate of ADMM, or a proof of the convergence of the multi-block ADMM, were

established only very recently.

1.2. Overview 9

Communication steps

Relative error

101

100

10−1

10−2

10−3

10−4

0 50 100 150 200 250

Proposed

[11]

[25]

[26]

Figure 1.5: Comparison of the performance of a proposed algorithm with prior algorithms for the average
consensus problem. The network is a randomly generated geometric network with 2000 nodes.

Example of performance results. Figure 1.5 shows as example the performance of the

algorithm we propose for (G) when applied to the average consensus problem (scalar case, i.e., n =

1). The plot shows the relative error of the solution estimates versus the number of communication

steps. We say that a communication step has occurred whenever all the nodes have updated their

estimates and transmitted them to their neighbors. This is equivalent to saying that the number

of communication steps is the total number of communications divided by 2E, twice the number

of edges. A communication, in this case, is defined as an “edge usage.” For example, in Figure 1.4,

there are 6 communications in (a), 5 communications in (b), and 3 communications in (c). And one

communication step in that figure is comprised of steps 1, 2, and 3. The number of communication

steps, therefore, provides a direct measure of communication-efficiency. The network we used in the

experiments of Figure 1.5 has P = 2000 nodes and was randomly generated as a geometric network

with parameter
√

log(P)/P ≃ 0.06. The figure shows that, among all algorithms, the proposed

one required the least amount of communications (i.e., communication steps) to achieve any error

between 100 and 10−4. The other algorithms in the figure are [25, 26], which solve the entire global

problem class (G), and [11], which is considered the most efficient consensus algorithm [9], but it

can only solve the average consensus problem and not any other problem in the class (G). Actually,

if we consider the convergence rate, i.e., the slopes of the error lines, the proposed algorithm and [11]

have roughly the same performance. In fact, they have the same slope, but [11] exhibits an offset,

since it requires a special initialization. All the other algorithms were initialized with zeros.

This experimental result reveals the surprising fact that, although the algorithms we propose

solve an entire problem class, they can sometimes achieve the same performance as the best al-

gorithms for a particular application. This is particularly surprising for the average consensus

problem, since it is the simplest and the most thoroughly studied distributed problem.

10 1. Introduction

1.2 Goals of the thesis

We next summarize the goals of the thesis and then we explain each requirement in detail.

We aim to design, analyze, and implement algorithms that solve optimization problems of
the form (P) on networks. The algorithms should be

Distributed: no node has complete knowledge about the problem data and no central
node is allowed; also, each node communicates only with its neighbors;

Communication-efficient: the number of communications they use is minimized;

Network-independent: the algorithms run on networks with arbitrary topology and
their output is independent of the network.

Distributed. A distributed algorithm only makes sense in an environment where both the

data and the computing power are distributed. In such an environment, an algorithm is considered

distributed if it fulfills three requirements. First, local data to a given node should remain private

to that node. This enforces local computations, since any computation involving a piece of data

has to be performed at the node where that data belongs to. In our problem (P), data of node p

is encoded in the function fp and, thus, we require fp to be private to node p; this means that no

other node has full knowledge of fp at any time during and before the execution of the algorithm.

The second requirement is that there should not exist any central or special node. Such a

node would coordinate all the other nodes and would make the data at a given node reachable

to any other node in a very small number of hops. Actually, an algorithm that satisfies the first

requirement but not the second one is usually called a parallel algorithm [27]. Indeed, according

to [27], parallel algorithms run on systems where computing devices are at a small distance of each

other and may be controlled by a central entity. Distributed algorithms, in contrast, run on systems

where computing devices are located far apart, making centralized coordination inconvenient; in

the latter, there is also little control on the network topology.

Finally, the third requirement is that each node communicates only with neighboring nodes.

Although this is equivalent to forbidding a central node, we explicitly state this requirement in

order to exclude platforms that allow all-to-all communications. For example, an algorithm run-

ning on a computer cluster and using function calls from a message passing interface (MPI) [28]

implementation, such as MPI_Bcast or MPI_Reduce, cannot be considered distributed; at most, it

is parallel. We mention that sometimes distributed algorithms are also referred to as decentralized

algorithms.

1.3. A classification scheme for distributed optimization 11

Communication-efficient. In a centralized algorithm, the execution time and the closely

related floating-point operation (FLOP) count are the most common performance metrics: the

lower these metrics are, the more efficient an algorithm is. In distributed scenarios, however, other

metrics arise. For example, computing accurate solutions is challenging in scenarios where there

is communication noise. In that case, slower algorithms that are noise-resilient may be preferable

to faster algorithms that are noise-sensitive. Another example is energy consumption. In many

distributed scenarios, e.g., sensor networks, nodes rely on batteries and therefore have a limited

source of energy. In these situations, increasing the lifespan of the network becomes the main

priority. As communication in battery-operated devices is currently the most energy-consuming

operation [6, 29], this priority translates into having algorithms with low communication require-

ments. The performance metric adopted in this thesis will then be the number of communications:

the lower the number of communications an algorithm uses, the more efficient that algorithm will

be. Hence, our goal will be to design distributed optimization algorithms that use the fewest

communications possible.

Network-independent. The last requirement we impose on distributed algorithms is network

independence. This simply means that the output of the algorithm, i.e., the estimate of the solution

returned by the algorithm, should be independent of the network topology. For instance, the

algorithms should output the same solution estimate whether they are run on a densely or on

a sparsely connected network. Naturally, the performance of the algorithms, i.e., the number of

iterations or communications they use to compute that estimate, will in general vary with the

network topology.

1.3 A classification scheme for distributed optimization

Our strategy for achieving the goals of this thesis is a divide-and-conquer one: first, we identify

instances of (P) that are easier to solve; then, we combine the solutions we designed for the simpler

instances to solve (P) in full generality. For convenience, we reproduce (P) here:

minimize
x∈Rn

f1(xS1) + f2(xS2) + · · · + fP (xSP
) . (P)

In this section, we formally introduce our classification scheme for the variable of problem (P).

Before doing that, however, we need the concept of communication network.

12 1. Introduction

1.3.1 Communication network

The communication network is the physical network through which the computing devices, seen

as network nodes, communicate. We represent the communication network with an undirected

graph G = (V, E), where V and E are the set of nodes and the set of edges, respectively. The

cardinality of these sets, i.e., the number of nodes and the number of edges, will be denoted with P =

|V| and E = |E|, respectively. Figure 1.1 shows an example of a graph representing a communication

network with P = 10 nodes and E = 21 edges. An edge belongs to the communication network,

say (i, j) ∈ E , if and only if nodes i and j communicate directly. For example, nodes 1 and 10 in

Figure 1.1 are neighbors: this means they can exchange messages with each other, because there is

a communication link connecting them. We use the following convention: if (i, j) ∈ E , then i < j.

Throughout this thesis, we will assume that the communication network G is connected and that

its topology does not vary with time.

Functions associated to nodes. Associated with each node, there is a function depending on

the components of a variable x ∈ R
n. The function at node p is denoted with fp : Rnp −→ R∪{+∞},

where np is the cardinality of the set Sp. As explained before, we use Sp ⊆ {1, . . . , n} to denote

the components of x ∈ R
n that function fp depends on. Of course, 1 ≤ np = |Sp| ≤ n. We assume

that each node p is interested in computing the optimal value only of the components of x that are

indexed by Sp. We will see that in some situations, however, it is difficult, or even impossible, to

solve instances of (P) without forcing some nodes to receive and transmit components of x that are

not indexed by their sets Sp. To make our problem well-defined, we assume that each component

of the variable appears in at least one of the nodes, that is, ∪P
p=1Sp = {1, . . . , n}.

Unless otherwise stated, we that assume fp is closed and convex [1, 3, 2, 30, 31], and not iden-

tically +∞. Note that our definition for each fp allows it to take the value +∞; as a consequence,

node p can impose constraints on the variable x implicitly, via indicator functions. An indicator

function of a given set S ⊂ R
n is defined as iS : Rn −→ R ∪ {+∞},

iS(x) =

0 , x ∈ S

+∞ , x 6∈ S .

Including an indicator function iS(x) in the objective of a minimization problem forces x ∈ S, since

otherwise the optimal (minimal) value is +∞. Each function fp is private, i.e., at all times during

and before the execution of the algorithm, only node p knows fp. As explained before, this privacy

rule formalizes our wish to derive a distributed algorithm by enforcing local computations; namely,

all computations involving fp have to be done at node p. This makes sense in scenarios where

each fp encodes a database that should be known only at node p, or simply to make use of all the

1.3. A classification scheme for distributed optimization 13

1

2

3
4

5

6

f1(x1, x2)

f2(x1, x2, x3)

f3(x2, x3)
f4(x3)

f5(x1, x3)

f6(x1, x2)

(a) Generic connected variable

1

2

3
4

5

6

f1(x1, x2)

f2(x1, x2, x3)

f3(x2, x3)
f4(x3)

f5(x1, x3)

f6(x1, x2)

(b) Subgraph induced by x2

1

2

3
4

5

6

f1(x1, x2)

f2(x1, x2, x3)

f3(x1, x3)
f4(x1)

f5(x1, x2)

f6(x1, x2)

(c) Mixed connected variable

Figure 1.6: Example of (a) a generic connected variable and (c) a mixed connected variable. (b) highlights
the subgraph induced by the component x2 in (a). The communication network is the same
in all cases. In (c), the component x1 is global, and x2 and x3 induce connected subgraphs.

distributed computing resources as, for example, in a sensor network, where each sensor has some

processing power available for computation.

1.3.2 Variable classification

Although each function is uniquely associated to a single node, the same does not happen for each

component of x ∈ R
n, the optimization variable. This creates an additional structure and motivates

our classification scheme. Essential to our classification scheme is the concept of induced subgraph.

Induced subgraph. Let xl ∈ R denote the lth component of the optimization variable x ∈ R
n.

We define the subgraph induced by xl similarly to how [32, Ch.1] defines the subgraph induced

by a set of nodes. In our case, these nodes are the ones whose functions depend on xl. To be

more concrete, given a communication network G, the subgraph induced by xl is the subgraph

Gl = (Vl, El) ⊆ G, where Vl is the set of nodes whose functions depend on xl, and an edge (i, j)

belongs to El only if (i, j) ∈ E and both nodes i and j belong to Vl. As an example, Figure 1.6(b)

highlights the subgraph induced by the component x2 in the setting of Figure 1.6(a): the set of

nodes and the set of edges of this induced subgraph G2 are, respectively, V2 = {1, 2, 3, 6} and

E2 = {(1, 2), (1, 6), (2, 3), (2, 6)}. Note that neither f4 nor f5 depend on x2.

Component-wise classification of x. We classify each component xl according to its induced

subgraph Gl the following way: xl is

• connected if Gl is a connected subgraph, and is non-connected otherwise;

• global if its induced subgraph coincides with the communication network, i.e., Gl = G;

• star-shaped if Gl is a star graph.

14 1. Introduction

connected non-connected

global

star-shaped

mixed

Figure 1.7: Our classification scheme for the variable x ∈ R
n of problem (P). The variable is either

connected or non-connected. Global and star-shaped variables are particular instances of a
connected variable, and a mixed variable can be connected or non-connected.

By star graph we mean a graph in which there exists a node who is a neighbor of all the other nodes;

the remaining nodes can also be neighbors between themselves. For example, the subgraph induced

by variable x2 in Figure 1.6(b) is a star, because every node is a neighbor of node 2; therefore, x2 is

star-shaped. If a component is star-shaped, it can be handled in a centralized way, since the node in

the center of the star can act as a central node. It can be checked that component x1 in Figure 1.6(a)

is also star-shaped, with node 6 in the center, but component x3 is not. All the components of

the variable in that figure, however, are connected, since the respective subgraphs are connected.

Naturally, a star-shaped variable is always connected. An example of a global component is given

in Figure 1.6(c): the subgraph induced by x1 coincides with communication graph and, thus, x1 is

global. In other words, all the functions in Figure 1.6(c) depend on x1. Again, a global component

is always connected, since its induced subgraph coincides with the communication network, which

we assume connected. Unless the communication network is a star, a global variable is never star-

shaped. We had already illustrated a non-connected component in Figure 1.3(b): the subgraph

induced by x1 in that network is not connected, and thus x1 non-connected.

Classification of x. With the component-wise classification of components, we are now in

conditions to classify the full optimization variable x ∈ R
n in (P). The proposed classification

scheme is shown in Figure 1.7. There, the variable x is either

• connected if all the components xl of x ∈ R
n are connected, for l = 1, . . . , n; or

• non-connected if x has at least one non-connected component.

For example, while the variable in Figure 1.6(a) is connected, because x1, x2, and x3 are connected,

the variable in Figure 1.3(b) is non-connected, because x1 is non-connected (in spite of x2 and x3

being connected). Note that the connected and non-connected classes partition the entire class of

the variable x (see Figure 1.7). This distinction between a connected and a non-connected variable

is the most important one in our classification scheme. In fact, we will see in Chapter 4 that they

have to be addressed with different techniques.

1.3. A classification scheme for distributed optimization 15

To the best of our knowledge, no algorithm has ever been designed (purposefully) to solve (P)

with a generic connected or non-connected variable. However, there are algorithms solving it with

global, mixed (connected), and star-shaped variables, defined as follows. The variable x ∈ R
n is

• global if all its components are global: ∩P
p=1Sp = {1, . . . , n};

• mixed if it has at least one global component and at least one non-global component: ∩P
p=1Sp 6=

{

∅, {1, . . . , n}
}

;

• star-shaped if all its components are star-shaped.

We have already seen an example of a global variable in Figure 1.3(a). When (P) has a global

variable, it can be written simply as

minimize
x

f1(x) + f2(x) + · · ·+ fP (x) . (G)

Because of the assumption that the communication network is always connected, a global variable

is also always connected. A mixed variable, in turn, can be either connected or non-connected. It

is connected if all the non-global components are connected, and non-connected if at least one of

the non-global components is non-connected. Figure 1.6(c) shows an example of a mixed variable

that is connected, since the non-global components x2 and x3 are connected. Problem (P) with a

mixed variable can be written as

minimize
x=(y,z)∈Rn

f1(y, zS1) + f2(y, zS2) + · · ·+ fP (y, zSP
) , (M)

where the variable x was decomposed into its global components y and into its non-global compo-

nents z. Finally, all the components of a star-shaped variable are like x2 in Figure 1.6(b). Note

that in Figure 1.7 the star-shaped class intersects with the global class; this happens when the

variable is global and the communication network is a star.

Summarizing, our classification scheme partitions the variable of problem (P) into two classes,

shown as rectangles of Figure 1.7: connected and non-connected. These classes are the most

fundamental ones, since they require different solution methods. The subclasses shown as ellipsoids

in Figure 1.7 identify easier instances of (P). Also, each one of these subclasses has been addressed

with prior distributed optimization algorithms. In reality, while several algorithms have been

proposed for the global and the star-shaped subclasses, we only found one distributed algorithm,

in [33], solving an instance of (P) with a mixed variable. That instance is actually a very particular

one: the variable is connected and all the non-global components are star-shaped. The classification

scheme of Figure 1.7 will also guide us throughout the thesis: we first address the global subclass,

16 1. Introduction

which is not only the subclass for which most of the distributed optimization algorithms have been

proposed, but also the simplest one; in particular, the notation required to handle problems in this

subclass is simpler, since we do not need the indexing sets Sp. Then, we address the connected

class, by generalizing the algorithm for the global class. And, finally, we generalize the connected

class algorithm to handle both a connected and a non-connected variable, that is, to handle any

instance of (P).

1.4 Contributions

We list the main contributions of this thesis:

• We provide a classification scheme for the class (P) of distributed optimization problems.

Although it borrows some aspects from factor graphs [34] (actually the same aspects that

are used in [35]), it establishes a relation between the (abstract) optimization problem to be

solved and the (concrete) computational platform, in our case, the communication network.

This classification scheme plays a fundamental role in the thesis, not only by providing a

framework to develop our algorithms, but also by allowing us to organize prior work and

applications.

• We develop a set of distributed algorithms to solve (P) that are communication-efficient. The

order in which we present our algorithms in the next chapters goes from the most specific to

the most general, a pattern that corresponds to the order in which they were developed. More

specifically, we first present an algorithm for the global class (G), then we present an algorithm

for the connected class and, lastly, we present an algorithm that solves any instance of (P).

All these algorithms are distributed, network-independent, and communication-efficient. In

particular, we will see that they usually require less communications to converge than prior

distributed algorithms.

• We apply our algorithms to several application problems from engineering and computer sci-

ence. Some of these applications are novel, i.e., to the best of our knowledge, they have never

been solved with distributed algorithms. This includes several compressed sensing problems

and distributed model predictive control (D-MPC). Actually, we propose a new framework

for D-MPC that considerably extends the modeling capability of the prior framework.

• To assess the performance of our algorithms, we provide extensive benchmarks with prior

algorithms. This required an implementation of all the algorithms, including prior distributed

optimization algorithms, and also algorithms that are specific to a given application.

1.5. Organization 17

1.5 Organization

The remainder of the thesis is organized as follows.

• In Chapter 2, we provide background on distributed and parallel algorithms for optimiza-

tion including, for example, decomposition methods and the alternating direction method of

multipliers. Although these methods are not distributed, they work as building blocks for

distributed algorithms, which are presented subsequently. We also discuss prior distributed

algorithms, organized according to the subclasses defined by our classification scheme.

• In Chapter 3, we present our algorithm for the global class, which is not only the most

common class, but also the simplest one conceptually and notationally. This will allow us to

introduce our main ideas without complicated notation. The chapter starts by stating the

problem formally and discussing the general assumptions we make. Then, several applications

are given, some of which are novel. Finally, the algorithm is derived and experimental results

are shown.

• Chapter 4 has a similar structure, but now addresses our main problem (P) in full generality.

It starts with restating the problem and discussing the assumptions. Next, several potential

applications are shown, including a new framework for D-MPC. Also, we present in that

chapter the only algorithm we found in the literature that, after some adaptations, can also

solve our problem in full generality. After that, we derive our algorithm, first assuming a

general connected variable, and then moving to a non-connected one. The chapter ends with

the presentation of several experimental results.

• Our conclusions and possible directions for future work are presented in Chapter 5. There,

we also restate our major contributions and discuss current limitations of our algorithms.

18 1. Introduction

Chapter 2

Background and Related Work

Distributed and parallel algorithms not only are relevant in the real world, but also are challenging

to design. They provide several advantages over their centralized counterparts, for example, the

ability to process distributed data and, notably, significant computational speed-ups. In the con-

text of optimization, parallel algorithms, including decomposition methods, date back to the sixties

with the works of Dantzig and Wolfe [36], Benders [37], and Everett [38]. Research on distributed

optimization algorithms started later, in the mid-eighties, with the work of Tsitsiklis, Bertsekas,

and Athans [39] and has boomed in the past ten years, motivated by the widespread of sensor

networks [4]. Nowadays, distributed optimization finds application in sensor networks (localiza-

tion [40], clustering [41], etc), in cognitive radio [42], in machine learning [43, 44, 45, 35], and in

the control of complex systems such as irrigation canals [46] and the power grid [47, 48, 49, 50, 51].

In this chapter, we use the classification scheme developed in the previous chapter to organize

existing work on distributed optimization. Since most of this work builds upon parallel methods, we

first overview relevant work on parallel methods, with special emphasis on the Alternating Direction

Method of Multipliers (ADMM), since it will play a key role in this thesis.

2.1 Building blocks: non-distributed, parallel algorithms

We start by reviewing some methods that, although not distributed, work as building blocks of

distributed algorithms. There are three subsections: one dedicated to decomposition methods,

another dedicated to block-coordinate minimization methods, and the last one dedicated to aug-

mented Lagrangian methods, which includes ADMM.

19

20 2. Background and Related Work

2.1.1 Decomposition methods

Decomposition methods are the precursors of distributed optimization methods. Their goal, as

the name indicates, is to decompose a complex problem into smaller, simpler ones. Yet, they are

not considered distributed, because they generally require a master node coordinating several slave

nodes. The prototypical problem they solve is

minimize
x1,...,xP

f1(x1) + f2(x2) + · · · + fP (xP)

subject to A1x1 + A2x2 + · · ·+ AP xP = b ,
(2.1)

where the variable is x = (x1, . . . , xP) ∈ R
n, with xp ∈ R

np , and n1 + · · · + nP = n. Each

function fp : Rnp −→ R is assumed convex. Problem (2.1) is coupled through its constraint Ax =
[

A1 A2 · · · AP

]

x = b ∈ R
m, which is always assumed feasible.

Similarly to distributed methods, decomposition methods solve (2.1) by assigning a pair (fp, Ap)

to one device (or node) but, in contrast to distributed methods, all devices (or nodes) are controlled

by a master node. Occasionally, the structure of the matrix A allows discarding the master node and

the decomposition method becomes distributed. Decomposition methods are divided into primal

and dual methods, and comprehensive references on the topic are [2, §6.4], [27, Ch.3], and [52].

Primal decomposition. To solve (2.1) through primal decomposition, we rewrite it as

minimize
y1,...,yP

φ1(y1) + φ2(y2) + · · ·+ φP (yP)

subject to y1 + y2 + · · ·+ yP = b ,

(2.2)

where each yp ∈ R
m is a new variable, and each function φp : Rm −→ R ∪ {+∞} is defined as

φp(yp) := inf
xp

fp(xp)

s.t. yp = Apxp .

(2.3)

For simplicity, we assume that each Ap has full row rank, which implies that φp is defined over

all Rm. Given a master node and P slave nodes, the master node solves the master problem (2.2)

and delegates to slave node p the task of handling computations involving φp. Typically, the master

problem (2.2) is solved with a first-order minimization method, such as the projected subgradient

method. It can be shown that the subgradient of φp at a point yp is given by −λp, where λp is the

(optimal) dual variable associated to the constraint of (2.3); see sections 5.4.4 and 6.4.2 of [2] for

more details. Therefore, in primal decomposition, the master node updates y = (y1, . . . , yP) as

yk+1 =
[

yk + αkλk
]

{1⊤
n y=b}

, (2.4)

2.1. Building blocks: non-distributed, parallel algorithms 21

where
[·]

{1⊤
n y=b}

denotes the projection onto the set {y ∈ R
n : 1⊤

n y = b}, αk is a positive stepsize,

1n ∈ R
n is a vector of ones, and λk = (λk

1 , . . . , λk
P) is the vector of dual variables at iteration k. At

each iteration, the master node sends yk
p to slave node p, who then solves the problem in (2.3) and

returns λk
p to the master node. The master node, in turn, updates y as in (2.4) and moves on to

the next iteration. According to our previous definitions, primal decomposition is not distributed

since it requires a master node playing the role of a central node.

Dual decomposition. Dual decomposition methods, rather than solving (2.1) directly, solve

its dual problem instead:

minimize
λ

f⋆
1 (A⊤

1 λ) + f⋆
2 (A⊤

2 λ) + · · ·+ f⋆
P (A⊤

P λ)− b⊤λ , (2.5)

where λ ∈ R
m is the dual variable and f⋆

p : Rm −→ R is the convex conjugate of fp, defined as

f⋆
p (λ) = sup

xp

λ⊤xp − fp(xp) . (2.6)

While (2.1) is coupled through its constraint, (2.5) is coupled through its objective (since all con-

jugate functions depend on λ). As in the primal decomposition, given a master node and P slave

nodes, the master node solves the master problem (2.5) and delegates to slave node p the task of

handling f⋆
p . Whenever each function fp is strictly convex, there is only one minimizer xp(λ) of the

problem in (2.6) for a given λ. Hence, in this case, after the master node finds a dual solution λ⋆

to (2.5), the pth block of the optimal primal solution of (2.1) can be found in the pth slave node as

xp(λ⋆). In other words, when each function fp is strictly convex, a primal solution is immediately

available after solving the dual problem (2.5). Again, the master problem (2.5) can be solved with

first-order minimization methods, such as the subgradient method. The subgradient of f⋆
p ◦ A⊤

p ,

where ◦ denotes composition, at a point λ is Apxp(λ), where xp(λ) solves the problem in (2.6) [2,

Prop.B.25(b)]. Hence, in dual decomposition, the master node updates λ as

λk+1 = λk − αk(A1x1(λk) + A2x2(λk) + · · ·+ AP xP (λk)− b) , (2.7)

where αk > 0 is the stepsize at iteration k. At each iteration, the master node sends λk to all slave

nodes and each slave node p, in turn, returns Apxp(λk) to the master node. Similarly to primal

decomposition, dual decomposition also requires a central node (the master node) and, therefore, it

is not distributed. Other dual decomposition methods are the Dantzig-Wolfe decomposition [36],[2,

§6.4.1] and the Benders decomposition [37].

Whenever each fp is strongly convex with parameter µ, f⋆
p is differentiable and its gradient ∇f⋆

p

is Lipschitz continuous with constant 1/µ [30, Th. 4.2.2], [53]. In that case, a faster algorithm can

22 2. Background and Related Work

be applied, for example, the gradient method or even Nesterov’s fast gradient method. These are

explained next.

First-order minimization methods. Decomposition methods generally use first-order meth-

ods to solve the master problem, i.e., methods that use only first-order (sub)derivatives. Consider,

for example,

minimize
x

f(x)

subject to x ∈ X ,
(2.8)

where X ⊆ R
n is a closed convex set and f : Rn −→ R is a convex function. If f is not differentiable,

an appropriate method to find a minimizer of (2.8) is the projected subgradient method:

xk+1 =
[

xk − αkdk
]

X
, (2.9)

where xk is the estimate at iteration k, dk is the subgradient of f at the point xk, i.e., dk ∈
∂f(xk),1

[·]
X

is the projection operator onto the set X, and αk > 0 is the stepsize at iteration k.

The projected subgradient method is non-descent, that is, it does not guarantee that the cost

function f(xk) decreases at every iteration. However, under the assumption that f is Lipschitz

continuous, i.e., that there exists L > 0 such that ‖f(y) − f(x)‖ ≤ L‖y − x‖ holds for all x, y,

and under an appropriate choice for the stepsize sequence {αk}∞k=0, the best cost function estimate

fk
best := min0≤l≤k f(xl) converges to the optimal value f⋆ of (2.8). This is guaranteed, for example,

by a square summable but not summable stepsize sequence, for instance, αk = 1/(1 + k). A

constant stepsize sequence αk = α, for all k, in contrast, only guarantees that fk
best converges to

a neighborhood of f⋆. Even when convergence is guaranteed, the method is rather slow, since

fk
best − f⋆ converges to zero at rate O(1/

√
k). Extensive information about subgradient methods

can be found in [54, §8.2],[31, Ch.3] [55, 56].

When the function f is continuously differentiable and its gradient ∇f is Lipschitz-continuous

with constant L, i.e., ‖∇f(y) − ∇f(x)‖ ≤ L‖y − x‖ for all x, y ∈ R
n, more efficient methods

can be applied. In fact, for a differentiable function, ∂f(x) = {∇f(x)}, and the iterations (2.9)

become the projected gradient method. In contrast with subgradient methods, gradient methods

are descent and converge even with a fixed stepsize αk = α ∈ (0, 1/L], for all k. Moreover,

f(xk) − f⋆ converges to zero at rate O(1/k). Gradient methods are studied extensively in [2,

Ch.1,2][31, Ch.1,2][57, 58, 59].

Surprisingly, a small modification of the projected gradient yields a method whose error f(xk)−
f⋆ decreases at rate O(1/k2), as discovered by Nesterov. The problem assumptions are the same

1The subdifferential ∂f of a convex function f at a point x is defined as ∂f(x) = {d : f(y) ≥ f(x)+d⊤(y−x) , ∀y}.
Any point d belonging to the subdifferential ∂f(x) is called subgradient of the function f at the point x.

2.1. Building blocks: non-distributed, parallel algorithms 23

as in the projected gradient method. An instance of Nesterov’s method is

xk+1 =
[

yk − αk∇f(yk)
]

X

yk+1 = xk+1 + k−1
k+2(xk+1 − xk) ,

(2.10)

which requires no significant additional computation with respect to (2.9). Yet, it not only has

better bounds on the rate of convergence, but it also converges much faster in practice. For more

information about accelerated first-order methods, see [31, 58, 59, 60, 61, 62, 63, 64].

2.1.2 Block-coordinate minimization methods

Block-coordinate methods are appropriate when fixing some of the variables in an optimization

problem makes the problem easier to solve. Consider, for example,

minimize
x=(x1,...,xP)

f(x1, x2, . . . , xP)

subject to x ∈ X1 ×X2 × · · · ×XP ,
(2.11)

where the variable is x = (x1, . . . , xP) ∈ R
n with xp ∈ R

np and n1 + · · · + nP = n. The function

f : R
n −→ R is assumed convex, and each set Xp ⊆ R

np is assumed closed and convex. Block-

coordinate minimization methods solve (2.11) via a sequence of minimization problems with respect

to one block variable while the other blocks are fixed, i.e.,

minimize
ξ

f(x1, . . . , xp−1, ξ, xp+1, . . . , xP)

subject to ξ ∈ Xp .

Two important types of block-coordinate methods are nonlinear Jacobi and nonlinear Gauss-Seidel.

Nonlinear Jacobi. The nonlinear Jacobi method is defined as

xk+1
p = arg min

xp

f(xk
1, . . . , xk

p−1, xp, xk
p+1, . . . , xk

P) ,

s.t. xp ∈ Xp

p = 1, . . . , P , (2.12)

where the pth minimization is taken with respect to xp. Since updating xk
p to xk+1

p requires all the

other block components to be fixed at xk
j , for j 6= p, which were found in the previous iteration, the

updates can be carried out in parallel. Convergence of the nonlinear Jacobi method to a minimizer

of (2.11) is guaranteed whenever f is differentiable and the mapping x− γ∇f(x) is a contraction

for any γ > 0 [27, Prop.3.10]. Another Jacobi-type method requiring milder assumptions is the

diagonal quadratic approximation [65, 66].

24 2. Background and Related Work

Nonlinear Gauss-Seidel. The nonlinear Gauss-Seidel method is defined as

xk+1
p = arg min

xp

f(xk+1
1 , . . . , xk+1

p−1, xp, xk
p+1, . . . , xk

P) ,

s.t. xp ∈ Xp

p = 1, . . . , P . (2.13)

In contrast with Jacobi methods, updating xp at iteration k requires knowing the current estimates

of the first p− 1 blocks, i.e., xk+1
j for j < p. Hence, all updates have to be carried out sequentially.

The order of the sequence, however, can change from iteration to iteration, and the convergence

to a minimizer of (2.11) is guaranteed whenever each problem in (2.13) has a unique solution

and a regularity condition is satisfied [67]. For example, differentiability and strict convexity of f

implies that regularity condition is satisfied (see the errata of proposition 2.7.1 of [2], available

at http://www.athenasc.com/nlperrata.pdf).

2.1.3 Augmented Lagrangian methods

Augmented Lagrangian methods are important tools for distributed optimization, even though

they were not designed for that purpose. They date back to penalty methods, where a constrained

problem is solved via a sequence of unconstrained problems. Although relying on duality, augmented

Lagrangian methods are guaranteed to find a primal solution even when the cost function is not

strictly convex. This gives them a clear advantage over “simple” duality-based methods, such as

dual decomposition. On the other hand, they do not distribute as easily as “simple” duality-based

methods, because of the augmented term in the augmented Lagrangian.

Method of multipliers. Discovered independently by Hestenes [68] and by Powell [69], the

method of multipliers solves the constrained problem

minimize
x

f(x)

subject to Ax = b ,
(2.14)

where the function f : Rn −→ R∪{+∞} is closed and convex, b ∈ R
m, and the linear system Ax = b

is feasible. Using λ ∈ R
m to denote the dual variable, the augmented Lagrangian of (2.14) is

Lρ(x; λ) = f(x) + λ⊤(Ax− b) +
ρ

2
‖Ax− b‖2 ,

where ρ > 0 is the augmented Lagrangian parameter. Note that the augmented Lagrangian differs

from the ordinary Lagrangian in the augmented term (ρ/2)‖Ax − b‖2. The method of multipliers

solves (2.14) by minimizing the augmented Lagrangian with respect to x, keeping the dual variable λ

2.1. Building blocks: non-distributed, parallel algorithms 25

fixed at λk, and then by updating λ in a gradient-based way. That is, it iterates

xk+1 = arg min
x

Lρ(x; λk) (2.15)

λk+1 = λk + ρ(Axk+1 − b) . (2.16)

Note that (2.16) is indeed a gradient iteration: the dual function Lρ(λ) := infx Lρ(x; λ) is dif-

ferentiable and its gradient is given by Ax(λ) − b, where x(λ) minimizes Lρ(·; λ).2 Furthermore,

it can be shown that the gradient Ax(λ) − b is Lipschitz continuous with constant 1/ρ [30, Th.

4.2.2], [53]. Rockafellar [70] showed that the iterations (2.15)-(2.16) are actually an application of

the proximal minimization algorithm to the dual problem of (2.14) (see also [27, §3.4.4] and [71,

Ch.3]). Therefore, the conditions under which the method of multipliers converges are very mild;

see [72, 73, 74] [27, §3.4.4][2, §4.2] for a detailed analysis and for related methods. Neverthe-

less, the optimization problem in (2.15) is usually nonseparable, because of the augmented term

(ρ/2)‖Ax − b‖2. This makes the method of multipliers difficult to apply in distributed optimiza-

tion. We next present an alternative that, while preserving the good convergence properties of the

method of multipliers, it suits distributed optimization better.

Alternating Direction Method of Multipliers. The Alternating Direction Method of Mul-

tipliers (ADMM) is an augmented Lagrangian method introduced in the mid-seventies by Glowinski

and Marrocco [23] and by Gabay and Mercier [24]. It solves

minimize
x1,x2

f1(x1) + f2(x2)

subject to A1x1 + A2x2 = b ,
(2.17)

where f : Rn1 −→ R∪{+∞} and g : Rn2 −→ R∪{+∞} are closed convex functions, and A1 ∈ R
m×n1

and A2 ∈ R
m×n2 are full column rank matrices. The augmented Lagrangian of (2.17) is

Lρ(x1, x2; λ) = f1(x1) + f2(x2) + λ⊤(A1x1 + A2x2 − b) +
ρ

2
‖A1x1 + A2x2 − b‖2 ,

where the parameter ρ > 0 is assumed fixed. ADMM minimizes Lρ first with respect to x1, then

with respect to x2, and it finally updates the dual variable λ as in the method of multipliers:

xk+1
1 = arg min

x1

Lρ(x1, xk
2 ; λk) (2.18)

2This is true even when A does not have full column rank. To see that, write Lρ(λ) as Lρ(λ) = infz Ψ(z) + λ⊤z +
ρ

2
‖z‖2, where Ψ(z) := infx{f(x) : z = Ax − b} is a convex function [1, §3.2.5]. The quadratic term ‖z‖2 makes the

objective strictly convex and, therefore, the problem defining Lρ(λ) in terms of z has a unique minimizer z(λ) for
each λ. It follows that the subdifferential of Lρ is the singleton {z(λ)}. For each λ, there can be several x(λ)’s solving
the problem defining Ψ(z(λ)).

26 2. Background and Related Work

xk+1
2 = arg min

x2

Lρ(xk+1
1 , x2; λk) (2.19)

λk+1 = λk + ρ(A1xk+1
1 + A2xk+1

2 − b) . (2.20)

ADMM can be seen as the application of the method of multipliers to problem (2.17), where the

minimization with respect to the primal variable (x1, x2) consists of just one Gauss-Seidel pass.

Surprisingly, it solves (2.17) with the same accuracy level as the method of multipliers does, by

using a few more iterations; see [75] for a detailed comparison between ADMM and the method

of multipliers. Curiously, both methods are instances of the proximal point algorithm [76, 77, 78]:

while the method of multipliers results from applying iteratively the resolvent operator to the

subdifferential of the dual function of (2.14) [70], ADMM results from applying iteratively the

Douglas-Rachford operator [79, 80] to the subdifferential of the dual function of (2.17), as discovered

by Gabay [81]. An excellent account on this topic, including an introduction to monotone operator

theory, is given by Eckstein [71, Ch.3] (see also [82]). Alternative proofs for the convergence of

ADMM that do not use any monotone operator theory include [27, §3.4.4] and [35, 83]. Roughly,

ADMM converges whenever f and g are closed and convex, (2.17) is solvable, and strong duality

holds. When A1 and A2 do not have full column rank, the sequence (xk
1 , xk

2) might not converge,

even though f1(xk
1) + f2(xk

2) and λk converge [27, p.260]. Regarding the augmented Lagrangian

parameter ρ, the proofs of the convergence hold for any positive, fixed ρ. Since, in practice, the

value of ρ significantly affects the performance of the algorithm, it is common to use heuristics to

adapt ρ along the iterations [48, 35]. These heuristics, however, cannot be easily implemented in

distributed environments, because they require information from all the nodes at each iteration.

Until recently, the known proofs for the convergence of ADMM did not allow to derive a con-

vergence rate. It was known, however, that ADMM converged linearly for linear programs [84].

More recently, a series of works has derived bounds for the convergence rate of ADMM, many

times, under assumptions stronger than the ones required to prove plain convergence. For example,

[85] proved that the primal and the dual variables converge in an ergodic sense at rate of O(1/k).

The same rate was established in [86] in a non-ergodic sense. The work [87] proved that the cost

function of the dual problem converges to the optimal value at rate O(1/k) and, as a consequence,

the square of the primal and dual residuals [35] converge to zero at the same rate. It is assumed,

however, that at least one of the functions f1 or f2 is strongly convex. Inspired by Nesterov’s

gradient method, [87] also proposes a modification to ADMM whose dual cost function converges

at rate O(1/k2). Note that both O(1/k) and O(1/k2) are sublinear rates.3 When ADMM is applied

to the average consensus problem (after a suitable reformulation to make it distributed, as we will

3We say that a sequence {xk} converges linearly (more appropriately, R-linearly) to x⋆ if there exists M > 0
and c > 1 such that ‖xk − x⋆‖ ≤ M

ck , for a sufficiently large k.

2.1. Building blocks: non-distributed, parallel algorithms 27

see later), linear convergence can be proved [9]. For general quadratic problems, [88] conjectured

that linear convergence also holds, which was later proved in [89]. More recently, Deng and Yin [90]

showed that a generalized version of ADMM converges linearly in terms of the primal and the dual

estimates when at least one of the functions f1 or f2 is strongly convex, differentiable, and has

a Lipschitz continuous gradient. Work that establishes convergence rates for modified versions of

ADMM includes [91, 92, 93, 94].

The recent stream of theoretical work on ADMM in recent years has been motivated by its

application in many areas. For example, ADMM has been applied to image processing [95], to

localization [40], and to several statistical and machine learning problems [96, 35]. Reference [35],

in particular, provides a survey on ADMM from an optimization perspective and describes many

applications in statistics and machine learning.

Multi-block ADMM. The multi-block ADMM is a natural generalization of ADMM when,

instead of the variable being partitioned into two blocks, x1 and x2, as in (2.17), it is partitioned

into a finite number C. Sometimes this method is also known as generalized ADMM or extended

ADMM. Since there are other methods named generalized ADMM, we will refer to it as multi-block

ADMM or as extended ADMM. More specifically, the multi-block ADMM solves

minimize
x1,...,xC

f1(x1) + f2(x2) + · · ·+ fC(xC)

subject to A1x1 + A2x2 + · · ·+ ACxC = b ,
(2.21)

by iterating

xk+1
1 = arg min

x1

Lρ(x1, xk
2 , . . . , xk

C ; λk) (2.22)

xk+1
2 = arg min

x2

Lρ(xk+1
1 , x2, xk

3 , . . . , xk
C ; λk) (2.23)

... (2.24)

xk+1
C = arg min

xC

Lρ(xk+1
1 , xk+1

2 , . . . , xk+1
C−1, xC ; λk) (2.25)

λk+1 = λk + ρ
C∑

c=1

Acx
k+1
c . (2.26)

Note that (2.21) is the same problem as (2.1), the problem solved by decomposition methods. In

this case, the augmented Lagrangian is

Lρ(x1, x2, . . . , xC ; λ) =
C∑

c=1

fc(xc) + λ⊤
(C∑

c=1

Acxc − b
)

+
ρ

2

∥
∥
∥

C∑

c=1

Acxc − b
∥
∥
∥

2
.

28 2. Background and Related Work

It is assumed that each function fc : R
nc −→ R ∪ {+∞} is closed and convex, and that each

matrix Ac ∈ R
m×nc has full column rank. When C = 2, the multi-block ADMM (2.22)-(2.26)

becomes the 2-block ADMM (2.18)-(2.20). The only known proof of convergence of the multi-block

ADMM is due to Han and Yuan [22] and it assumes that all functions f1, . . . , fC are strongly

convex. The following theorem summarizes the known convergence results for the multi-block

ADMM, including its particular version, the 2-block ADMM.

Theorem 2.1 ([83, 22]).

Let fc : Rnc −→ R ∪ {+∞} be a closed convex function over R
nc, not identically +∞, and let Ac be

an m× nc matrix, for c = 1, . . . , C. Assume that (2.21) is solvable and that either

(a) C = 2 and each Ac has full column-rank, or

(b) C ≥ 2, each fc is strongly convex with modulus µc and

0 < ρ < min
c=1,...,C

2µc

3(C − 1) σ2
max(Ac)

, (2.27)

where σmax(·) denotes the largest singular value of a matrix.

Then, the sequence {(xk
1 , . . . , xk

C , λk)} generated by (2.22)-(2.26) converges to (x⋆
1, . . . , x⋆

C , λ⋆), where

(x⋆
1, . . . , x⋆

C) solves (2.21) and λ⋆ solves the dual problem of (2.21): minλ b⊤λ +
∑C

c=1 f⋆
c (−A⊤

c λ),

where f⋆
c is the convex conjugate of fc, c = 1, . . . , C.

A proof for case (a) can be found in [83], which generalizes the proofs of [27, 35]. A proof

for case (b) can be found in [22]. It is believed that the multi-block ADMM (2.22)-(2.26) still

converges for any finite C > 2 whenever each function fc is closed and convex and each matrix Ac

has full column rank, i.e., that the generalization of Theorem 2.1 under case (a) still holds. This

belief is based on empirical evidence [97], but its proof remains still an open problem. So far, there

are only proofs of convergence for similar algorithms that are either slower [98] or that cannot be

implemented (at least, straightforwardly) in distributed scenarios [97]. In fact, [98] proves that a

modification of the iterates (2.22)-(2.26) converges linearly when each function fc is strictly convex,

differentiable, and has a Lipschitz continuous gradient. That modification consists of changing the

stepsize ρ in (2.26) to a smaller number. When that number is sufficiently small, linear convergence

can be proved. However, in practice, reducing the stepsize makes the algorithm slower. We note

that the distributed algorithms proposed in this thesis are based on the multi-block ADMM, and

that we started using them [99] even before there was a proof of convergence [22].

2.2. Distributed algorithms 29

2.2 Distributed algorithms

To the best of our knowledge, the problem we aim to solve, (P), has been considered before only with

the following types of variable: global, star-shaped, and mixed (where all non-global components

are star-shaped); see Figure 1.7 from Chapter 1 for a visualization of the relation between these

types of variables. We next review distributed algorithms that were designed for these types of

variables, or for applications that can be written as (P) with such variables.

We mention that [35, §7.2] proposes an algorithm based on the 2-block ADMM for solving (P)

with a generic variable. However, it either requires a platform supporting all-to-all communications

(equivalently, a central node), or running, at each iteration, a consensus algorithm on each induced

subgraph [35, §10.1]. This makes that algorithm not distributed in our sense. Actually, that

algorithm becomes distributed only when the variable is star-shaped. We also mention that we

found only one distributed algorithm in the literature that can solve (P) when the variable is non-

global and non-star-shaped, but still connected. That algorithm, also based on the 2-block ADMM,

was proposed in [47] for state estimation of power systems, a problem formulated as (P) with a

star-shaped variable. In Chapter 4, we generalize that algorithm for a generic connected variable,

and then for a non-connected variable. This means that the algorithm in [47] can also solve (P) in

full generality, after proper modifications. Our experimental results, however, show that it always

requires more communications to converge to a solution of (P) than the algorithm we propose.

2.2.1 Global class

Among all the classes, the global problem class (G) is the most well studied. For convenience, we

recall that (G) is written as

minimize
x∈Rn

f1(x) + f2(x) + · · ·+ fP (x) , (G)

where all functions depend on all the components of the variable x. Although several applications

can be posed naturally as (G), the application that triggered the interest on the design of distributed

algorithms for (G) was the average consensus [7]. Indeed, this was the motivating application in [4],

which designed probably the first distributed algorithm for the class (G), an incremental subgradient

algorithm. Other important pioneer work includes gradient- and subgradient-based algorithms by

Nedić, Ozdaglar, and collaborators [100, 101, 102, 103, 104], whose work was inspired by [39, 105].

At the same time, the first distributed, ADMM-based algorithm was proposed by Schizas, Ribeiro,

and Giannakis [25].

30 2. Background and Related Work

We next review four categories of algorithms for (G): incremental, (sub)gradient-based, double-

looped, and ADMM-based. Special emphasis will be given to the latter, since the algorithms we

propose are also based on ADMM.

Incremental methods. An incremental (sub)gradient method solves problems with the for-

mat (G) with the same scheme as the (sub)gradient method (2.9). However, instead of using the

(sub)gradient of the entire objective f1 + · · ·+ fP , it only uses the (sub)gradient of one function fp

at a time. More concretely, it consists of

xk+1 =
[

xk − αk∇f̃ik
(xk)

]

Xp

, (2.28)

where we decomposed each fp = f̃p + iXp into its real-valued part f̃p and into its infinity-valued (or

constraint-enforcing) part iXp . To simplify notation, we assumed in (2.28) that each function f̃p

is differentiable; if not, just replace ∇f̃p(xk) by any subgradient of f̃p at the point xk. The se-

quence {ik} takes values in {1, 2, . . . , P} and determines the order of the updates, which can be

deterministic or randomized. Surveys about incremental methods, including convergence analysis,

can be found in [2, §1.5.2,§6.3.2] and [5]. Roughly, incremental (sub)gradient methods progress

faster than their non-incremental counterparts far from the solution, but are slower near the so-

lution [5]. Since they use the (sub)gradient of only one function at each iteration, they can be

implemented naturally in a distributed scenario, with a single node performing the update (2.28)

at each time instant, in a round-robin fashion. This was done in [4, 106] for a deterministic se-

quence {ik} and in [107] for a randomized one. The work [5] surveys these methods and, in addition,

presents an unified view of incremental (sub)gradient methods, incremental proximal methods, and

their combination. In general, incremental methods have slow convergence rates; and, in distributed

optimization, they have the disadvantage of making just a single node active at each time instant.

The algorithms we propose here, besides exhibiting faster convergence rates, have a higher degree

of parallelism, even though not all nodes are active at the same time, i.e., they are not fully parallel.

(Sub)gradient-based. If we apply the (sub)gradient algorithm (2.9) directly to problem (G),

the resulting algorithm is non-distributed, since updating x at iteration k requires the (sub)gradients

of all the functions at the point xk. Therefore, using (sub)gradient algorithms to solve (G) in a

distributed way requires either reformulating (G) into another equivalent problem, or changing the

(sub)gradient algorithm.

The first option was taken in [108], where (G) was rewritten as

minimize
x1,...,xP

f1(x1) + f2(x2) + · · ·+ fP (xP)

subject to xp − xj ≥ 0 , j ∈ Np , p = 1, . . . , P ,
(2.29)

2.2. Distributed algorithms 31

where each variable xp ∈ R
n, held at node p, is a clone of the original variable x ∈ R

n. Recall thatNp

denotes the set of neighbors of node p. This reformulation increases the size of the optimization

variable in (G) from n to Pn and adds 2E constraints (two constraints per each edge (i, j) ∈ E :

xi−xj ≥ 0 and xj−xi ≥ 0, which implies xi = xj and, thus, the equivalence between (G) and (2.29)).

Note that problem (2.29) has the same format as (2.1), the problem that decomposition methods

solve. Indeed, [108] then applies the dual decomposition method described in Subsection 2.1.1

(the generalization of the dual decomposition from equality-constrained problems to inequality-

constrained ones is straightforward). If we rewrite the constraints of (2.29) in matrix form, the

matrices corresponding to each Ap in (2.1) have a special format: the nonzero entries correspond

either to the variable of node p or to the variables of its neighbors. This is makes dual decomposition

yield a distributed algorithm. Since in [108] each function is assumed strictly convex, the dual

function is differentiable and the gradient algorithm can be applied to solve the dual problem.

The second option (of changing the (sub)gradient algorithm) was taken in a series of works,

including [100, 101, 102, 103]. These works study the convergence of a (sub)gradient algorithm

coupled with a consensus scheme:

xk+1
p =

[
∑

j∈Np∪{p}

ak
pjxk

j − αk∇fp(xk)

]

Xp

, (2.30)

where we used the same simplifications as in (2.28). In (2.30), ak
pj > 0 models the influence

node j exerts on node p at iteration k. So, at each iteration k, node p receives the estimates xk
j

from its neighbors Np, averages them with its own estimate xk
p, and then performs a projected

(sub)gradient step, where the (sub)gradient that is used is the one given by its private function fp.

It is generally assumed that
∑

j ak
ij = 1. When all functions fp are zero and all the sets Xp are the

full space R
n, (2.30) becomes the familiar consensus scheme (1.1); and when the network is reduced

to a single node, (2.30) becomes the familiar (sub)gradient algorithm (2.9). The linearity of the

algorithm (2.30) and the nonexpansiveness property of the projection operator allow an extensive

study of the algorithm. In particular, there are proofs of convergence even when the network

edges appear and disappear randomly over time. The resulting algorithm, however, inherits the

slow convergence properties of the (sub)gradient algorithm, making it communication-inefficient.

Variations of (2.30) have also been explored [109, 110, 111, 112]. For example, [109] considers

the update xk+1
p =

[∑

j∈Np∪{p} ak
pj(x

k
j −αk∇fj(x

k))
]

Xp
and, thus, the (sub)gradient update occurs

before transmission; the work [110, 111] applies (2.30) to the dual of a constrained optimization

problem.

After noticing that (2.30) is the application of the (sub)gradient algorithm (2.9) to a problem

related (but not equivalent) to (G), [113] proposed an improvement based on Nesterov’s fast gradient

32 2. Background and Related Work

algorithm (2.10). The problem algorithm (2.30) actually solves is

minimize
x=(x1,...,xP)

f1(x1) + · · ·+ fP (xP) +
α k

2

∑

(i,j)∈E

‖xi − xj‖2 , (2.31)

where xp ∈ R
n is the copy of x held by node p, α > 0 is a constant, and k is the iteration number.

The first term of the objective of (2.31) is the original objective (G), where the variable x was

replaced by its copy xp at the pth function fp; the second term is a consensus-inducing term, in the

sense that different values of the copies between neighbors are penalized. As the iterations go on,

the second term becomes more important, forcing the nodes to achieve a consensus on their copies.

Note that problems (G) and (2.31) are not equivalent and that this provides an additional reason

why algorithms based on (2.30) usually converge slowly. The algorithms we propose in this thesis

reformulate (G) into problems that are equivalent to the original one and, thus, do not have this

drawback.

Other distributed algorithms that solve (G) with algorithms based on (sub)gradient methods

include [114], which hinges on a dual averaging algorithm by Nesterov [115], and [104], which studies

a gossip-based version of (2.30), i.e., only two neighboring nodes communicate at each time instant.

The work [116] solves (2.5), i.e., the dual of (2.1), using Polyak’s heavy-ball method [117].

Double-looped algorithms. A reformulation of (G) similar to (2.29), but that uses half the

constraints, is

minimize
x1,...,xP

f1(x1) + f2(x2) + · · ·+ fP (xP)

subject to xi = xj , (i, j) ∈ E ,
(2.32)

where the copies associated to each node are enforced to be the same through the edges of the

network. Similarly to what we saw for (2.29), if we apply dual decomposition to (2.32), the result

is a distributed algorithm. Unless it is assumed that each function fp is strictly convex, it is not

possible, however, to recover a primal solution after having solved the dual problem. An alterna-

tive is to use augmented Lagrangian methods, for example, the method of multipliers (2.15)-(2.16).

The augmented term, however, precludes the minimization (2.15) from being carried out in a dis-

tributed way. A known workaround is to use an additional loop: an iterative algorithm such as the

nonlinear Jacobi (2.12) or the nonlinear Gauss-Seidel (2.13). In fact, this has been done for solving

problem (2.1) in [118] (method of multipliers concatenated with the diagonal quadratic approxi-

mation) and in [65] (method of multipliers concatenated with the nonlinear Jacobi method). In

our work [119], which is not included in this thesis, we applied Nesterov’s gradient algorithm (2.10)

to both loops, for solving basis pursuit, a problem that can be written as (G), as we will see in

the next chapter. Another relevant work is [120], which solves (G) with the method of multipliers

2.2. Distributed algorithms 33

concatenated with a randomized nonlinear Gauss-Seidel method, and uses a reformulation identi-

cal to (2.32); see [121] for related work. A difficulty that arises when implementing double-looped

algorithms is determining a distributed, robust stopping criterion for the inner loop. Implementing

double-looped algorithms in a communication-efficient manner is therefore very challenging.

ADMM-based. If we apply ADMM to the reformulations (2.29), (2.32), and similar ones,

we get, in general, distributed algorithms that do not suffer the lack of parallelism of incremental

methods, the slow rates of convergence of (sub)gradient-based methods, and the cumbersome two

loops of double-looped algorithms.

Algorithm 1 [25]

Initialization: Choose ρ ∈ R; for all p ∈ V , set x0
p = µ0

p = η0
p = 0n ∈ R

n and τp = 1/(ρ(Dp + 1)); set k = 0
1: repeat
2: for all p ∈ V [in parallel] do

3: Compute zk+1
p = τp µk

p + 1
Dp+1

∑

j∈N +
p

xk
j and exchange zk+1

p with neighbors Np

4: Compute xk+1
p = prox τpfp

(
1

Dp+1

∑

j∈N +
p

zk+1
j − τp ηk

p

)

and exchange xk+1
p with neighbors Np

5: Update the dual variables:

µk+1
p = µk

p +
1

τp

(
1

Dp + 1

∑

j∈N +
p

xk+1
j − zk+1

p

)

ηk+1
p = ηk

p +
1

τp

(

xk+1
p − 1

Dp + 1

∑

j∈N +
p

zk+1
j

)

6: k ← k + 1
7: end for
8: until some stopping criterion is met

As said before, the first distributed algorithm based on ADMM was proposed in [25], for solving

a particular instance of (G) in the context of estimation. That algorithm, however, can be easily

generalized to solve the entire class (G) and is shown as Algorithm 1, explained later. Appendix A

shows the derivation of Algorithm 1: we show this derivation for completeness and because, to our

best knowledge, there is no reference in the literature where the algorithm is derived to solve the

entire class (G). The derivation applies the 2-block ADMM to the following reformulation of (G):

minimize
x̄,z̄

f1(x1) + f2(x2) + · · · + fP (xP)

subject to xp = zj , j ∈ N+
p , p = 1, . . . , P ,

(2.33)

34 2. Background and Related Work

where each node p has two copies of x: xp ∈ R
n and zp ∈ R

n.4 The optimization variable

is (x̄, z̄) = (x1, . . . , xP , z1, . . . , zP) ∈ (Rn)2P , which makes problem (2.33) have 2P times more

variables than the original problem (G). In (2.33), we used N+
p = Np ∪{p} to denote the extended

neighborhood of node p, i.e., its set of neighbors Np and itself. Problem (2.33) then has 2E + P

constraints, since there are 2 constraints per edge (i, j) ∈ E , xi = zj and xj = zi, and each node p

constrains xp = zp. Regarding Algorithm 1, it is fully parallel, as all nodes perform the same

tasks at the same time. In the initialization, ρ is the augmented Lagrangian parameter and is

assumed fixed and known by all the nodes. At each node p, there is an auxiliary variable τp that

depends on ρ and on Dp = |Np|, the number of neighbors of node p. The algorithm consists of

three operations, in two of each there is a communication step. Specifically, in step 3 (resp. 4) each

node updates zp (resp. xp) and exchanges it with its neighbors. Note that updating xp in step 4

requires the variables zj from the neighbors j ∈ Np. Note also that while the update of zp is linear

and independent of the function fp, the update of xp involves the prox operator of a scaled version

of fp. The prox operator of a closed convex function f : Rq −→ R ∪ {+∞} is defined as

proxf (x) = arg min
y

f(y) +
1

2
‖y − x‖2 . (2.34)

This operator, introduced in [122], arises in ADMM-based algorithms, since each ADMM subprob-

lem (cf. (2.18)-(2.19)) is a quadratic problem that can always be written in terms of the prox

operator. The prox operator has many properties; see [123] for an extensive list. After performing

step 4 in Algorithm 1, node p updates two dual variables, µp and ηp, using the new values of xj

and zj , for j ∈ N+
p . The convergence of the algorithm is guaranteed by the convergence results for

the 2-block ADMM (2.18)-(2.20).

Algorithm 2 [26]

Initialization: Choose ρ ∈ R; for all p ∈ V , set x0
p = µ0

p = 0n ∈ R
n and τp = 1/(2ρDp); set k = 0

1: repeat
2: for all p ∈ V [in parallel] do

3: Compute xk+1
p = proxτpfp

(
1

2Dp

∑

j∈Np
(xk

p + xk
j)− τpµk

p

)

and exchange xk+1
p with neighbors Np

4: Update the dual variable µk+1
p = µk

p + 1
2τp

(
xk+1

p − 1
Dp

∑

j∈Np
xk+1

j

)

5: k ← k + 1
6: end for
7: until some stopping criterion is met

4As pointed out in [25], if there are cliques in the network and, in each clique, only one node is chosen to have the
second copy of x, say zp, problems (G) and (2.33) are still equivalent. In that case, we can even go further and reduce
each clique to one node. Since this is a very specific case, we will ignore it and assume that there are no cliques or,
if there are, that each node has two copies of x anyway.

2.2. Distributed algorithms 35

The second distributed algorithm based on ADMM was proposed in [26] to solve the average

consensus problem, in the context of channel decoding. As [25], it can also be easily generalized

to solve the entire class (G). Indeed, that algorithm was used in [9, 42, 43, 124] to solve several

other problems in signal processing and machine learning that can be recast as (G). Algorithm 2

shows an adaptation of the algorithm proposed in [26] to solve the entire class (G); its derivation

is shown in Appendix A.3. As in Algorithm 1, the derivation applies the 2-block ADMM, but to

a different reformulation of (G). Namely, starting with the equivalent problem (2.32), [26] adds E

new variables, each one associated to an edge (i, j) ∈ E of the network, and rewrites (2.32) as

minimize
x̄,z̄

f1(x1) + f2(x2) + · · ·+ fP (xP)

subject to xi = zij , (i, j) ∈ E
xj = zij , (i, j) ∈ E ,

(2.35)

where (x̄, z̄) = (x1, . . . , zP , . . . , zij , . . .) ∈ (Rn)P +E is the optimization variable. Problem (2.35) then

has P +E more variables (each of size n) than (G) and introduces 2E constraints. In Appendix A.3,

we show how the application of the 2-block ADMM (2.18)-(2.20) to (2.35) yields Algorithm 2. Note

that the application of the same algorithm to a different problem reformulation yields a different,

yet more efficient, algorithm. In particular, Algorithm 2 has only one communication step per

iteration, whereas Algorithm 1 has two. The communication step occurs in step 3, where each

node p updates its estimate xp by computing the prox operator of τpfp, and then broadcasts the

new estimate to its neighbors Np. Note that z̄, the variable that was introduced in (2.35), is absent

of Algorithm 2 since, as shown in Appendix A.3, it can be eliminated. The notable work [9] provides

a thorough analysis of Algorithms 1 and 2 applied to the average consensus problem. Namely, it

establishes linear convergence, proposes a scheme to select the augmented Lagrangian parameter ρ,

and studies the factors that influence their convergence. More recently, the work [125, 126], based

on the results of [90], establishes the linear convergence of Algorithm 2 whenever each function fp is

strongly convex, differentiable, and its gradient is Lipschitz continuous. It also studies the factors

that influence the convergence rate of the algorithm and, based on that study, proposes a scheme to

select the augmented Lagrangian parameter ρ. Although that scheme gives a reasonable value for ρ,

it does not give the optimal one, i.e., it is usually possible to select a better one by trial-and-error.

This partly explains why in the experimental results presented in this thesis we always try several

values for ρ, through grid search, and select the one that yields the best result.

The algorithm we propose for (G), rather than using the 2-block ADMM, applies the multi-block

ADMM (2.22)-(2.26) directly to reformulation (2.32). Although we cannot establish a convergence

rate (since that is still an open problem for the multi-block ADMM), we show through extensive

36 2. Background and Related Work

experimental results that the resulting algorithm outperforms both Algorithms 1 and 2 in terms of

the number of communications.

Other splitting methods. We already mentioned that ADMM is an application of the

Douglas-Rachford splitting operator to finding the zeros of a given monotone operator. Besides

ADMM, other splitting algorithms can be applied and yield distributed optimization algorithms.

One example is in [127], which applies a parallel splitting scheme directly to reformulation (2.32), as

the algorithm we propose. Our experimental results show, however, that our algorithm outperforms

the algorithm proposed in [127] in terms of the number of communications.

We also mention that [128] proposed an asynchronous distributed algorithm for (G) using a ran-

domized version of the Douglas-Rachford operator. Their experimental results show, however, that

the resulting algorithm requires more communications to converge than by using the synchronous

version. A gossip-based distributed ADMM-based algorithm has been recently proposed in [94] and

has been shown to converge with rate O(1/k).

2.2.2 Star-shaped class

Somehow differently from the global class (G), distributed algorithms for the star-shaped class

have been motivated mainly by specific applications, and not by the goal of solving an entire class

of optimization problems. Such a motivating applications include network utility maximization

(NUM), network flow problems, state estimation in power systems, and distributed model predic-

tive control (D-MPC). For this reason, we will organize this section application-wise rather than

algorithm-wise. Some applications, most notably D-MPC, arise naturally in scenarios where the

variable is non-global and non-star-shaped. In fact, one of the contributions of this thesis is a new

framework for D-MPC that uses a generic connected, or even non-connected, variable; this will be

addressed in Chapter 4.

Network utility maximization. Consider a network whose edges have a finite transmission

capacity and whose nodes are either packet sources, packet sinks, or packet re-transmitters. Each

source sends packets to one sink through a specific, pre-chosen route along the network. Associated

to each source s there is an utility function Us (increasing and concave) that depends on xs, the

rate at which source s sends packets. The goal of network utility maximization (NUM), proposed

in [129, 130], is to maximize the sum of the utilities of all the sources, while satisfying the link

capacity constraints:

maximize
x=(x1,...,xS)

∑S
s=1 Us(xs)

subject to Rx = c

x ≥ 0 ,

(2.36)

2.2. Distributed algorithms 37

where the lth row of the routing matrix R has ones in entries corresponding to sources that use link l

and zeros elsewhere. The lth entry of vector c has the capacity of link l. Note that problem (2.36) is

a particular instance of (2.1). It has been used to model congestion control on the Internet [129, 131,

132] and scheduling problems [133]; see also the surveys [52, 134]. If we build an auxiliary network

indicating which links are used by each source then, as we will see in Chapter 4, a dual problem

of (2.36) can be written as (P) with a star-shaped variable. Actually, if we apply a gradient or a

subgradient method directly to that dual problem, we obtain a distributed algorithm because all

the induced subgraphs are stars. This is done in [131], which proposes and analyzes synchronous

and asynchronous versions of the gradient method for a dual problem of (2.36); curiously, the

TCP/IP Vegas protocol, which was designed as an ad hoc congestion control protocol, is interpreted

in [132] as a gradient method solving that dual problem. With the goal of improving the speed

to convergence, Newton-like methods have also been proposed, for example, a diagonally scaled

version of the gradient method with Hessian information in the diagonal [135], and a Newton

method where the descent direction is computed approximately [136, 137, 138]. More recently,

[139] took advantage of the strong concavity of typical utility functions, which implies that their

conjugate is differentiable with Lipschitz continuous gradients, and proposed applying Nesterov’s

gradient method (2.10) with a choice for a Lipschitz constant that does not require knowing all the

utilities at a central location. Then, it proved that the primal estimates converge at rate O(1/k)

to their optimal values.

In all these methods, the communication between the source nodes and the used links can

be done implicitly, i.e., without sending additional numbers over the network: only by increasing

or decreasing the sending rate at which each source sends its packets, and by discarding or not

packets that arrive to a given link, an implicit communication can be established. The algorithm

we propose for (P), in contrast, requires explicit communication between the source nodes and the

links; however, it exhibits faster convergence to the equilibrium.

Distributed model predictive control. Model predictive control (MPC), also known as re-

ceding horizon control, is an efficient control scheme for discrete-time systems. Dating back to the

early sixties [140, 141], MPC became very popular in the petro-chemical industry in the early eight-

ies, as surveyed in [142]. The interest in applying MPC to distributed systems, however, arose later,

in the nineties [143, 144]. The setting is a network of systems, each of which has associated a state,

a control input, or both. Each system interacts with neighboring systems in two ways: through

system dynamics and through communication. Interaction through system dynamics means that

the state of each system is influenced by the states and control inputs of neighboring systems; some-

times, neighboring systems also have coupled goals (or efficiency measures). Interaction through

communication refers to the ability that each system has to exchange messages with neighboring

38 2. Background and Related Work

systems and, thus, it corresponds to what we call communication network. MPC in this scenario is

usually referred to as distributed MPC (D-MPC). The goal in each instance of D-MPC is to make

the systems cooperate to find an optimal set of inputs, i.e., control inputs that drive the state of

each system from an initial (measured) state to a predefined goal, while minimizing the energy

to do so. This can be cast as an optimization problem with the format of (P), as we will see in

Chapter 4. To the best of our knowledge, all prior work on D-MPC has assumed that interaction

through dynamics coincides with interaction through communication. That is, if two systems have

coupled dynamics, i.e., the state of one of them is influenced by the state or input of the other, then

they necessarily communicate directly. According the classification scheme introduced in Chapter 1,

the variable in this case is star-shaped. In this thesis, we introduce a new framework for D-MPC,

where coupled systems do not necessarily need to communicate directly. We also present potential

applications for this new framework.

Early work on D-MPC has focused on studying stability and performance of heuristics whose

solutions are not guaranteed to be optimal. For example, [145] proposes a one-step scheme where

each system solves a local optimization problem that incorporates state predictions from its neigh-

bors; this is preceded by a communication step, where state predictions are exchanged between

neighboring nodes. For related methods, see [19, 146, 147].

D-MPC has also been tackled with optimization-based algorithms, not always completely dis-

tributed, that find exact solutions. For example, [144] proposes an augmented Lagrangian method

where the augmented term is linearized, a method now known as split inexact Uzawa method in the

image processing community [148, 149]. The resulting algorithm is not distributed, since it requires

a central node. Distributed algorithms for D-MPC include dual decomposition with the subgradient

method [150] (as described in Subsection 2.1.1), distributed interior-point methods [151], and more

recently, fast gradient methods [46] and ADMM [46, 152]. In particular, [46, 152] apply the ADMM

method proposed in [35], which becomes distributed whenever the variable is star-shaped. This

is, in fact, the case since, as mentioned before, all prior work on D-MPC assumes that interaction

through dynamics coincides with interaction through communication.

The algorithms we propose for D-MPC require less communications to achieve convergence than

all these algorithms. In addition, they solve D-MPC in scenarios that have never been considered

before: problems with a connected variable that is neither global nor star-shaped, and problems

with a non-connected variable. Both cases model systems that are coupled through their dynamics,

but cannot communicate directly.

Network flows. Beyond NUM and D-MPC, there is an extensive literature on network flow

problems, some of which can be formulated as (P) as well. In a typical network flow problem, each

component of the optimization variable is associated to an edge of the network, and the function

2.2. Distributed algorithms 39

at each node depends on the variables associated to its incident edges. Hence, the variable is

star-shaped; actually, each induced subgraph is very simple: it consists of two nodes and an edge

connecting them. The first optimization algorithm solving a network flow problem was Dantzig’s

simplex method [153, Ch.19-20]. Extensive information about network flows, including specialized

algorithms (most of them centralized), can be found in the surveys [154, 155] and in the books [20,

156].

Regarding distributed algorithms for network flows, dual decomposition methods generally yield

distributed algorithms. For example, by assuming strict convexity on the cost functions, [157]

computes the dual of a network flow problem and proposes to solve it with an asynchronous Gauss-

Seidel method. The application of a subgradient method to a similar problem is analyzed in [158].

More recently, [159] proposed a double-looped algorithm, where the outer loop uses the proximal

minimization algorithm (to overcome the lack of strict convexity of the primal objective) and

the inner loop uses the gradient method. The work [160, 161, 162, 136] proposes a distributed

algorithm for network flows based on Newton’s method, where the Newton direction is computed

approximately. Although the resulting method requires the cost functions to be strongly convex

and twice differentiable, it is proven to converge superlinearly to a neighborhood of the problem’s

solution. This contrasts with the algorithm we propose for (G), which only requires the cost

functions to be convex, possibly non-differentiable. Our algorithm thus requires assumptions much

less restrictive that the assumptions of methods based on dual decomposition or on Newton’s

algorithm. Additionally, as will be shown in Chapter 4, the algorithm we propose requires less

communications to converge than the algorithm in [160, 161, 162].

2.2.3 Mixed class

The mixed problem class (M), reproduced here for convenience,

minimize
x=(y,z)∈Rn

f1(y, zS1) + f2(y, zS2) + · · ·+ fP (y, zSP
) , (M)

has rarely appeared in literature, despite its generality and possible applications. One instance

of (M) has appeared in [33] (see also [52, §IV-B]) as a dual of a NUM problem with coupled

objectives. We will look at this problem with more detail in Chapter 4. Such a problem can

model cooperative systems, e.g., systems where the rate allocated to one source depends on the

rate allocated to the cluster that source belongs to, or competitive systems, e.g., wireless power

control or digital subscribed line (DSL) spectrum management where signal-to-interference ratios

(SIR) are dependent on transmit powers of other users. The method proposed in [33] is distributed

and consists of solving that dual problem (which has the format of (M)) with a gradient method.

40 2. Background and Related Work

Actually, the application of the gradient method to (M) in [33] yields a distributed algorithm,

because the non-global components, z in (M), are star-shaped.

We will also use the framework of (M) to solve in a distributed way a compressed sensing

problem with a data partitioning that has never been considered before. More concretely, basis

pursuit denoising (BPDN), and a related problem that we call reversed lasso have been solved in a

distributed way with a row partition [163, 42, 124] and with a column partition [163], respectively.

The reverse cases, i.e., BPDN with a column partition and reversed lasso with a row partition, have

never been solved before. We will show in Chapter 4 that reversed lasso with a row partition can

be formulated as (M), and therefore can be solved with the algorithms we propose here.

Chapter 3

Global Class

This chapter addresses the global class (G) and is based on the publications [164, 165, 166, 83, 163].

The chapter is organized into four sections. In Section 3.1, the problem is formally stated and the

assumptions are clearly identified. In Section 3.2, we describe some applications that can be written

as (G). Special emphasis is given to Subsection 3.2.2, since it contains novel contributions, such as

writing some distributed compressed sensing problems as (G). Then, in Section 3.3, we propose our

algorithm for the global class (G) and analyze it. Finally, in Section 3.4, we show the performance of

the proposed algorithm against prior algorithms by running extensive simulations. These show that,

while solving the entire class (G), our algorithm is as efficient as algorithms that were specifically

designed for particular applications and, often, it is even better.

3.1 Problem statement

The global problem class (G) consists of minimizing the sum of P functions where each function

depends on all the components of x. For convenience, let us rewrite (G) here:

minimize
x∈Rn

f1(x) + f2(x) + · · ·+ fP (x) . (G)

We make the following assumptions:

Assumption 3.1. Each function fp : R
n −→ R ∪ {+∞} is closed and convex over R

n and not

identically +∞.

Assumption 3.2. Problem (G) is solvable, i.e., it has at least one solution x⋆.

In Assumption 3.1 we use the concept of an extended real-valued function f , which can take

infinite values and is defined over all R
n. Such a function is closed and convex if its epigraph

41

42 3. Global Class

epi f := {(x, r) ∈ R
n × R : f(x) ≤ r} is closed and convex, respectively [54, §1.2], [30, §B.1].

Alternatively, a function is closed if it is lower semicontinuous or if all its sublevel sets are closed [54,

Prop.1.2.2], [30, Prop.1.2.2]. Considering extended real-valued functions simplifies the notation

without losing generality: as explained before, each node p can constrain variable x to belong to

a given set S, i.e., x ∈ S, through an indicator function iS, defined as iS(x) = 0 if x ∈ S, and

iS(x) = +∞ if x 6∈ S.

We associate problem (G) to a communication network G = (V, E) with P = |V| nodes and

E = |E| edges: the pth node of the network is the only node who knows function fp or, in other

words, function fp is private to node p. Regarding the network, we assume:

Assumption 3.3. The network is connected and its topology does not vary with time.

Assumption 3.4. A coloring scheme C of the network is available; each node knows its own color

and the color of its neighbors.

The concept of network coloring was explained in Section 1.1: it is an assignment of numbers,

called colors, to the nodes such that no neighboring nodes have the same color. Formally, each

node is assigned a color in C = {1, . . . , C}, where C := |C| is the total number of colors, and C(p)

denotes the color of node p. The coloring scheme C is called proper (or valid) if C(i) 6= C(j), for all

(i, j) ∈ E . Our goal is to design a distributed algorithm that solves (G) while keeping the function fp

private to node p. Recall that a distributed algorithm is one that uses no central or special node

and no all-to-all communications.

Discussion of the assumptions. Compared to prior algorithms for the global class (G), the

problem Assumptions 3.1 and 3.2 are very general, while the network Assumptions 3.3 and 3.4 are

more restrictive, yet realistic in some scenarios. In fact, what Assumption 3.1 asks is the problem

to be convex, a minimal requirement to guarantee that we can find a global minimizer of (G). In

Assumption 3.2, we require that the problem is well-posed by having at least one solution.

Regarding the network assumptions, assuming a fixed network topology as in Assumption 3.3 is

a common first step in distributed optimization. Some algorithms, however, are proven to converge

under intermittent link failures, e.g., [108, 102, 120]. These algorithms, in turn, require more as-

sumptions on the functions in (G). In fact, there seems to be a curious tradeoff between the problem

assumptions and the network assumptions: the algorithms that relax the network assumptions usu-

ally require more restrictive problem assumptions, and vice-versa. Regarding Assumption 3.4, this

assumption is new in the context of distributed optimization and will underlie the construction of

our algorithm. Recall that finding the minimum number of colors a network can be colored with is

NP-hard [167], except for bipartite networks. The minimum number of colors required to color a net-

work G is called the chromatic number and is represented with χ(G). Assuming that χ(G) is known

3.2. Applications 43

and that χ(G) > 2 (i.e., the network is not bipartite), coloring G with χ(G) colors is NP-hard as well.

Given its importance in wireless networks, there are several approximation algorithms to compute

coloring schemes of networks, some of which are distributed [168, 169, 170, 171]. For example, [168]

proposes a coloring scheme that uses O(Dmax) colors while requiring O(Dmax/ log2(Dmax)+log⋆(P))

iterations to compute them, where Dmax := max{Dp : p ∈ V} is the maximum degree of a node

in the network. Another coloring scheme using less iterations, but more colors, more specifically,

O(log⋆(P)) iterations and O(D2
max) colors, is proposed in [171]. In this thesis, we assume that a

coloring scheme with C colors is given and we will ignore how it was obtained. Consequently, the

additional number of communications to obtain the scheme will also be ignored in the comparison

with other algorithms. Although all the other algorithms use no coloring scheme (all nodes work

in parallel), the comparison is fair for two reasons: first, if an algorithm is run several times on

the same network, for example, for different data, coloring the network just needs to be done once,

before the first instantiation; after running the algorithm several times, the coloring cost becomes

diluted. The second, and perhaps more important, reason is that in networks where the trans-

mission medium is shared, for example, in wireless networks or even in Ethernet cables, the nodes

cannot communicate in parallel without using a medium access control (MAC) protocol [172, Ch.5-

6],[21]. For example, in wireless networks, one node cannot receive two different messages from

its neighbors at the same time and at the same frequency (unless it uses more than one receive

antenna [173]). This creates the hidden and the exposed node problems [21, §6.2.2], which are

prevented by the use of MAC protocols. For data-intensive algorithms, such as the ones consid-

ered in this thesis, schedule-based MAC protocols are the most energy-efficient [21, §6.7]. Time

division multiple access (TDMA) is such a protocol which, in addition, is also based on network

coloring. The particular coloring scheme used by TDMA can also be used for the algorithms we

propose; thus, our algorithms integrate naturally with TDMA. Prior algorithms for distributed

optimization, in contrast, assume no particular MAC protocol. The second part of Assumption 3.4

will be discussed when we introduce our algorithm; briefly, it allows discarding a centralized entity

controlling all the nodes that have the same color (recall that they are not neighbors) and, because

of that, it is essential in making our algorithm distributed.

3.2 Applications

There are many engineering problems that can be written as (G). Here, we will focus on problems

that arise in networks and, consequently, that can be solved via distributed algorithms. We address

two types of problems: inference problems, which include average consensus and support vector

44 3. Global Class

machines (SVMs), and sparse solutions of linear systems, which include several compressed sensing

problems.

3.2.1 Inference problems

Average consensus. Consider the scalar version of the inference problem described in Chapter 1:

a sensor network composed of P nodes is deployed to estimate a parameter θ̄ ∈ R. The estimation

uses measurements from all the sensors, which are assumed noisy. Let θp denote the measurement

at node p. When the noise is independent across nodes, Gaussian, with zero mean, and identity

covariance matrix, the maximum log-likelihood estimation of θ̄ is given by average consensus [7]:

minimize
x

1
2 (x− θ1)2 + 1

2(x− θ2)2 + · · ·+ 1
2(x− θP)2 . (3.1)

Average consensus has been widely studied in the literature, and many distributed algorithms have

been proposed to solve it [174, 8, 175, 176, 12, 11, 177, 10]. Curiously, most of these algorithms

are not optimization-based, in the sense that they do not view the consensus problem as the

distributed optimization problem (3.1); rather, they simply solve it with a linear update scheme,

such as (1.1). Work that has addressed average consensus by devising a distributed optimization

algorithm for (3.1) includes [4, 106, 25, 26, 9]. In particular, [9] analyzes Algorithms 1 and 2,

described in Chapter 2, applied to consensus. Despite the vast quantity of algorithms for the average

consensus, we will see that the algorithm we propose for the global class (G) has a performance

similar to the most efficient algorithms, if not better.

Support vector machine (SVM). Another important inference problem is a support vector

machine (SVM) [17, Ch.7]. Training an SVM consists of finding the parameters (s, r) ∈ R
n−1 × R

of an hyperplane {x ∈ R
n−1 : s⊤x = r} that best separates two classes of points. These points are

given as (xk, yk) ∈ R
n−1×R, where yk ∈ {−1, 1} indicates the class of the point xk. Finding these

parameters usually involves solving an optimization problem, for example,

minimize
s,r,ξ

1
2‖s‖2 + β 1⊤

Kξ

subject to yk(s⊤xk − r) ≥ 1− ξk , k = 1, . . . , K

ξ ≥ 0 ,

(3.2)

where K is the total number of points, β > 0 is a tradeoff parameter, and ξ ∈ R
K is a vector of

slack variables. In a network scenario, we assume each node knows mp points, but all the nodes

3.2. Applications 45

cooperate to solve the global problem (3.2). This problem can be written as (G) by setting

fp(s, r) = inf
ξ̄p

1
2P ‖s‖2 + β 1⊤

mp
ξ̄p

s.t. Yp(Xps− r1mp) ≥ 1mp − ξ̄p

ξ̄p ≥ 0 ,

(3.3)

where Yp is a diagonal matrix with the labels yk of the points of node p in the diagonal, and Xp is

an mp×n matrix with each row containing x⊤
k , ordered the same way as Yp. The variable x in (G)

corresponds to (s, r), since the slack variables ξ̄p are internal to each node. This distributed SVM

problem has been solved in [43] with Algorithm 2. See [178] for a related message-passing method.

3.2.2 Sparse solutions of linear systems

Another application we consider is finding sparse solutions of distributed linear systems. This

is mainly motivated by the recent field of compressed sensing [13, 14], which establishes a new

paradigm for signal acquisition and sampling. Surveys on the topic include [179, 180, 181, 182].

While acquisition of signals in compressed sensing is usually simple, reconstructing them afterwards

is more complicated and it involves solving an optimization problem. In noiseless scenarios, the

most common problem is basis pursuit (BP) [15]:

minimize
x∈Rn

‖x‖1
subject to Ax = b ,

(3.4)

where x ∈ R
n is the variable and ‖x‖1 denotes the ℓ1-norm of x, defined as ‖x‖1 :=

∑n
i=1 |xi|. The

matrix A ∈ R
m×n and the vector b ∈ R

m are associated to the acquisition process, and we assume

they are given. The linear system Ax = b is underdetermined, i.e., m < n, and the matrix A

is usually assumed full rank, so that the linear system is feasible for any b. This is common in

compressed sensing, since the entries of A are usually drawn randomly and in an independent way.

In noisy scenarios other problems are used. An example is basis pursuit denoising (BPDN) [15]:

minimize
x∈Rn

1
2‖Ax− b‖2 + β‖x‖1 , (3.5)

where β > 0 is a tradeoff parameter and ‖z‖ denotes the ℓ2-norm of z ∈ R
q, i.e., ‖z‖ =

√
∑q

i=1 z2
i .

There is also a problem that we will call reversed lasso [183, 184, 185]:

minimize
x∈Rn

‖x‖1
subject to ‖Ax− b‖ ≤ σ ,

(3.6)

46 3. Global Class

��

.

.

.

��

� �

�� �� � � � ��

� �

Row Partition Column Partition

Figure 3.1: Row partition and column partition of A into P blocks. A block in the row (resp. column)
partition is a set of rows (resp. columns).

where σ > 0 is a known bound on the noise magnitude, and a problem called the least absolute

shrinkage and selection operator (lasso) [16]:

minimize
x∈Rn

1
2‖Ax− b‖2

subject to ‖x‖1 ≤ γ ,
(3.7)

where γ > 0 is a known parameter. Problems (3.4)-(3.7) provide heuristics to find sparse solutions

of the linear system Ax = b. In fact, it was established in [186] that finding a sparsest solution of

that linear system is NP-hard. Such a problem would be written as (3.4) with the cost function

replaced by the cardinality of the vector x, card(x). We thus see that (3.4) approximates the

non-continuous, non-convex function card(x) by the convex function ‖x‖1, resulting in a convex

(and hence easier) problem. The same approximation motivates problems (3.5)-(3.7), but in the

scenario where b may not be expressed exactly as a linear combination of the columns of A. The

theory of compressed sensing establishes conditions on the matrix A under which approximating

card(x) by ‖x‖1 in, for example, BP (3.4) yields an exact approximation: this means that the

NP-hard problem obtained from (3.4) by replacing ‖x‖1 with card(x) has the same solution as the

convex problem BP (3.4). Surprisingly, some types of random matrices satisfy those conditions

with overwhelming probability. For more details see, for example, [187, 188, 189, 190].

Problems (3.5), (3.6), and (3.7) are all related through duality and, therefore, are equivalent in

some sense, provided their parameters β, σ, and γ are chosen appropriately. Among these problems,

(3.6) is the one to which compressed sensing results apply directly [189, 185], in spite of never have

been coined a specific name. Apparently, sometimes it is also called lasso [180], but we avoid that

name to prevent confusion with the original lasso (3.7). Instead, we will call it reversed lasso since,

compared to lasso, its objective and constraints are reversed. Note that when σ = 0, the reversed

lasso becomes BP (3.4). We are interested in solving the compressed sensing problems (3.4)-(3.7)

in the distributed scenarios described next.

Distributed scenarios: row and column partition. We consider two different scenarios

for splitting the data in matrix A and vector b among the nodes of a network with P nodes.

3.2. Applications 47

These are called row partition and column partition, and are visualized in Figure 3.1. In the row

(resp. column) partition, each node stores a block of rows (resp. columns) of A. While in the row

partition vector b is partitioned similarly to A, with each node storing the corresponding subblock,

in the column partition we assume all nodes know the full vector b. More specifically, node p

knows (Ap, bp) ∈ R
mp×n×R

mp in the row partition and knows (Ap, b) ∈ R
m×np×R

m in the column

partition. Naturally, we have m =
∑P

p=1 mp and n =
∑P

p=1 np.

The row partition scenario arises naturally when applying compressed sensing in a sensor net-

work. For instance, suppose the nodes of the network are interested in estimating a high-dimensional

but sparse vector x ∈ R
n, for example, an ultra-wide band but spectrally sparse radio signal. Each

node in the network is equipped with a low bandwidth antenna and, hence, any signal acquisition

has to be done at a rate far below the Nyquist rate. By using a random demodulator [180, 191],

compressed sensing can be applied, and each row of the linear system Ax = b represents one mea-

surement (performed at a low acquisition rate). Therefore, if node p takes mp linear measurements

of x, we have exactly the row partition scenario. This setting appeared in [192, 193], where several

applications are described. It is assumed there, however, that the signal reconstruction, i.e., solv-

ing one of the problems (3.5)-(3.7) is done in a centralized way, in a fusion center. The algorithms

we propose in this thesis allow reconstructing the signal on the network, without using any fusion

center. Furthermore, all nodes will know the signal when the algorithm finishes. Other applications

include distributed target localization [194] and distributed field reconstruction [195].

One application of the column partition is described in [196], in the context of forward modeling

in geological applications. The goal is to find the Green’s function, represented by a vector x, of a

model of the earth’s surface. The authors of [196] propose deploying a set of sources and a set of

receivers over some geographical area and have all the sources emit a signal simultaneously. The

receivers capture a linear superposition of all the emitted signals. The proposed way to find x is by

solving BP (3.4), where a set of columns of A is associated to a source. This is clearly our column

partition scenario. The distance between all the devices in this application makes a distributed

solution convenient, such as the ones provided by our algorithms.

We will see next how BP, BPDN, and lasso with a row partition are naturally recast as (G).

Then, we will consider the less trivial case of a column partition, for all the problems (3.4)-(3.7).

The only problem that will be missing is reversed lasso with a row partition. However, in Chapter 4,

we will be able to recast it as (P), not with a global variable, but with a mixed one.

Row partition: BP, BPDN, and lasso. Consider a row partition as shown in Figure 3.1.

Then, BP (3.4) can be written as (G) by setting as the function of node p

fp(x) =
1

P
‖x‖1 + iApx=bp

(x) , (3.8)

48 3. Global Class

where iApx=bp
(x) is the indicator function of the set {x : Apx = bp}. Similarly, BPDN (3.5) can be

written as (G) by setting as the function of node p

fp(x) =
1

2
‖Apx− bp‖2 +

β

P
‖x‖1 . (3.9)

Note that the parameter β and the number of nodes P is assumed to be known by all nodes.

Lasso (3.7) can also be written easily as (G) by setting

fp(x) =
1

2
‖Apx− bp‖2 + i‖x‖1≤γ(x) (3.10)

as the function of node p. Here, the parameter γ is also assumed to be known at all nodes. Each

function fp in (3.8)-(3.10) contains data that is known only by node p: namely, the pair (Ap, bp).

All these functions are closed and convex. Furthermore, the extended real-valued function (3.8)

(resp. (3.10)) is not identically +∞ whenever Ap has full rank (resp. γ is positive). BPDN with a

row partition was solved in [42, 124] with Algorithm 2, viewing it as an instance of (G) with (3.9).

Column partition: duality and regularization. We now turn into a column partition and

recast all the problems (3.4)-(3.7) as (G). We will need duality to do this. However, plain duality

will not be enough to recover primal solutions from dual solutions, since the problems we dualize

have cost functions that are not strictly convex. We will thus use regularization and, in the case

of BP, the concept of exact regularization. We introduce this concept together with a result by

Friedlander and Tseng [197]. Consider the following conic program

minimize
x

c⊤x

subject to x ∈ K
Ax = b ,

(3.11)

where c ∈ R
n, A ∈ R

m×n, and b ∈ R
m are given, and K ⊆ R

n is a nonempty, closed, convex

cone. Problem (3.11) is assumed to have a nonempty solution set S. Consider now a regularization

function φ : Rn −→ R such that all sublevel sets of S, i.e., {x ∈ S : φ(x) ≤ α}, are bounded for

all α. A result in [197], more specifically in corollary 2.3 of [197], states that when K is polyhedral,

i.e., K = {x : v⊤
i x ≤ 0 , i = 1, . . . , q} for some set of q vectors vi ∈ R

n, then the regularization

of (3.11) with φ is exact. This means that there exists a δ̄ > 0 such that the set of solutions of the

regularized problem

minimize
x

c⊤x + δ
2φ(x)

subject to x ∈ K
Ax = b

(3.12)

3.2. Applications 49

is contained in the set of solutions S of (3.11), for all 0 ≤ δ ≤ δ̄ [197, Cor.2.3]. As mentioned in [197],

this is a generalization of exact regularization results for linear programs [198, 199]. Experimental

results in [197] suggest that the above result is true even whenK is not polyhedral, namely, whenK is

the Lorenz cone {(x, t) : ‖x‖ ≤ t} (also known as the ice-cream cone and as the second-order cone).

That cone will actually arise in some of our problems for which, inspired by the results in [197],

we will perform the above regularization. For BP, we will use the exact regularization result, since

BP is equivalent to a linear program, which is the simplest instance of a conic program. Regarding

the choice of δ, we are unaware of any method that finds δ̄ without first solving the unregularized

problem (3.11). Therefore, we will choose δ based on trial-and-error. According to our experiments,

δ ∈ [10−3, 10−1] allows computing an optimal solution with reasonable accuracy most of the times.

In [197, §7], it is reported that δ = 10−4 yielded an optimal solution in 85% of their experiments.

Column partition: BP. We start with BP (3.4). Consider the regularization function φ(x) =

(1/4)‖x‖2 and the regularized problem

minimize
x

‖x‖1 + δ
2‖x‖2

subject to Ax = b .
(3.13)

Then, by the previous discussion, the following theorem follows.

Theorem 3.5.

Problem (3.13) is an exact regularization of BP (3.4), i.e., there exists a δ̄ > 0 such that the solution

of (3.13), with 0 ≤ δ ≤ δ̄, is always a solution of BP.

Proof.

We use the exact regularization results of [197, 198, 199], as explained before. First, we recast BP

as a problem with the same format as (3.11):

minimize
x,t

1⊤
n t

subject to Ax = b

−t ≤ x ≤ t ,

(3.14)

where t ∈ R
n is an epigraph variable and 1n ∈ R

n is the vector of ones. Problem (3.14) has the

same format as (3.11) by making the correspondence c = (0n, 1n) and K = {(x, t) : −t ≤ x ≤ t},
which is a polyhedral cone that is nonempty, closed, and convex. The corresponding regularized

50 3. Global Class

problem (3.12) with φ(z) = (1/4)‖z‖2 is

minimize
x,t

1⊤
n t + δ

4‖x‖2 + δ
4‖t‖2

subject to Ax = b

−t ≤ x ≤ t

⇐⇒ minimize
x

δ
4‖x‖2

subject to Ax = b

+ inf
t

1⊤
n t + δ

4‖t‖2

s.t. −t ≤ x ≤ t

⇐⇒ minimize
x

‖x‖1 + δ
2‖x‖2

subject to Ax = b ,

which is (3.13). In the last equivalence, we used the fact that, for a fixed x,

inf
t

1⊤
n t + δ

4‖t‖2

s.t. −t ≤ x ≤ t .

= ‖x‖1 +
δ

4
‖x‖2 . (3.15)

Now, let λ ∈ R
m be a dual variable associated to the constraint of (3.13). The dual problem is

maximize
λ

b⊤λ + inf
x

[

‖x‖1 +
δ

2
‖x‖2 − λ⊤Ax

]

(3.16)

⇐⇒ maximize
λ

b⊤λ +
P∑

p=1

inf
xp

[

‖xp‖1 +
δ

2
‖xp‖2 − λ⊤Apxp

]

(3.17)

⇐⇒ minimize
λ

− b⊤λ +
P∑

p=1

sup
xp

[

(A⊤
p λ)⊤xp −

(

‖xp‖1 +
δ

2
‖xp‖2

)]

(3.18)

⇐⇒ minimize
λ

P∑

p=1

(

h⋆
p(A⊤

p λ)− 1

P
b⊤λ

)

, (3.19)

which has the format of (G) with the function at node p given by fp(λ) = h⋆
p(A⊤

p λ) − (1/P)b⊤λ.

From (3.16) to (3.17), we used the column partition and the fact that all terms inside the infimum

decouple. From (3.17) to (3.18), we switched from a maximization problem to a minimization one.

And, in (3.19), we defined h⋆
p as being the convex conjugate of the function hp(xp) = ‖xp‖1 +

(δ/2)‖xp‖2, for each p. Note that the global variable is the dual variable λ; also, after an optimal

value λ⋆ has been found (or better, agreed by all the nodes), the pth component of the corresponding

primal solution x⋆ is available at the pth node. Each component is given by soft-thresholding:

xi =

1
δ

(

(A⊤
p λ)i − 1

)

i
, (A⊤

p λ)i > 1

1
δ

(

(A⊤
p λ)i + 1

)

i
, (A⊤

p λ)i < −1

0 −1 ≤ (A⊤
p λ)i ≤ 1 ,

(3.20)

3.2. Applications 51

for i belonging to the indices of the columns of Ap; see Appendix B for the derivation of (3.20).

Column partition: BPDN. We now move to BPDN with a column partition. We will also

use regularization but, this time, we will not have an exact regularization result. To regularize

BPDN (3.5) the same way as BP, we first rewrite it with the format of (3.11):

minimize
x,t,u,v

1
2v + β 1⊤

n t

subject to ‖u‖2 ≤ v

−t ≤ x ≤ t

u = Ax− b ,

(3.21)

where t ∈ R
n and v ∈ R are epigraph variables, and u ∈ R

m is an auxiliary variable. Problem (3.21)

has the same structure as (3.11), since its objective is linear, the last two constraints are also linear,

and the cone K is the Cartesian product K = Kx,t × Ku,v, where Kx,t = {(x, t) : −t ≤ x ≤ t}
is polyhedral, but Ku,v = {(u, v) : ‖u‖2 ≤ v} is not. Using the function φ(z) = (1/4)‖z‖2 to

regularize (3.21), we obtain

minimize
x,t,u,v

1
2v + β1⊤

n t + δ
4

(

‖x‖2 + ‖t‖2 + ‖u‖2 + v2
)

subject to ‖u‖2 ≤ v

−t ≤ x ≤ t

u = Ax− b ,

(3.22)

⇐⇒ minimize
x

δ
4‖x‖2 + δ

4‖Ax− b‖2 + inf
t

β1⊤
n t + δ

4‖t‖2

s.t. −t ≤ x ≤ t

+ inf
v

1
2v + δ

4v2

s.t. ‖Ax− b‖2 ≤ v

(3.23)

⇐⇒ minimize
x

(1
2 + δ

4)‖Ax− b‖2 + β‖x‖1 + δ
2‖x‖2 + δ

4‖Ax− b‖4 . (3.24)

From (3.22) to (3.23), we replaced u by Ax − b. From (3.23) to (3.24), we used (3.15) with the

weight β and eliminated the epigraph variable v.

Although our next steps are also valid for (3.24), we will discard the last term of its objective,

for simplicity. That is, we will solve instead:

minimize
x

(1
2 + δ

4)‖Ax− b‖2 + β‖x‖1 + δ
2‖x‖2 . (3.25)

We now introduce an auxiliary variable y ∈ R
m and write (3.25) equivalently as

minimize
x

(1
2 + δ

4)‖y‖2 + β‖x‖1 + δ
2‖x‖2

subject to Ax = b + y .
(3.26)

52 3. Global Class

Associate a dual variable λ ∈ R
m to the constraint of (3.26) and compute the dual problem:

maximize
λ

b⊤λ + inf
y

(

(
1

2
+

δ

4
)‖y‖2 + λ⊤y

)

+ inf
x

(

β‖x‖1 +
δ

2
‖x‖2 − λ⊤Ax

)

(3.27)

⇐⇒ minimize
λ

b⊤λ +
1

2 + δ
‖λ‖2 +

P∑

p=1

h̄⋆
p(A⊤

p λ) (3.28)

⇐⇒ minimize
λ

P∑

p=1

[

h̄⋆
p(A⊤

p λ) +
1

P
b⊤λ +

1

(2 + δ)P
‖λ‖2

]

, (3.29)

which has the format of (G) with fp(λ) = h̄⋆
p(A⊤

p λ) + (1/P)b⊤λ + (1/((2 + δ)P))‖λ‖2 as the

function of each node p. From (3.27) to (3.28), we switched from a maximization problem to a

minimization one, and used the fact that the infimum problem in y has a closed-form expression.

Also, the infimum in x was decomposed into blocks, and h̄⋆
p denotes the convex conjugate of the

function h̄p(xp) = β‖xp‖1 + (δ/2)‖xp‖2. From (3.28) to (3.29), we just grouped terms. Note that

solving (3.29) is not equivalent to solving BPDN for two reasons: first because we used regularization

for which there are no exactness results and, second, because we ignored the quartic term in (3.24).

Column partition: reversed lasso. Regarding reversed lasso (3.6), we will also regularize it

and, again, we will not have any exact regularization guarantee. To do the regularization the same

way as before, we first rewrite it with the format of (3.11):

minimize
x,t,u,v

1⊤
n t

subject to ‖u‖ ≤ v

−t ≤ x ≤ t

u = Ax− b

v = σ ,

(3.30)

where t ∈ R
n is, again, an epigraph variable, and u ∈ R

m and v ∈ R are auxiliary variables,

introduced to make a cone appear. Problem (3.30) has indeed the same structure as (3.11), since

the objective is linear, the last two constraints are linear equalities, and the cone K is the Cartesian

product of two cones: K = Kx,t × Ku,v, where Kx,t = {(x, t) : −t ≤ x ≤ t} is polyhedral,

and Ku,v = {(u, v) : ‖u‖ ≤ v} is the Lorenz cone and, thus, not polyhedral. By regularizing (3.30)

with the function φ(z) = (1/4)‖z‖2 , we obtain

minimize
x,t,u,v

1⊤
n t + δ

4

(

‖x‖2 + ‖t‖2 + ‖u‖2 + v2
)

subject to ‖u‖ ≤ v , v = σ

−t ≤ x ≤ t

u = Ax− b

(3.31)

3.2. Applications 53

⇐⇒ minimize
x

δ
4‖x‖2 + inf

t
1⊤

n t + δ
4‖t‖2

s.t. −t ≤ x ≤ t

+ inf
u

δ
4‖u‖2

s.t. u = Ax− b

‖u‖ ≤ σ

(3.32)

⇐⇒ minimize
x

‖x‖1 + δ
2‖x‖2 + δ

4‖Ax− b‖2

subject to ‖Ax− b‖ ≤ σ .

(3.33)

From (3.31) to (3.32), we used the constraint v = σ. From (3.32) to (3.33), we used (3.15) and the

fact that

inf
u

δ
4‖u‖2

s.t. u = Ax− b

‖u‖ ≤ σ

= i‖Ax−b‖≤σ(x) +
δ

4
‖Ax− b‖2 .

In contrast with BP and similarly to BPDN, there is no proof that (3.33) is an exact regularization

of reversed lasso, although experimental results in [197] suggest that exact regularization might

occur for the Lorenz cone. In our experimental results, discussed later, we solved (3.33) using

δ = 10−2 and the corresponding solutions never differed more than 0.5% from the “true” solution.

We next introduce an auxiliary variable y ∈ R
m in (3.33), yielding

minimize
x,y

‖x‖1 + δ
2‖x‖2 + δ

4‖y‖2

subject to ‖y‖ ≤ σ

y = Ax− b .

(3.34)

Now, associate a dual variable λ ∈ R
m to the last constraint of (3.34) and compute the dual

problem (without dualizing the first constraint). This gives

maximize
λ

b⊤λ + inf
y

λ⊤y + δ
4‖y‖2

s.t. ‖y‖ ≤ σ

+ inf
x

[

‖x‖1 +
δ

2
‖x‖2 − λ⊤Ax

]

(3.35)

⇐⇒ maximize
λ

b⊤λ− σ‖λ‖+ inf
x

[

‖x‖1 +
δ

2
‖x‖2 − λ⊤Ax

]

(3.36)

⇐⇒ minimize
λ

P∑

p=1

(

h⋆
p(A⊤

p λ) +
σ

P
‖λ‖ − 1

P
b⊤λ

)

. (3.37)

From (3.35) to (3.36), we noticed that the problem in y has a closed-form solution that can be com-

puted by solving its dual problem. Namely, its optimal objective is (δ/2)σ2 − σ‖λ‖. From (3.36)

to (3.37), we made the column partition explicit and took exactly the same steps as in the ma-

nipulations (3.16)-(3.19), since the problem in x is exactly the same as in (3.16). In fact, notice

that by setting σ = 0 in (3.37) we obtain (3.19), exactly the same way we obtain BP from reversed

54 3. Global Class

lasso in the primal domain. Problem (3.37) has the format of (G) and, similarly to BP, the pth

block-component of the primal solution of (3.33) can be obtained at node p after solving the dual

problem (3.37): the expression for each component is (3.20), the same as for BP. However, for the

reversed lasso, we do not have the theoretical guarantee that, for a small enough δ, the solution of

the regularized problem (3.33) is also a solution of the original (3.6).

Column partition: lasso. Finally we address lasso. As with BPDN and the reversed lasso,

the regularization we use here is not proven to be exact. Again, we start by rewriting (3.7) as (3.11):

minimize
x

1
2‖Ax− b‖2

subject to ‖x‖1 ≤ γ

⇐⇒ minimize
x

‖Ax− b‖
subject to ‖x‖1 ≤ γ

⇐⇒ minimize
x,t,u,v

v

subject to ‖u‖ ≤ v

‖x‖1 ≤ t

u = Ax− b

t = γ ,

(3.38)

where, for simplicity, we did not represent the constraint ‖x‖1 ≤ t as a set of linear inequalities.

This can indeed be done by writing 2n inequalities of the form r⊤
i x ≤ t, where each ri ∈ R

n has

±1 in its entries; there are 2n such vectors. Therefore, (3.38) has the same format as (3.11), where

the objective is linear, the last two constraints are linear equations, and the first two constraints

represent the cone K, which is the Cartesian product of a polyhedral closed convex cone Kx,t =

{(x, t) : r⊤
i x ≤ t, i = 1, . . . , 2n} and the Lorenz cone Ku,v = {(u, v) : ‖u‖ ≤ v}. We now regularize

problem (3.38) the same way we regularized the previous problems:

minimize
x,t,u,v

v + δ
4

(

‖x‖2 + t2 + ‖u‖2 + v2
)

subject to ‖u‖ ≤ v

‖x‖1 ≤ t

u = Ax− b

t = γ

(3.39)

⇐⇒ minimize
x

δ
4‖x‖2 + δ

4‖Ax− b‖2

subject to ‖x‖1 ≤ γ

+ inf
v

δ
4v2 + v

s.t. ‖Ax− b‖ ≤ v

(3.40)

⇐⇒ minimize
x

‖Ax− b‖+ δ
2‖Ax− b‖2 + δ

4‖x‖2

subject to ‖x‖1 ≤ γ .

(3.41)

From (3.39) to (3.40), we eliminated the linear constraints. From (3.40) to (3.41), we used the

3.3. Applications 55

fact that the optimal value of the problem in v, for a fixed x, is (δ/4)‖Ax − b‖2 + ‖Ax− b‖. Now,

introduce an auxiliary variable y ∈ R
m in (3.41):

minimize
x,y

‖y‖+ δ
2‖y‖2 + δ

4‖x‖2

subject to ‖x‖1 ≤ γ

y = Ax− b ,

and compute the dual problem by dualizing both constraints (µ and λ will be the dual variables

associated to the first and second constraints, respectively). We get

maximize
λ,µ

b⊤λ− γµ

subject to µ ≥ 0

+ inf
y

[

‖y‖+
δ

2
‖y‖2 + λ⊤y

]

+ inf
x

[

µ‖x‖1 +
δ

4
‖x‖2 − λ⊤Ax

]

⇐⇒ minimize
λ,µ

γµ− b⊤λ + g⋆(−λ)

subject to µ ≥ 0

+ sup
x

[

(A⊤λ)⊤x− µ‖x‖1 −
δ

4
‖x‖2

]

(3.42)

⇐⇒ minimize
λ,µ

γµ− b⊤λ + g⋆(−λ)

subject to µ ≥ 0

+
P∑

p=1

sup
xp

[

(A⊤
p λ)⊤xp − µ‖xp‖1 −

δ

4
‖xp‖2

]

(3.43)

⇐⇒ minimize
λ,µ

P∑

p=1

(
1

P

(
γµ− b⊤λ + g⋆(−λ)

)
+ lp(A⊤

p λ, µ) + i{µ≥0}(µ)

)

. (3.44)

In (3.42), g⋆ is the convex conjugate of g(y) = ‖y‖+ (δ/2)‖y‖2 . We show in Appendix B that

g⋆(η) = sup
x

(

η⊤x− ‖x‖ − δ

2
‖x‖2

)

=

0 , ‖η‖ ≤ 1
1
2δ

(

‖λ‖2 − 2‖λ‖+ 1
)

, ‖η‖ > 1 .
(3.45)

From (3.42) to (3.43), we just made the column partition explicit and, in (3.44), we defined

lp(η, µ) = sup
xp

[

η⊤xp − µ‖xp‖1 −
δ

4
‖xp‖2

]

. (3.46)

Note that (3.44) has the same format as (G). Because of regularization, the objective in the

supremum problem in (3.46) is strictly concave, which means that, after the nodes agree on an

optimal dual solution (λ⋆, µ⋆), the pth component of the primal solution of (3.41) will be available

at the pth node; see Appendix B for the particular expression.

56 3. Global Class

3.3 Algorithm derivation

We now present our algorithm for the global class (G). As mentioned before, our strategy consists

of reformulating (G) as (2.32) and then we applying the multi-block ADMM. For convenience, we

recall reformulation (2.32)

minimize
x1,...,xP

f1(x1) + f2(x2) + · · ·+ fP (xP)

subject to xi = xj , (i, j) ∈ E ,
(3.47)

where xp ∈ R
n is the copy of the original variable x ∈ R

n and is held by node p. The optimization

variable is now the collection of all the copies: x̄ = (x1, . . . , xP) ∈ (Rn)P . All these copies are forced

to be equal through the constraints of (3.47), which state that, for each edge (i, j) in the network,

the copies of nodes i and j are equal. Since by Assumption 3.3 the network is assumed connected,

there are no isolated nodes and, hence, all the copies are equal. Consequently, problems (G)

and (3.47) are equivalent.

Matrix representation. Recall that, according to Assumption 3.4, we assume the network

has a coloring scheme C with C = |C| colors. We use Cc ⊂ V to denote the set of nodes that

have color c ∈ C, and C(p) to denote the color of node p. Also, the number of nodes with color c

is represented with Cc = |Cc|. Without loss of generality and to simplify our derivation, we will

assume that the nodes are numbered according to this coloring scheme as: C1 = {1, 2, . . . , C1},
C2 = {C1 + 1, C1 + 2, . . . , C1 + C2}, . . . , i.e., the first C1 nodes have color 1, the next C2 nodes have

color C2, and so on. Now, notice that the constraints in problem (3.47) can be written in matrix

format as (B⊤ ⊗ In)x̄ = 0, where B ∈ R
P ×E is the node-arc incidence matrix, ⊗ is the Kronecker

product, and In is the identity matrix in R
n. In the node-arc incidence matrix, each column is

associated to an edge of the network (i, j) ∈ E , with 1 in the ith entry, −1 in the jth entry, and

zeros in the remaining entries. Given our assumption on the ordering of the nodes and the coloring

scheme, we can write (B⊤ ⊗ In)x̄ = (B⊤
1 ⊗ In)x̄1 + (B⊤

2 ⊗ In)x̄2 + · · · + (B⊤
C ⊗ In)x̄C , where x̄c

collects the copies of the nodes in Cc, i.e.,

x̄ = (x1, . . . , xC1
︸ ︷︷ ︸

x̄1

, xC1+1, . . . , xC1+C2
︸ ︷︷ ︸

x̄2

, . . . , xP −Cp+1, . . . , xP
︸ ︷︷ ︸

x̄C

) ,

and the matrix B is partitioned by rows accordingly. Therefore, (3.47) can be written as

minimize
(x1,...,xP)

∑

p∈C1
fp(xp) + · · ·+ ∑

p∈CC
fp(xp)

subject to (B⊤
1 ⊗ In)x̄1 + (B⊤

2 ⊗ In)x̄2 + · · ·+ (B⊤
C ⊗ In)x̄C = 0 ,

(3.48)

3.3. Algorithm derivation 57

where we also grouped the terms in the objective according to the colors of the nodes. We next

apply the multi-block ADMM to (3.48).

Applying the multi-block ADMM. We introduced the multi-block ADMM in Subsec-

tion 2.1.3. Our reformulations of (G) resulted in problem (3.48), which has the format of (2.21), the

problem the multi-block ADMM solves. If we apply the multi-block ADMM (2.22)-(2.26) directly

to (3.48), we will see that the update of x̄c yields Cc independent problems which can consequently

be solved in parallel. For example, the first block variable x̄1 is updated as

x̄k+1
1 = arg min

x̄1=(x1,...,xC1
)

∑

p∈C1

fp(xp) + λk⊤
(B⊤

1 ⊗ In)x̄1 +
ρ

2

∥
∥
∥
∥
(B⊤

1 ⊗ In)x̄1 +
C∑

c=2

(B⊤
c ⊗ In)x̄k

c

∥
∥
∥
∥

2

, (3.49)

where the terms not depending x̄1 were dropped. Developing the quadratic term in (3.49),

∥
∥
∥
∥(B⊤

1 ⊗ In)x̄1 +
C∑

c=2

(B⊤
c ⊗ In)x̄k

c

∥
∥
∥
∥

2

= x̄⊤
1 (B1B⊤

1 ⊗ In)x̄1 + 2 x̄⊤
1

(C∑

c=2

(B1B⊤
c ⊗ In)x̄k

c

)

+

∥
∥
∥
∥

C∑

c=1

(B⊤
c ⊗ In)x̄k

c

∥
∥
∥
∥

2

. (3.50)

In the first term of (3.50), B1B⊤
1 is the first diagonal block (of size C1 × C1) of the network

Laplacian. Because the first C1 nodes have the same color and, hence, cannot be neighbors, the

matrix B1B⊤
1 is diagonal. The pth entry in the diagonal is the degree Dp of node p. Therefore,

the first term of (3.50) can be written as x̄⊤
1 (B1B⊤

1 ⊗ In)x̄1 =
∑

p∈C1
Dp‖xp‖2. In the second term,

B1B⊤
c is an off-diagonal block of the Laplacian and depicts the links between the nodes with color 1

and the nodes with color c. Namely, if node i has color 1 and node j has color c and they are

neighbors, i.e., (i, j) ∈ E , then the ijth entry of B1B⊤
c will be −1. Therefore, the second term

is written equivalently as 2 x̄⊤
1

(
∑C

c=2(B1B⊤
c ⊗ In)x̄k

c

)

= −2
∑

p∈C1

∑

j∈Np
x⊤

p xk
j . Finally, the last

term of (3.50) does not depend on x̄1 and hence can be dropped. These simplifications render

problem (3.49) equivalent to

x̄k+1
1 = arg min

x̄1=(x1,...,xC1
)

∑

p∈C1

fp(xp) +
(

γk
p − ρ

∑

j∈Np

xk
j

)⊤
xp +

ρDp

2
‖xp‖2 , (3.51)

where γk
p :=

∑

j∈Np
λk

pj was obtained from the second term of (3.49) as

λk⊤
(B⊤

1 ⊗ In)x̄1 = ((B1 ⊗ In)λk)⊤x̄1 =
∑

p∈C1

∑

j∈Np

λk
pj

⊤

︸ ︷︷ ︸

γk
p ⊤

xk
j . (3.52)

58 3. Global Class

In the last equality in (3.52), we used the fact that the pth entry of the vector (B1⊗ In)λk is given

by
∑

j∈Np
λk

pj. Note that we decomposed the dual variable as (. . . , λij, . . .), where λij is associated

to the constraint xi = xj , i.e., the edge between node i and node j. Given our convention that

(i, j) ∈ E implies that i < j (see Subsection 1.3.1), λij is only defined for i < j. It is clear that

problem (3.51) decomposes into C1 problems that can be solved in parallel. Namely, node p updates

its copy xp as

xk+1
p = arg min

xp

fp(xp) +
(

γk
p − ρ

∑

j∈Np

xk
j

)⊤
xp +

ρDp

2
‖xp‖2

= proxτpfp

(
1

Dp

∑

j∈Np

xk
j − τpγk

p

)

, (3.53)

where the prox operator was defined in (2.34) and τp = 1/(ρDp). The problems with respect to the

other block variables can be decomposed into parallel problems the same way. The only difference

is the definition of γk
p , which is different due to the nodes’ ordering. Its general definition is

γk
p =

∑

j∈Np

p<j

λk
pj −

∑

j∈Np

p>j

λk
jp . (3.54)

Note that, from (3.53), each node p needs to know the aggregate sum γk
p , but not the individual λij ’s.

According to the multi-block ADMM iterations, namely (2.26), each λij , for (i, j) ∈ E , is updated

as λk+1
ij = λk

ij + ρ (xk+1
i − xk+1

j). Replacing this update in the definition of γk
p in (3.54), we get

γk+1
p =

∑

j∈Np

p<j

λk+1
pj −

∑

j∈Np

p>j

λk+1
jp

=
∑

j∈Np

p<j

λk
pj + ρ

∑

j∈Np

p<j

(

xk+1
p − xk+1

j

)

−
∑

j∈Np

p>j

λk
jp − ρ

∑

j∈Np

p>j

(

xk+1
j − xk+1

p

)

=
∑

j∈Np

p<j

λk
pj −

∑

j∈Np

p>j

λk
jp

︸ ︷︷ ︸

=γk
p

+ρ
∑

j∈Np

p<j

(

xk+1
p − xk+1

j

)

+ ρ
∑

j∈Np

p>j

(

xk+1
p − xk+1

j

)

= γk
p + ρ

∑

j∈Np

(

xk+1
p − xk+1

j

)

.

D-ADMM: algorithm for the global class. The resulting algorithm is shown as Algo-

rithm 3, which we named D-ADMM in [163], after Distributed-ADMM. Algorithm 3 solves (3.48),

and hence (G), by creating C groups of nodes according to the coloring scheme. The nodes within

3.3. Algorithm derivation 59

Algorithm 3 Algorithm for the global class (D-ADMM)

Initialization: Choose ρ ∈ R; for all p ∈ V , set x0
p = γ0

p = 0n ∈ R
n and τp = 1/(ρDp); set k = 0

1: repeat
2: for all c = 1, . . . , C do
3: for all p ∈ Cc [in parallel] do

4: Compute the average

zk
p =

1

Dp

(
∑

j∈Np

C(j)<C(p)

xk+1
j +

∑

j∈Np

C(j)>C(p)

xk
j

)

5: Update xk+1
p = proxτpfp

(

zk
p − τpγk

p

)

and send xk+1
p to neighbors Np

6: end for
7: end for

8: for all p ∈ V [in parallel] do

9: Update the dual variable γk+1
p = γk

p + ρ
∑

j∈Np

(

xk+1
p − xk+1

j

)

10: end for

11: k ← k + 1
12: until some stopping criterion is met

each group perform the same tasks in parallel, as illustrated before in Figure 1.4. These tasks

consist of computing the average of the solution estimates by the neighbors (step 4), computing the

prox of the scaled function τpfp at the point indicated in step 5, and then sending the new solution

estimate to the neighbors. Note that in the computation of the average zk
p of a given node p, in

step 4, there are two kinds of estimates: ones that were computed in the current iteration k, i.e.,

xk+1
j and ones that were computed in the previous iteration k − 1, i.e., xk

j . The first kind are

estimates of the neighbors with a color smaller than the color of node p, that is, C(j) < C(p).

Node p has access to these estimates because the nodes with smaller colors have performed steps 4

and 5 before. The second kind are estimates of the neighbors with a color larger than the color of

node p, C(j) > C(p), and were transmitted in the previous iteration. Note that, in contrast with

its derivation, Algorithm 3 does not assume that the nodes are ordered according to their colors,

thanks to the use of inequalities C(j) ≶ C(p) instead of j ≶ p. After all nodes perform step 5, the

dual variables γp are updated simultaneously at all nodes, as described in step 9.

Apparently, Algorithm 3 needs some kind of central coordination to perform steps 4 and 5,

because nodes with the same color, not being neighbors, should perform the same tasks in parallel.

But, provided Assumption 3.4 holds, i.e., that each node knows its own color and the colors of its

neighbors, no central coordination is required. In that case, steps 4 and 5 need not be performed

exactly in parallel: as soon as node p has received the copies xk+1
j from the neighbors with smaller

60 3. Global Class

1

2

3
4

5

6

1

3

1
2

1

2

(a) Undirected graph

1

2

3
4

5

6

1

3

1
2

1

2

(b) Directed graph

Figure 3.2: Construction of a directed graph (in (b)) from the coloring scheme of an undirected graph (in
(a)). The coloring scheme is C1 = {1, 3, 5}, C2 = {4, 6}, and C3 = {2}. From (a) to (b), each
edge gets assigned a direction, from the node with the smallest color to the node with the
largest color.

colors, it can perform steps 4 and 5 immediately. Figure 3.2 illustrates an alternative way to see

this. Figure 3.2(a) shows a communication network and its coloring scheme: nodes 1, 3, and 5

have color 1, nodes 4 and 6 have color 2, and node 2 has color 3. From these colors, we can assign

directions to the edges of the network, as shown in Figure 3.2(b): the edge (i, j) ∈ E is assigned

the direction i → j if the color of node i is smaller than the color of node j, i.e., C(i) < C(j),

and the direction i ← j otherwise. For example, node 6, with color 2 has incoming edges from

nodes 1 and 5, both with color 1, and an outgoing edge to node 2, with color 3. Whenever node 6

receives, at each iteration, estimates from neighbors 1 and 5, it can immediately perform steps 4

and 5 without “talking” at all with the nodes that have the same color; in this case, that is just

node 4. This makes the algorithm distributed, since there is no central or coordinating node, the

function fp is only known at node p, and there are no all-to-all communications. Furthermore, the

algorithm is independent of the network. Regarding its convergence, we use Theorem 2.1 to prove:

Theorem 3.6.

Let Assumptions 3.1-3.4 hold. Then, Algorithm 3 produces a sequence (xk
1 , . . . , xk

P) convergent

to (x⋆, . . . , x⋆), where x⋆ solves (G), when at least one of the following conditions is satisfied:

(a) the coloring scheme uses two colors only (which implies that the network is bipartite);

(b) each function fp is strongly convex with modulus µp and

0 < ρ < min
c=1,...,C

2
∑

p∈Cc
µp

3 (C − 1) maxp∈Cc Dp
. (3.55)

3.3. Algorithm derivation 61

Proof. We just need to show that (3.48), the problem to which we apply multi-block ADMM, satis-

fies the assumptions of Theorem 2.1. First, note that Assumptions 3.1 and 3.2 and the equivalence

between (G) and (3.48) imply that problem (3.48) is solvable and that each function
∑

p∈Cc
fp(xp)

is closed and convex over (Rn)C . Next, we show that condition (a) (resp. (b)) implies condition (a)

(resp. (b)) of Theorem 2.1.

(a) We first see that Assumption 3.3 implies that each B⊤
c ⊗ In has full column rank. Since

the identity matrix In has always full rank, we just need to show that B⊤
c has full column-

rank. If, on the other hand, we prove that BcB
⊤
c has full rank, then the result follows,

because rank(BcB
⊤
c) = rank(B⊤

c). As mentioned before, BcB
⊤
c is a diagonal matrix, where

the diagonal contains the degrees of the nodes belonging to the subnetwork composed by the

nodes in Cc. Since no node has degree 0 (cf. Assumption 3.3), BcB
⊤
c has full rank. We thus

have shown that, independently of the coloring scheme, each matrix B⊤
c ⊗ In has full column

rank. Therefore, when the coloring scheme uses two colors, both requirements of point (a) in

Theorem 2.1 are satisfied.

(b) When each function fp is strongly convex with modulus µp and ρ satisfies (3.55), then

each
∑

p∈Cc
fp is strongly convex with modulus

∑

p∈Cc
µp [31, Lem. 2.1.4] and conditions (2.27)

and (3.55) are equivalent. To see this last point, just note that

σmax(Ac)
2 = λmax(A⊤

c Ac) = λmax(BcB
⊤
c ⊗ In) = λmax(BcB

⊤
c) = max

p∈Cc

Dp ,

since, as we had seen before, each BcB
⊤
c is a diagonal matrix with the degrees of the nodes

with color c in the diagonal.

As stated before, it is believed that multi-block ADMM converges under condition (a) of The-

orem 2.1 when C > 2. This requires that each B⊤
c ⊗ In has full column rank, which we just

proved in part (a) of the proof above. Translated to Algorithm 3, this belief means that algorithm

converges for generic (non-bipartite) networks when fp is not necessarily strongly convex, i.e., that

Theorem 3.6 holds even when neither condition (a) nor condition (b) are satisfied. Our simulations

of Algorithm 3 provide some experimental evidence strengthening that belief, as we will soon see.

Note that the structure of Algorithms 1 and 2, which are based on the 2-block ADMM, is similar

to the structure of Algorithm 3: in all of them, a parameter ρ has to be chosen, and each node

performs the same kind of computations, i.e., compute an average of the estimates of the neighbors

and compute the prox of its private function. While in Algorithms 1 and 2 all the nodes perform

62 3. Global Class

Table 3.1: Network models.

Name Parameters Description

Erdős-Rényi [200] p Every pair of nodes (i, j) ∈ E is connected or not with probability p

Watts-Strogatz [201] (n, p) First, it creates a lattice where every node is connected to n nodes; then, it rewires
every link with probability p. Rewiring link (i, j) means removing the link, and
connecting node i or node j (chosen with equal probability) to another node in
the network, chosen uniformly.

Barabasi-Albert [202] —— It starts with one node. At each step, one node is added to the network by
connecting it to 2 existing nodes: the probability to connect it to node p is
proportional to Dp.

Geometric [203] d It drops P points, corresponding to the nodes of the network, randomly in a
[0, 1]2 square; then, it connects nodes whose (Euclidean) distance is less than d.

Lattice —— Creates a lattice of dimensions m × n; m and n are chosen to make the lattice as
square as possible.

all the tasks in parallel, the nodes in Algorithm 3 operate in a color-based way. Therefore, in envi-

ronments where parallel communication is allowed, one iteration of Algorithm 3 takes longer than

one iteration of Algorithms 1 and 2. In environments where parallel communication is impossible,

e.g., in wireless networks, Algorithms 1 and 2 have to implement a MAC protocol and, for example,

operate in the same color-based way as Algorithm 3. In either case, simulation shows that Algo-

rithm 3 takes systematically less iterations to converge than Algorithms 1 and 2, for several different

problems and several different networks. This means that it is more communication-efficient than

the other algorithms, and hence more attractive in scenarios where the nodes are battery-operated.

3.4 Experimental results

In this section, we provide some experimental results that compare the performance of the proposed

algorithm with prior distributed optimization algorithms. The performance of all the algorithms

will be measured in terms of communication steps, defined next.

Communication steps. We say that a communication step (CS) has occurred whenever all the

nodes have transmitted to their neighbors a new solution estimate, usually computed by evaluating

a prox operator, as in step 5 of Algorithm 3. The number of CSs an algorithm uses to solve an

optimization problem is intrinsic to the algorithm and does not take into account factors like MAC

protocols, algorithm implementation, or computing platforms. Other performance measures, for

example execution time, may give different results if we change any of these factors. Besides, the

total number of communications can be easily obtained from the CSs by multiplying it by 2E, i.e.,

by twice the number of edges in the network. Note that Algorithm 1 takes two CSs per iteration,

while Algorithms 2 and 3 take only one.

3.4. Experimental results 63

Table 3.2: Network parameters, average degree, and number of colors.

Number Model Parameters Average degree (top), Number of colors (bottom)

Number of nodes P

10 50 100 200 500 700 1000 2000

1 Erdős-Rényi 1.1 log(P)/P 3
3

6
5

5
5

6
5

12
7

14
8

18
9

8
6

2 Watts-Strogatz (4, 0.4) 4
3

4
4

4
4

4
4

4
5

4
4

4
4

4
4

3 Barabasi-Albert —— 3
3

4
3

4
3

4
4

4
4

4
4

4
4

4
4

4 Geometric
√

log(P)/P 4
5

10
10

12
11

14
12

18
18

19
19

20
17

23
21

5 Lattice —— 3
2

3
2

4
2

4
2

4
2

4
2

4
2

4
2

Networks. We generated several networks in our experiments, ranging from networks with 10

nodes to networks with 2000 nodes. The models we used to generate them are described in Table 3.1.

All models, except the lattice, are random, and yield networks with arbitrary topologies. Using

these models, we created 40 different networks, as shown in Table 3.2. For each one of the models

of Table 3.1, we generated 8 networks with different numbers of nodes, from P = 10 nodes, to

P = 2000 nodes. All the networks were generated in Python [204] with the NetworkX library [205].

The parameters we used to generate the Erdős-Rényi and the geometric networks are known to

generate connected networks with high probability. To color the networks, we used a built-in

function in Sage [206]. The number of colors of each network and the average node degree are

shown in Table 3.2. For example, the network with the largest average degree was the geometric

network with 2000 nodes; the same network had the largest number of colors, 21. Note that all

the lattice networks were colored with two colors, indicating that they are, in fact, bipartite. Note

also that these are the only networks for which Algorithm 3 is proven to converge when the cost

functions at each node are not strongly convex (cf. Theorem 3.6).

Choosing ρ. Almost all the algorithms we compare are based on augmented Lagrangian

duality and, thus, are parametrized by a parameter ρ. We are unaware of any method that selects

a good ρ before executing the algorithm; as discussed in Chapter 2, the existing heuristics for

adapting ρ during the execution of the algorithm cannot be implemented in a distributed setting.

Therefore, for each algorithm that depends on ρ, we execute the algorithm several times, one for a

different value of ρ, and select the one that leads to the best performance. In our experiments, we

used two strategies for selecting ρ. The simplest one just selects ρ out of a set of values, typically

{10−4, 10−3, 10−2, 10−1, 1, 10, 102}. In the second strategy, for a given algorithm, we present the

chosen value of ρ and give the precision value. We say that ρ̄ was chosen with precision ξ > 0 for

64 3. Global Class

a given algorithm whenever both ρ = ρ̄ − ξ and ρ = ρ̄ + ξ lead to more CSs than ρ = ρ̄. This

definition is motivated by the fact that the number of CSs in augmented Lagrangian algorithms

seems to vary with ρ in a convex way.

Next, we present the results of our experiments for each of the applications of Section 3.2. The

simplest of these applications is average consensus and, for this reason, we study average consensus

in more detail.

3.4.1 Average consensus

We designed two sets of experiments for the average consensus problem. In one of them, we fix

the network and run several distributed algorithms, comparing how the error evolves along the

iterations (or better, along the CSs). In the other set of experiments, we observe only the total

number of CSs that each algorithm takes to achieve a predefined relative error. While the first set

of experiments is run on a single network and for many algorithms, the second set of experiments

is run for all the networks of Table 3.2 and only for the most competitive algorithms. Next, we

describe the how the experiments were designed, then we state which algorithms we compare, and

finally we describe the results for both sets of experiments.

Experimental setup. In consensus, each node p holds a scalar θp, and the goal is to compute

the average of all the θp’s. We generated each θp independently from each other as a realization of

a Gaussian distribution with mean 10 and standard deviation 100. Such a large standard deviation

was chosen to ensure all the θp’s differed significantly. We generated 8 sets of these numbers, each

set for a network with a fixed number of nodes. This means that one set of θp’s is used across

networks with the same number of nodes, that is, the same set is used, for example, for a geometric

network with 200 nodes and for a Barabasi-Albert network with 200 nodes.

In all the algorithms we compare, each node requires an initialization of its solution estimate.

In all our experiments, the estimate of node p is initialized with θp. We only do this special

initialization for the average consensus problem; the reason is to make a fair comparison between

algorithms that were designed specifically for consensus and that require this exact initialization,

and between general-purpose algorithms, which do not require any special initialization. This

contrasts with the results in Figure 1.5, in Chapter 1, where some algorithms were initialized this

way and others, including the algorithm we propose, were initialized with zeros. While those results

are merely illustrative, they are not as fair as the ones we present next.

Algorithms for comparison. In our experiments, we compare the performance of Algo-

rithm 3 not only with other algorithms solving the problem class (G), but also with algorithms

that were designed only for average consensus and that cannot solve any other problem in that

class. Namely, the algorithms in [10] and [11] are consensus algorithms and cannot be generalized

3.4. Experimental results 65

Communication steps

Relative error

101

100

10−1

10−2

10−3

10−4

0 50 100 150 200 250

Alg. 3

[127]

[25]

[26]
[11] [10]

[101]

Figure 3.3: Comparison of several algorithms for the average consensus problem in a geometric network
with P = 2000 nodes. The plot shows the relative error versus the number of CSs.

(at least, straightforwardly) to solve other problems written as (G). The algorithm in [11] is ac-

tually considered the fastest consensus algorithm, among the synchronous and the asynchronous

ones [9]. Since each iteration takes one CS, it is also the most communication-efficient algorithm for

consensus. We will see next that the algorithm we propose, when applied to consensus, performs

as well as [11], and sometimes better. Note that our algorithm is general-purpose, in contrast

with [11], which is specific to consensus.

Regarding general-purpose algorithms, we consider distributed algorithms based on the 2-block

ADMM, namely, [25] (written as Algorithm 1), [26] (written as Algorithm 2), and [127]. All these

algorithms (and also ours) require computing the prox operator of the function fp = (1/2)(x−θp)2.

This can be done in closed-form: proxτfp
(η) = (τθp + η)/(1 + τ); see (2.34) for the definition

of the prox operator. The algorithm in [127] is slightly different from the other ADMM-based

algorithms since, instead of just one tuning parameter, it has two: the augmented Lagrangian ρ

and a stepsize β. In our experiments, we set always β = 0.9µ, just like the authors of [127] did in

their experiments. We also consider the (sub)gradient-based method [101], which also solves the

class (G). (Actually, the algorithm in [101] solves only unconstrained problems; to solve problems

with constraints one has to consider the generalization in [207].) We implemented the algorithm

in [101] with uniform weights, i.e., each node averages equally the estimates of its neighbors, and

with stepsize 1/(k + 1).

Results. The performance of all the above algorithms is compared on the geometric network

with P = 2000 nodes, from Table 3.2. This is shown in Figure 3.3 and constitutes our first set

of experiments. The plot in the figure shows the evolution of the relative error as a function of

the CSs. The relative error is measured as ‖x̄k − θ⋆1P ‖/(
√

P |θ⋆|), where x̄k = (xk
1 , . . . , xk

P), xk
p is

66 3. Global Class

Number of nodes

Communication steps

100

101

102

103

10 50 100 200 500 700 1000 2000

Alg. 3

[26][10]

[11]

[127]

(a) Network 1: Erdős-Rényi

Number of nodes

Communication steps

100

101

102

103

10 50 100 200 500 700 1000 2000

Alg. 3

[26]

[10]

[11]

[127]

(b) Network 2: Watts-Strogatz

Number of nodes

Communication steps

100

101

102

103

10 50 100 200 500 700 1000 2000

Alg. 3

[10]
[26][11]

[127]

(c) Network 3: Barabasi-Albert

Number of nodes

Communication steps

100

101

102

103

10 50 100 200 500 700 1000 2000

Alg. 3

[11]

[26]
[10]

[127]

(d) Network 4: Geometric

Number of nodes

Communication steps

100

101

102

103

10 50 100 200 500 700 1000 2000

Alg. 3

[11][26]

[10]

(e) Network 5: Lattice

Figure 3.4: Results for the average consensus problem for all the networks of Table 3.1. The plots, or-
ganized by network type, compare Algorithm 3 with algorithms [26] (see Algorithm 2), [127],
[10, 11]. The algorithm [127] does not appear in (e), because it always achieved the maximum
number of iterations, except for the first network. Note that [10, 11] were designed specifically
for consensus and cannot solve any other problem in the class (G).

3.4. Experimental results 67

the solution estimate of node p at iteration k, and θ⋆ = (1/P)
∑P

p=1 θp is the problem’s solution.

The augmented Lagrangian parameter ρ was 1.1 for Algorithm 3, 0.5 for [26], 0.6 for [25], and 0.4

for [127], and was computed with precision 0.1 for all the algorithms. In Figure 3.3, Algorithm 3

was the algorithm whose error decreased the fastest; in fact, it required uniformly less CSs than

all the other algorithms to achieve any relative error between 10−1 and 10−4. The algorithms with

the second and third best performances were, respectively, the consensus algorithm [11] and the

ADMM-based algorithm [127]. Next, the ADMM-based algorithms [25] and [26] had a very similar

performance, requiring about 200 communication steps to achieve a relative error of 10−4. Both

the consensus algorithm [10] and the general-purpose algorithm [101] did not converge, i.e., achieve

a 10−4 relative error in less than 250 CSs.

In our second set of experiments, shown in Figure 3.4, we discarded algorithms [101] and [25],

since they exhibited performances inferior to the other algorithms. There are 5 plots in Figure 3.4,

one per network type, i.e., row of Table 3.2. In contrast with the plot of Figure 3.3, the plots of

Figure 3.4 show the number of CSs to achieve a relative error of 10−4 as a function of the network

size. For example, in the Watts-Strogatz network with 200 nodes (Figure 3.4(b)), algorithm [127]

took 302 CSs to converge, while [10] took 116, [26] took 73, Algorithm 3 took 52, and [11] took 37.

The type of networks for which Algorithm 3 performed worst was, in fact, Watts-Strogatz type

(Figure 3.4(b)) and Erdős-Rényi type (Figure 3.4(a)). For the remaining networks, Algorithm 3 was

always among the best. For example, in Barabasi-Albert network types (Figure 3.4(c)), Algorithm 3

was always the algorithm requiring the least amount of CSs to converge. From theses experiments,

we can conclude that Algorithm 3, a general-purpose distributed algorithm, ranks among the most

communication-efficient algorithms for solving the average consensus problem.

3.4.2 Row partition: BP and BPDN

We now discuss our experiments on other application problems. In this subsection, we consider

compressed sensing problems with a row partition (see Figure 3.1), namely, basis pursuit (BP)

and basis pursuit denoising (BPDN). These problems, as well as their reformulation as (G), are

discussed in Subsection 3.2.2. Next, we mention the experimental setup and how we implemented

the computation of the prox operators. Then, we discuss the experimental results.

Experimental setup. In our experiments, we used all the networks with 50 nodes, i.e., all the

networks in the second column of Table 3.2. The exact solution of BP (resp. BPDN) was computed

in a centralized way with the Matlab toolbox spgl1 [208] (resp. GPSR [209]). Knowing the solutions

of these problems, we were able to assess the relative error of each algorithm along its iterations.

Let x⋆ denote the solution of either BP or BPDN. The relative error is measured as ‖xk−x⋆‖/‖x⋆‖,
where xk is the estimate of an arbitrary node in the network. The algorithms stopped whenever

68 3. Global Class

they reached a relative error of 10−4, or a maximum number of CSs. The maximum number of

CSs was 1000 for BP and 2000 for BPDN. All the algorithms we compare are based on ADMM

and, thus, have a tuning parameter ρ. In these experiments, ρ was always chosen as the best value

from the set {10−4, 10−3, 10−2, 10−1, 1, 10, 102}. Regarding the data, i.e., the matrix A ∈ R
m×n

and the vector b ∈ R
m, we used two different types of data, one for BP and other for BPDN. For

BP, A had dimensions 500× 2000 and each entry was generated randomly and independently from

a Gaussian distribution with 0 mean and standard deviation 1/
√

500 ≃ 0.045; since there were 50

nodes, each node stored a matrix of size 10×2000. The vector b was generated from a sparse linear

combination of the columns of A. For BPDN, we used a matrix from problem 902 of the Sparco

toolbox [210]. That matrix has dimensions 200× 1000 and, thus, each node stored a matrix of size

4 × 1000. The vector b was generated from a sparse linear combination of the columns of A, to

which we added Gaussian noise. The noise parameter β in BPDN (see (3.5)) was set to 0.3.

Computation of the prox operator. In ADMM-based algorithms, at each iteration, each

node has to compute the prox operator of its function. In the case of BP, the function at node p

is given by fp(x) = (1/P)‖x‖1 + iApx=bp
(x), as shown in (3.8). Computing the prox of fp, in this

case, is equivalent to finding the minimizer of:

minimize
x

‖x‖1 + v⊤x + c‖x‖2

subject to Ax = b ,
(3.56)

for some vector v ∈ R
n and some scalar c > 0. To simplify, we dropped the subscripts from the

matrix A and the vector b. Since the objective of (3.56) is strictly convex, we can find a primal

solution by solving its dual problem:

maximize
λ

b⊤λ +
∑n

i=1 infxi

(

|xi|+ ui(λ)xi + c x2
i

)

, (3.57)

where u(λ) = v−A⊤λ. We solve (3.57) with the algorithm in [211], which is based on the Barzilai-

Borwein method. In our implementation, we used warm-starts, that is, at each iteration and for

a given node, the algorithm is initialized with the solution that the node found in the previous

iteration.

Regarding BPDN, the function at node p is given by fp(x) = (1/2)‖Apx − bp‖2 + (β/P)‖x‖1,

as shown in (3.9). Computing the prox of function fp, in this case, is actually equivalent to finding

a minimizer of a function with the same format as fp. An efficient method for doing that is

GPSR [209], namely GPSR-BB, which uses the Barzilai-Borwein stepsize.

Results. The results for BP and BPDN are shown in Figures 3.5(a) and 3.5(b), respectively. In

Figure 3.5(a), we compare Algorithm 3 against the ADMM-based methods [25] and [26] (written,

3.4. Experimental results 69

Network number

Communication steps

104

103

102

101

100

1 2 3 4 5

Alg. 3

[26][25]

(a) BP

Network number

Communication steps

104

103

102

101

100

1 2 3 4 5

Alg. 3

[25]

[26]

[124]

(b) BPDN

Network number

Communication steps

104

103

102

101

100

1 2 3 4 5

Alg. 3

[26]

[25]

(c) Reversed lasso

Network number

Communication steps

104

103

102

101

100

1 2 3 4 5

Alg. 3 [26]

(d) SVM

Figure 3.5: Results of the simulations for (a) BP, (b) reversed lasso, (c) BPDN, and (d) SVM. The simu-
lations were run on all the networks with 50 nodes.

as Algorithms 1 and 2, respectively). The behavior of the algorithms in this figure is very uniform:

in all the networks, Algorithm 3 was the one requiring the least amount of CSs to converge, i.e.,

to achieve a relative error of 10−4, the algorithm in [25] was always the one requiring the largest

amount of CSs, and the algorithm in [26] was always in between.

The exact same behavior can be observed in Figure 3.5(b) for the BPDN, although the lines,

and thus their performance, are closer together. The figure also shows the performance of [124,

Alg.3], which is an ADMM-based method specifically designed to solve BPDN. That algorithm has

the advantage of requiring simpler computations at each node but, as seen in the figure, at the cost

of spending more CSs to converge. In fact, that algorithm achieved the maximum number of CSs,

i.e., it failed to converge, in all but the last two networks.

3.4.3 Column partition: reversed lasso

In this subsection we give an example of a compressed sensing problem with a column partition.

In particular, we consider the reversed lasso (3.6), which we showed how to recast as (G) in

Subsection 3.2.2. As in the previous subsections, we first describe the experimental setup, then

how we computed the prox operator at each node and, finally, we present the experimental results.

Experimental setup. The set of networks is the same as in the experiments for BP and

BPDN, i.e., all the networks with 50 nodes. To compute the problem’s solution x⋆ beforehand, we

used the Matlab toolbox spgl1 [208]. We ran the algorithms either until they reached a maximum

number of 1000 CSs or until they reached a relative error of 5× 10−3. The relative error has the

same expression as before, ‖xk − x⋆‖/‖x⋆‖, but now xk is the concatenation of all the nodes’s

estimates, i.e., xk = (xk
1 , xk

2 , . . . , xk
P); recall that in the column partition, the variable is partitioned

70 3. Global Class

into blocks and each block is estimated by a single node. Recall also that, in order to recast the

reversed lasso as (G), we compute the dual of a regularized version of the problem; see (3.33). The

regularization parameter δ was set to 10−2 and the noise tolerance σ to 0.1. Again, the parameter ρ

was selected from the set {10−4, 10−3, 10−2, 10−1, 1, 10, 102}. The problem data is the same as in

BPDN, i.e., the matrix A was taken from problem 902 of the Sparco toolbox [210]. This means

that A had dimensions 200 × 1000 and, given the column partition, each node stored a matrix of

size 200 × 20.

Computation of the prox operator. In Subsection 3.2.2 we manipulated the reversed lasso

in order to recast it as (G). More specifically, the dual problem of a regularized version of reversed

lasso can be written as (3.37), where the function at node p is

fp(λ) = h⋆
p(A⊤

p λ) +
σ

P
‖λ‖ − 1

P
b⊤λ ,

and h⋆
p is the convex conjugate of hp(xp) = ‖xp‖1 + (δ/2)‖xp‖2. It can be shown that computing

the prox of fp is equivalent to finding the minimizer of the optimization problem:

minimize
λ

h⋆
p(A⊤

p λ) + σ
P ‖λ‖ − 1

P b⊤λ + v⊤λ + c‖λ‖2 , (3.58)

for some vector v ∈ R
m and some scalar c ∈ R. Introducing an epigraph variable t, (3.58) becomes

equivalent to

minimize
λ,t

h⋆
p(A⊤

p λ) + σ
P t− 1

P b⊤λ + v⊤λ + c‖λ‖2

subject to ‖λ‖ ≤ t .
(3.59)

Since hp is strongly convex, its conjugate h⋆
p is differentiable and its gradient is Lipschitz-continuous.

In fact, the entire objective function of (3.59) is differentiable and its gradient is Lipschitz-continuous

with constant σ2
max(Ap)/δ +2c, where σmax(Ap) is the largest singular value of Ap. Moreover, given

an arbitrary point (λ, t), its projection onto the Lorenz cone {(λ, t) : ‖λ‖ ≤ t} is given in closed-

form by [57, A.2.7]

(λ, t) , if t ≥ ‖λ‖
(0, 0) , if t ≤ −‖λ‖
t+‖λ‖

2 (λ
‖λ‖ , 1) , if − ‖x‖ < t < ‖x‖ .

Therefore, (3.58) can be solved with projected gradient methods. We solve it with Nesterov’s

projected gradient method (2.10), also known as FISTA [58], whose convergence rate is O(1/k2).

Results. The results of the reversed lasso experiments are shown in Figure 3.5(c). There,

Algorithm 3 is compared against the algorithms in [25] and in [26]. They exhibit the same behavior

we had observed in Figures 3.5(a) and 3.5(b): Algorithm 3 required uniformly less CSs to converge.

3.4. Experimental results 71

Also, [26] required uniformly less CSs than [25] to converge.

3.4.4 SVM

Finally, we present our experimental results for training an SVM (3.2). Among all experiments

that we performed, the ones for SVM required the largest number of CSs to converge, as can be

seen by comparing all the plots in Figure 3.5. The results for the SVM experiments are shown

in Figure 3.5(d). But before we analyze them, we describe the experimental setup and how we

computed the respective prox operator.

Experimental setup. As in the other plots in the same figure, the experiments for the SVM

problem (3.2) were executed on the networks with 50 nodes. Since problem (3.2) can be recast as a

quadratic program, we obtained the problem’s solution beforehand using the quadprog function of

the Matlab optimization toolbox [212]. The algorithms ran until they achieved a maximum number

of 104 CSs, or a relative error of 10−3. The relative error in this case was measured exactly as in

the compressed sensing problems with a row partition: ‖xk − x⋆‖/‖x⋆‖, where xk is the estimate

at an arbitrary node. And the augmented Lagrangian parameter ρ was selected exactly as in the

previous experiments. Regarding the problem data, i.e., the sets of datapoints (xk, yk) in (3.2), we

used data from [213], namely two overlapping sets of datapoints from the Iris dataset. In total,

there were m = 100 points of size n = 4, which means that each node stored 2 datapoints. The

parameter β in (3.2) was set to 1 in all the experiments.

Computation of the prox operator. We showed in Subsection 3.2.2 that in the SVM

problem the function at each node is given by (3.3). It can be easily seen that computing the

prox operator of (3.3) is equivalent to finding a minimizer of a quadratic program with inequality

constraints. This problem has no closed-form solution, but it can be solved with standard quadratic

program solvers, such as Matlab’s quadprog function. We used this function in our implementation.

Results. As mentioned, the results of the experiments for SVM are shown in Figure 3.5(d).

In this case, the algorithm in [25] achieved always the maximum number of CSs and, thus, is not

represented in the plot. Both Algorithm 3 and the algorithm in [26] required always more than

1000 CSs to converge for all the networks. Again, Algorithm 3 required the least number of CSs

to converge, never achieving the maximum number of 104 CSs. In contrast, the algorithm in [26]

achieved the maximum number of CSs in all but the first two networks.

72 3. Global Class

Chapter 4

Connected and Non-Connected

Classes

In this chapter, we solve problem (P) with a generic variable, following ideas similar to the ones

presented in the previous chapter for the global class. We first address the case of a connected

variable, which is simpler, and then we see how to handle a non-connected variable. This chapter

is based on the publications [214, 215, 216] and is organized as follows: in Section 4.1, we formally

state the problem and outline our assumptions; then, in Section 4.2, we describe some application

problems that can be written as (P) with a non-global variable. These include distributed model

predictive control (D-MPC), network flow problems, and the reversed lasso with a row partition.

In particular, we propose a new framework for D-MPC that considerably extends the modeling

capability of the standard D-MPC; this, for example, will allow us to model scenarios where systems

coupled through their dynamics do not necessarily communicate directly. Next, in Section 4.3, we

derive our algorithm, first for a connected variable, and then for a non-connected variable. This

will give us the most general algorithm in this thesis. Finally, in Section 4.4, we show how the

performance of the proposed algorithm compares with prior algorithms for some of the problems

introduced in Section 4.2.

4.1 Problem statement

As in the global class, here we also minimize the sum of P functions, where each function is known

at one node only. However, each function here, rather than depending on all the components of the

variable x ∈ R
n, depends only on the ones indexed by the set Sp ⊆ {1, . . . , n}. That is, we solve

minimize
x∈Rn

f1(xS1) + f2(xS2) + · · · + fP (xSP
) . (P)

73

74 4. Connected and Non-Connected Classes

We make the following assumptions:

Assumption 4.1. Each function fp : Rnp −→ R ∪ {+∞} is closed and convex over R
np and not

identically +∞.

Assumption 4.2. Problem (G) is solvable, i.e., it has at least one solution x⋆ ∈ R
n.

Assumptions 4.1 and (4.2) are essentially the same we made for the global class. The only

difference is that now each function fp is defined over R
np , where np = |Sp|, and not over the entire

domain of the variable x, Rn. Note that the sum of the dimensions of the domains of each function,

i.e., n1 + · · · + nP , is always less than or equal to the corresponding sum in the case of a global

variable, which is nP . In other words, n1 + · · · + nP ≤ nP . The following assumption makes the

problem well-formulated by guaranteeing that, for each component xl, there is always one node p

that depends on xl, i.e., l ∈ Sp:

Assumption 4.3. There holds ∪P
p=1Sp = {1, 2, . . . , n}.

This assumption was not required for the global class, because all functions there depended on

all the components of the variable. Regarding the network, we make exactly the same assumptions

we made for the global class:

Assumption 4.4. The network is connected and does not vary with time.

Assumption 4.5. A coloring scheme C of the network is available; each node knows its own color

and the color of its neighbors.

The comments we made in Section 3.1 about these assumptions also apply here. Next, we

describe some application problems that can be written as (P) with a non-global variable and

under Assumptions 4.1-4.5.

4.2 Applications

There are many problems in signal processing, control engineering, and machine learning that can

be written as (P). In the previous chapter, we described some that require a global variable.

In this section, we focus on problems that require a variable that is non-global, for example, a

star-shaped or a mixed variable. We start with distributed model predictive control (D-MPC),

which appears in the literature as an instance of (P) with a star-shaped variable. One of the

contributions of this thesis is a new framework for D-MPC that uses generic connected, and even

non-connected, variables. This new framework allows modeling D-MPC scenarios where systems

that are coupled through their dynamics need not to communicate directly. The second application

4.2. Applications 75

we will see is the distributed compressed sensing problem reversed lasso with a row partition, which

we formulate as (P) with a mixed variable. Then, we describe three applications that have been

solved with distributed algorithms: network flow problems (star-shaped variable), network utility

maximization (NUM) (star-shaped and mixed variable), and state estimation in power networks

(star-shaped variable). The last application, state estimation in power networks, is described in [47],

which also proposes an ADMM-based algorithm to solve it. This is the only algorithm we found

in the literature that can be easily generalized to solve (P) for all types of variables. At the end of

this section, we will describe the algorithm in [47] for a generic connected variable.

4.2.1 Distributed model predictive control

This subsection describes model predictive control (MPC), first from a centralized perspective, and

then from a distributed one.

Centralized MPC. As mentioned in Chapter 2, model predictive control (MPC) is a popular

strategy for controlling discrete-time systems. In MPC, a system is described at each time instant t

by its state-space vector x[t] ∈ R
n, whose value at time t + 1 is determined by the state and control

input at time t. Mathematically, x[t+1] = Θt(x[t], u[t]), where u[t] ∈ R
m denotes the control input

applied to the system at time t and Θt : Rn×R
m −→ R

n is an arbitrary, time-variant map modeling

the system. Being a control strategy, the goal of MPC is to take the state vector of the system

from an initial point x[0] to some predefined “goal state.” To be more concrete, let Φ : Rn −→ R

be a function that penalizes deviations from the goal state or, in other words, Φ(x) increases with

the distance of x to the goal state. Almost always, there are several possible paths from x[0] to

the goal state and, typically, these paths have different energy consumptions, for example, the

energy spent on the input signals u[0], u[1], We model energy consumption at time t with the

function Ψt(x[t], u[t]). Therefore, we want to choose the path from x[0] to the goal state that

uses the minimum amount of energy; this is actually the problem solved by MPC. However, in

MPC, we make the key assumption that the system can measure its state at each time instant.

This capability is used to mitigate model inaccuracies and disturbances to the system. It works

as follows: instead of solving the problem at once, time is divided into slots of T units, where T

is called the time-horizon. At each time-instant, the time variable t is set to zero and the state is

measured, say, x[0] = x0, where x0 is the known measurement. Then, the following optimization

problem is solved for a time-horizon T :

minimize
x̄,ū

Φ(x[T]) +
∑T −1

t=0 Ψt(x[t], u[t])

subject to x[t + 1] = Θt(x[t], u[t]) , t = 0, . . . , T − 1

x[0] = x0 ,

(4.1)

76 4. Connected and Non-Connected Classes

1

2

3
4

5

6

(a) Connected star-shaped variable

1

2

3
4

5

6

(b) Non-connected variable

Figure 4.1: Two D-MPC scenarios. Solid lines represent links in the communication network and dot-
ted arrows represent system interactions. The optimization variable is star-shaped (and thus
connected) in (a) and is non-connected in (b), because node 2 influences node 5 but not any
neighbor of that node.

where (x̄, ū) := ({x[t]}Tt=0, {u[t]}T −1
t=0) is the optimization variable and represents the set of states

(resp. inputs) from time t = 0 to time T (resp. T − 1). In the objective of (4.1), there is a tradeoff

between achieving the goal state at time T , expressed by the term Φ(x[T]), and minimizing the

path energy, expressed by the term
∑T −1

t=0 Ψt(x[t], u[t]). While the first constraint in (4.1) enforces

the state to satisfy the system dynamics, the second constraint encodes the measurement x0. After

solving problem (4.1), the first input u[0] is applied to the system, the time t is again set to zero,

and the process is repeated. This means that, at each time instant, only the first input is used, even

though a set of inputs and states are computed for the entire horizon from t = 0 to t = T . MPC

thus provides a conservative strategy to deal with model inaccuracies and system disturbances,

which perhaps explains its effectiveness and, consequently, its popularity.

D-MPC. We now turn to distributed scenarios and focus on solving one instance of (4.1), i.e.,

for a fixed MPC iteration. Suppose that, instead of a single system, we now have a network of

systems, where each system is described by its own state vector and has a local control input. Let

xp[t] ∈ R
np denote the state of system p at time t, and up[t] ∈ R

mp denote its local input also at

time t; we have n1 + · · · + nP = n and m1 + · · ·+ mP = m. Each system is viewed as a node of a

communication network G = (V, E), whose edges determine which systems communicate directly.

We assume that the state of system p evolves as

xp[t + 1] = Θt
p

({xj [t], uj [t]}j∈Ωp

)

, (4.2)

where Ωp ⊆ V is the set of nodes whose state and/or input influences xp (we assume each node p

influences itself, i.e., {p} ⊆ Ωp). In (4.2), we used the following notation: given a finite set Ω =

4.2. Applications 77

{ω1, ω2, . . . , ωL} and a vector zω, indexed by a parameter ω ∈ Ω, the symbol {zω}ω∈Ω denotes the

L-tuple (zω1 , zω2 , . . . , zωL
). Many times, when Ω is represented as Ω = {ω : A(ω) holds}, we will

represent {zω}ω∈Ω simply as {zω}A(ω) holds. In contrast with what is usually assumed, Ωp in (4.2)

is not necessarily a subset of the neighbors of node p. This means that two systems that influence

each other through their dynamics may be unable to communicate directly. This is illustrated

in Figure 4.1(b) where, for example, the state/input of node 3 influences the state of node 1

(dotted arrow), but there is no communication link (solid line) between them. Finally, we assume

functions Φ and Ψt in (4.1) can be decomposed, respectively, as Φ(x[T]) =
∑P

p=1 Φp({xj [T]}j∈Ωp)

and Ψt(x[t], u[t]) =
∑P

p=1 Ψt
p({xj [t], uj [t]}j∈Ωp), where Φp and Ψt

p are both associated to node p.

This means that non-communicating systems can have coupled goals or energy measures. Hence,

in our distributed setting, the MPC problem (4.1) becomes

minimize
x̄,ū

∑P
p=1

[

Φp({xj [T]}j∈Ωp) +
∑T −1

t=0 Ψt
p({xj [t], uj [t]}j∈Ωp)

]

subject to xp[t + 1] = Θt
p

({xj [t], uj [t]}j∈Ωp

)
, t = 0, . . . , T − 1 , p = 1, . . . , P

xp[0] = x0
p , p = 1, . . . , P ,

(4.3)

where x0
p is the initial measurement at node p. The optimization variable in this case is (x̄, ū) :=

({x̄p}Pp=1, {ūp}Pp=1

)
, where x̄p := {xp[t]}Tt=0 and ūp := {up[t]}T −1

t=0 represent, respectively, the collec-

tion of all the states and inputs of node p for the time-horizon T . Problem (4.3) can be written

as (P) by making

fp

(

{x̄j , ūj}j∈Ωp

)

= Φp

(

{xj[T]}j∈Ωp

)

+ i{xp[0]=x0
p}(x̄p)

+
T −1∑

t=0

(

Ψt
p({xj [t], uj [t]}j∈Ωp) + iΓt

p
({x̄j , ūj}j∈Ωp)

)

,

where iΓt
p

is the indicator function of the set Γt
p :=

{

{x̄j , ūj}j∈Ωp : xp[t+1] = Θt
p

({xj [t], uj [t]}j∈Ωp

)}

.

Figure 4.1(a) illustrates the standard D-MPC scenario, where each system p is influenced only

by itself and by its neighbors, i.e., Ωp ⊆ Np ∪ {p}. According to the terminology introduced in

Chapter 1, each component (x̄p, ūp) of the variable is star-shaped and thus the entire variable

(x̄, ū) is also star-shaped. Several instances of this particular case of (4.3) have been addressed, for

example, by [145, 19, 146, 147], who propose heuristics that are not guaranteed to solve exactly (4.3),

and by [144, 150, 151, 46, 152], who propose algorithms based on distributed optimization methods

and thus, in principle, are guaranteed to solve (4.3).

The model we propose here is significantly more general, since it can handle scenarios where

interacting nodes do not necessarily need to communicate, or even scenarios with a non-connected

78 4. Connected and Non-Connected Classes

1

2 3

4 5

6 7 8 9

Figure 4.2: Example of a geometrical pattern used in formation for minimizing the effect of drag forces or
for escorting a moving object. Solid lines indicate direct communication, while dashed lines
indicate dynamic coupling, but not necessarily direct communication.

variable. Both cases are shown in Figure 4.1(b). For example, the subgraph induced by (x̄3, ū3)

consists of the nodes {1, 2, 3, 4} and is connected. (The reference for connectivity is always the

communication network which, in the plots, is represented by solid lines.) Nodes 1 and 3, however,

cannot communicate directly. This is an example of an induced subgraph that is not a star. On the

other hand, the subgraph induced by (x̄2, ū2) consists of the nodes {1, 2, 3, 5}. This subgraph is not

connected, which implies that the optimization variable is non-connected. A connected variable

with induced subgraphs that are not stars, or even a non-connected variable, can be useful to model

scenarios where communications links are expensive, hard to establish, or simply do not exist. We

describe two such applications below.

Applications of our D-MPC model. Although D-MPC has been applied to solve many

applications, we present here two applications where the scenario of Figure 4.1(b) might arise

naturally, i.e., the variable is either non-connected, or is connected but not star-shaped. The first

application is flight formation and the other is temperature regulation of buildings.

Figure 4.2 shows the setup of flight formation: there is a group of autonomous agents, such

as unmanned airplanes, submarines, or robots, whose goal is to form a geometrical pattern while

performing some task. This task could be simply flying and, at the same time, trying to minimize

the effect of drag forces to reduce fuel consumption; or, for example, to escort a moving object,

which might block some communications between the agents. We assume there is a communication

network through which the agents communicate. In Figure 4.2, the links of this communication

network are represented by the solid lines. Also, some agents influence the behavior of other agents

with which they do not communicate directly; this is represented by the dashed lines in Figure 4.2.

Flight formation is a widely studied topic and we refer to [217] for references and related work.

In this problem, we extend the optimization model used in [217] to the MPC framework (4.1).

4.2. Applications 79

Namely, we write the dynamics of the pth agent as (4.2), where the relative position between two

agents affects their dynamics due, for example, to drag forces. Regarding the objective, while Ψt
p

models fuel consumption at time t, Φp models the geometrical pattern to be formed. Note that,

in principle, Θt
p and Ψt

p depend only on the state/input of agent p and of its closest agents (i.e.,

its neighbors in the communication network); in Φp we can, in addition, include dependencies on

agents that are not within communication reach. For example, suppose we specify agent 6 in

Figure 4.2 to have a relative distance of δ46 and δ67 from its closest neighbors, agents 4 and 7,

and also a relative distance of δ68 from agent 8, for symmetry reasons. Note that agents 6 and 8

do not communicate directly. In this case, Ω6 = {4, 6, 7, 8}, and Φ6 would have a format similar

to Φ6(x4, x6, x7, x8) = 1
2‖x4−x6−δ46‖2 + 1

2‖x6−x7−δ67‖2 + 1
2‖x6−x8−δ68‖2, where xp represents

the position of agent p; note that we dropped the time index T for notational simplicity. A similar

reasoning can be applied to the remaining agents of Figure 4.2, where relative distances are specified

for each edge (represented either with continuous or dashed lines).

We now describe another application of D-MPC where the variable can be connected, not nec-

essarily star-shaped, or even non-connected. The application is temperature regulation of buildings

and is described in the context of D-MPC in [218]. The algorithm proposed in [218], however, is

heuristic and, thus, not guaranteed to solve the original problem. The motivation for using MPC

in the control of room temperature stems from its ability to integrate in its model the prediction of

future events, in this case, room occupation profiles. This feature is necessary in the regulation of

room temperature, because temperature varies very slowly. If it did not, a simple PID controller

would be enough. The work in [218] models room temperature, viewing it as a state x, which varies

linearly with the heating power applied to the room, u. According to our notation in (4.1), the

function Φ is identically zero, and Ψt(x[t], u[t]) = βu[t] + δ[t]
∣
∣
∣x[t]− r[t]

∣
∣
∣, where r[t] is the reference

temperature for the room at time t, and δ[t] = 1 if the room is predicted to be occupied at time t

and δ[t] = 0 otherwise. The parameter β > 0 sets the tradeoff between energy consumption and

comfort. The power u[t] is constrained to an interval: 0 ≤ u[t] ≤ umax. This is the model for one

room. However, [218] also models buildings, where the rooms are thermally coupled. The model it

proposes can be written as (4.3), where the sets Ωp’s model coupling between adjacent rooms. Yet,

it is assumed that adjacent rooms can communicate or, in other words, that interactions through

coupling coincide with interactions through communication. If the communication technology is

wired, it might be expensive to connect all the adjacent rooms with cables; if it is wireless, large

concrete walls might prevent adjacent rooms from communicating directly. This is clearly an ex-

ample where our proposed D-MPC model (4.3) could be useful, as the problem variable might have

induced subgraphs that are not stars and might even be non-connected.

80 4. Connected and Non-Connected Classes

4.2.2 Reversed lasso with a row partition

We saw in Chapter 3 how to recast several compressed sensing problems as (G), that is, as (P)

with a global variable. The only problem for which we were not able to do so was the reversed

lasso (3.6) with a row partition. The goal of this subsection is to complete this missing part of the

puzzle, by recasting that problem as (P) with a mixed variable.

Recall that the reversed lasso (3.6) is the problem

minimize
x

‖x‖1
subject to ‖Ax− b‖ ≤ σ .

(4.4)

Since we will use duality, we want to make sure that the primal objective is strictly convex, so

that we can recover a primal solution after having solved the dual problem. We will make the

primal objective strictly convex by using the regularization (3.33) (page 53), which we used for the

same problem with a column partition. There, we showed that, for a small δ > 0, (4.4) can be

approximated by

minimize
x

‖x‖1 + δ
2‖x‖2 + δ

4‖Ax− b‖2

subject to ‖Ax− b‖2 ≤ σ2 ,
(4.5)

where we squared both sides of the constraint. Consider now a row partition, as visualized in

Figure 3.1, and rewrite (4.5) as

minimize
x

∑P
p=1

(

1
P ‖x‖1 + δ

2P ‖x‖2 + δ
4‖Apx− bp‖2

)

subject to
∑P

p=1 ‖Apx− bp‖2 ≤ σ2 .

(4.6)

This problem has the following format

minimize
x

f1(x) + f2(x) + · · ·+ fP (x)

subject to h1(x) + h2(x) + · · · + hP (x) ≤ r ,
(4.7)

with fp(x) = 1
P ‖x‖1 + δ

2P ‖x‖2 + δ
4‖Apx − bp‖2, hp(x) = ‖Apx − bp‖2, and r = σ2. We will now

see how to solve (4.7) in a network where each node p knows fp, hp, and r. We assume that each

function fp is strictly convex, as in (4.6). We start by cloning the variable x, rewriting (4.7) as

minimize
x1,...,xP

f1(x1) + f2(x2) + · · ·+ fP (xP)

subject to h1(x1) + h2(x2) + · · ·+ hP (xP) ≤ r

xi = xj , (i, j) ∈ E ,

(4.8)

4.2. Applications 81

s3

x1

s2

x2

s1

x3

r1

r2

r3

n1 n2

n3

c1

c3

c2

c4
c5

(a) Original network

2

λ2

s2 1

λ1

s1 3

λ3

s3 5

λ5

4 λ4

(b) Bipartite graph obtained from (a)

Figure 4.3: (a) Example network with 3 source nodes s1, s2, and s3, that use predetermined routes to send
packets to three recipient nodes r1, r2, and r3; (b) Bipartite graph obtained from (a): each
link from (a) with a capacity associated is represented as a circular node in (b).

where xp is the copy of x held at node p. Let µ be a dual variable associated to the first constraint

of (4.8) and λij the dual variable associated to the constraint xi = xj , for (i, j) ∈ E . The dual

problem of (4.8) is

minimize
µ,{λij}(i,j)∈E

g1(µ, {λ1j}j∈N1) + g2(µ, {λ2j}j∈N2) + · · · + gP (µ, {λP j}j∈NP
)

subject to µ ≥ 0 ,
(4.9)

where, for each p,

gp(µ, {λpj}j∈Np) := sup
xp

(∑

j∈Np

sign(p− j)λpj

)⊤
xp −

(

fp(xp) + µ⊤(hp(xp)− 1

P
r)

)

. (4.10)

We slightly abused notation in (4.9), since each λij is only defined for i < j. We extended that

definition: λij = −λji when i > j. We thus can see that (4.9) has the same format as (M) or, in

other words, it has a mixed variable. The dual variable µ is a global component, since it appears

in the function of all the nodes, and all the components of λ = (. . . , λij , . . .) are non-global. Since

we assume that each fp is strictly convex, the pth block of the primal variable of (4.7), i.e., x⋆
p will

be available at the pth node as the solution of the optimization problem in (4.10), for µ = µ⋆ and

{λpj}j∈Np = {λ⋆
pj}j∈Np , where the starred vectors solve the dual problem (4.9).

4.2.3 Network utility maximization

Network utility maximization (NUM) is usually used for modeling congestion control in networks.

The setup of congestion control is a network with some source nodes sending information, encoded

in packets, to other nodes of the network, called recipient nodes. Independently of the network,

its links have always finite capacity and, therefore, there is a limit on the rate of packets that

can be injected into the network without congesting it. The goal of congestion control is to avoid

82 4. Connected and Non-Connected Classes

congesting the network; this is done by implementing a protocol between the source nodes and

the nodes through which they send their packets, called intermediate nodes. The communication

between these nodes can occur implicitly or explicitly. The algorithm we propose for solving (P)

will require an explicit communication between the source and the intermediate nodes.

Star-shaped variable model. Given a network, let S, R, and N represent the source nodes,

the recipient nodes, and the intermediate nodes, respectively. Figure 4.3(a) shows an example of

such network with 3 nodes of each kind, i.e., |S| = |R| = |N | = 3. The source nodes are the squares

on the left side, the recipient nodes are the squares on the right side, and the intermediate nodes

are the circles. We assume each source sends packets only to one recipient node. Also, the routes

through which each source sends its packets are predetermined (see the arrows in Figure 4.3(a)).

Each link l in the network has a finite capacity cl > 0, and the total number of links will be denoted

with L. In Figure 4.3(a), to simplify, we represent the capacity of only some links. Congestion

control can be modeled with a problem called network utility maximization (NUM):

maximize
{xs}s∈S

∑

s∈S Us(xs)

subject to
∑

s∈S(l) xs ≤ cl , l = 1, . . . , L ,
(4.11)

where xs represents the sending rate of source s and Us(xs) its utility, or “satisfaction.” The

constraints in (4.11) are simply the link capacity constraints: S(l) represents the set of sources

that use link l and thus
∑

s∈S(l) xs represents the rate of packets flowing in link l, which has to

be smaller than the link capacity cl. The goal in (4.11) is to maximize the aggregate utilities of

the sources, while satisfying the link capacity constraints. It is generally assumed that each utility

is increasing and strictly concave. For example, TCP Vegas, FAST, and Scalable TCP have been

modeled as (4.11) with Us(xs) = ws log xs, for some ws > 0 [132, 134]. This makes the objective

of (4.11) strictly concave, and hence its dual problem can be solved instead:

minimize
λ=(λ1,...,λL)

∑

l∈L clλl +
∑

s∈S Ūs

(
∑

l∈L(s) λl

)

subject to λl ≥ 0 , l = 1, . . . , L ,
(4.12)

where L(s) is the set of links source s uses to route its packets and Ūs(t) := supxs

(

Us(xs)− txs

)

has

always a unique solution xs(t), due to the strict concavity of Us. In the case of TCP Vegas, FAST,

and Scalable TCP, Ūs(t) = ws log ws−ws log t−ws, and xs(t) = ws/t. After a solution λ⋆ to (4.12)

has been found, the optimal value for the rate of source s can be found as x⋆
s = xs(

∑

l∈L(s) λ⋆
l),

which is ws/
∑

l∈L(s) λ⋆
l in the case of TCP Vegas, FAST, and Scalable TCP.

The “physical communications” occur in a network that has a format similar to the one repre-

sented in Figure 4.3(a). However, a congestion control protocol establishes direct communications

4.2. Applications 83

between the source nodes and the intermediate nodes that manage the respective links. Therefore,

the communication network it considers is actually the one represented in Figure 4.3(b). This

network is constructed as follows: each link l, which we assume is unidirectional for the sake of

simplicity, has a node associated (in Figure 4.3(b), a circle node), and each source s has also a

node associated (in Figure 4.3(b), a square node); the recipient nodes are not considered in this

new network. If link l is used in the route assigned to source s, the nodes representing link l and

source s are connected to each other. Figure 4.3(b) shows the network obtained from Figure 4.3(a)

by considering only the links marked with capacities. The way this network is constructed makes

it automatically bipartite. In the model considered here, the intermediate node having link l as

output manages λl. For example, node n2 in Figure 4.3 manages both λ2 and λ3. Note that

each communication occurring in the network of Figure 4.3(b) corresponds to an arbitrary number

of communications in the original network of Figure 4.3(a). Regarding problem (4.12), it can be

written as (P) with the function at node p given by

fp(λ1, . . . , λL) =

cpλp + iR+(λp) , if p is an intermediate node

Ūs

(∑

l∈L(p) λl

)

, if p is a source node
,

where iR+(·) is the indicator of the set of the nonnegative real numbers, and the variable is λ =

(λ1, . . . , λL). The variable in this case is star-shaped. The algorithm we propose for (P) can then be

used to inspire a new congestion control protocol. However, it has one disadvantage with respect to

gradient-based algorithms: while gradient-based algorithms can work with implicit communication,

due to their linearity, the algorithm we propose requires explicit communication between each each

source and all the intermediate nodes along its route.

Mixed variable model. The NUM problem was introduced as (4.11) to model congestion

control in networks. In (4.11), the utility function Up of source/node p depends only on its sending

rate xp, i.e., Up(xp). However, in cooperative or competitive scenarios it might be useful to consider

coupled objectives, e.g., Up({xl}l∈Sp
), where Sp is the set of nodes whose rates influence the utility

of source p. Such model was considered in [33] (see also [52]). For example, in digital subscriber

line (DSL) spectrum management, or in wireless power control, the signal-to-interference ratio

at one user depends on the transmit powers of other users, making the scenario competitive. A

cooperative scenario would be rate allocation in clusters: the higher the rate allocated to one

cluster, the higher the rate allocated to each node inside that cluster. In particular, [33] considered

the following variation of (4.11):

maximize
x1,...,xP

∑P
p=1 Up({xl}l∈Sp

)

subject to
∑P

p=1 gp(xp) ≤ c ,
(4.13)

84 4. Connected and Non-Connected Classes

where each gp is a convex function and c is a globally known vector. We slightly changed the

notation with respect to (4.11): we now denote each source by p and the total number of sources

is P . In [33] it is also assumed that source p can communicate with all the sources that interfere

with its utility, and vice-versa. The work in [33] proposes a gradient-based algorithm that solves

a dual problem of (4.13). To arrive at that dual problem, we first perform a splitting (or cloning)

of xp among all the nodes whose utilities depend on xp:

maximize
{x̄l}

P
l=1

∑P
p=1 Up({x(p)

l }l∈Sp
)

subject to
∑P

p=1 gp(x
(p)
p) ≤ c

x
(i)
l = x

(j)
l , l ∈ Si ∩ Sj , (i, j) ∈ E ,

(4.14)

where x
(p)
l is the copy of the variable xl held by node p, and E is the set of edges in the communication

network. The variable in (4.14) is {x̄l}Pl=1, where x̄l := {x(p)
l }p∈Vl

, and Vl is the set of nodes whose

utilities depend on xl. Associating a dual variable µ to the first constraint in (4.14) and λij
l to each

constraint of the second set of constraints, the dual problem of (4.14) is

minimize
µ,{λij

l
}

h1(µ, {λ̄1j}j∈N1) + h2(µ, {λ̄2j}j∈N2) + · · ·+ hP (µ, {λ̄P j}j∈NP
) , (4.15)

where the function hp is associated to source p and is given by

hp(µ, {λ̄pj}j∈Np) = sup
x(p)

Up({x(p)
l }l∈Sp

) + µ⊤gp(x(p)
p)− 1

P
µ⊤c

+
∑

j∈Np

∑

l∈Sp∩Sj

sign(j − p)
(

λpj
l

)⊤
x

(p)
l + iR+(µ) .

We used the notation λ̄ij = {λij
l }l∈Si∩Sj

. Note that to arrive at (4.15) we used the identity

∑

(i,j)∈E

∑

l∈Si∩Sj

(

λij
l

)⊤
(x

(i)
l − x

(j)
l) =

P∑

p=1

∑

j∈Np

∑

l∈Sp∩Sj

sign(j − p)
(

λpj
l

)⊤
x

(p)
l

and, with it, we extended the notation λij
l for i > j as λij

l := −λji
l . The variable in (4.15) has the

global components µ, appearing in all the functions hp, and non-global components {λij
l }. Thus,

(4.15) is a particular instance of (P) with a mixed variable.

4.2. Applications 85

1

2

3

4
5

6

7

φ12(x12)

φ23(x23)

φ24(x24)

φ45(x45)

φ46(x46)

φ57(x57)

φ43(x43)

φ16(x16)

φ67(x67)

Figure 4.4: Example of a network flow problem. Each edge has associated both a variable xij and function
of that variable, φij(xij). The goal is to minimize the sum of all the functions, while satisfying
conservation of flow constraints.

4.2.4 Network flow problems

A network flow problem is formulated on a network with arcs A (or directed edges), where an

arc from node i to node j, i.e., (i, j) ∈ A, indicates a flow in that direction. Figure 4.4 shows an

example which allows, for example, a flow from node 1 to node 6, but not from node 6 to node 1. To

quantify the flow in an arc (i, j) ∈ A, we use a non-negative variable xij. Also, each arc (i, j) ∈ A
has associated a cost function φij(xij), depending only on xij , that typically increases with xij . The

goal in network flow problems is to minimize the sum of all these cost functions, while constraining

the flows to satisfy conservation laws; namely, the inflows at a given node have to equal the outflows.

These inflows/outflows are either caused by neighboring nodes, or are injected/extracted externally

at the node itself. A node to which flow is injected (resp. extracted) is called source (resp. sink).

For example, in Figure 4.4, if either x12 or x16 is positive, node 1 can only be a source, since all

of its edges point outwards. Nodes 3 and 7, in contrast, can only be sinks, if the flow in their

incident arcs is nonzero. Other nodes in that network, for example node 4, can be sources, sinks,

or neither. A way to represent a network with flows is via the node-arc incidence matrix B, where

the column associated to an arc from node i to node j has a −1 in the ith entry, a 1 in the jth

entry, and zeros elsewhere. We assume the components of the variable x and the columns of B

are in lexicographic order. For example, x = (x12, x16, x23, x24, x43, x45, x46, x57, x67) would be the

variable in Figure 4.4. The laws of conservation of flow are expressed as Bx = d, where d ∈ R
P is

the vector of external inputs/outputs. The entries of d sum up to zero and dp < 0 (resp. dp > 0) if

node p is a source (resp. sink). When node p is neither a source nor a sink, dp = 0. The problem

we solve is
minimize

x

∑

(i,j)∈A φij(xij)

subject to Bx = d

x ≥ 0 ,

(4.16)

86 4. Connected and Non-Connected Classes

Area 1

Area 2
Area 3

Area 4 Area 5

Figure 4.5: Illustration of five connected areas in a power network. Nodes represent buses, i.e, generators
or loads, and they are connected through transmission lines. Circled nodes indicate voltage
measurements and squares in the transmission lines indicate current measurements.

which can be written as (P) by setting

fp

(

{xpj}(p,j)∈A, {xjp}(j,p)∈A

)

=
1

2

∑

(p,j)∈A

φpj(xpj) +
1

2

∑

(j,p)∈A

φjp(xjp)

+ i{b⊤
p x=dp}

(

{xpj}(p,j)∈A, {xjp}(j,p)∈A

)

,

where b⊤
p is the pth row of B. In words, fp consists of the sum of the functions associated to all

arcs involving node p, plus the indicator function of the set {x : b⊤
p x = dp}, which enforces the

conservation of flow at node p and only involves the variables {xpj}(p,j)∈A and {xjp}(j,p)∈A.

Regarding the communication network G = (V, E), we assume it consists of the underlying

undirected network. This means that nodes i and j can exchange messages directly, i.e., (i, j) ∈ E
for i < j, if there is an arc between these nodes, i.e., (i, j) ∈ A or (j, i) ∈ A. Therefore, in contrast

with the flows, messages do not necessarily need to be exchanged satisfying the direction of the

arcs. In fact, messages and flows might represent different physical quantities: think, for example,

in a network of water pipes controlled by actuators at each pipe junction; while the pipes might

enforce a direction in the flow of water (by using valves, for example), there is no reason to impose

the same constraint on the electrical signals exchanged by the actuators. In problem (4.16), the

subgraph induced by xij , (i, j) ∈ A, consists only of nodes i and j and an edge connecting them.

This makes the variable in (4.16) connected and star-shaped.

4.2. Applications 87

4.2.5 State estimation in the power grid

The power grid is the network that connects energy producers to energy consumers. Both its

large-scale dimensions and its large number of parameters make it an appropriate application of

distributed optimization. For example, state estimation in the power grid [219] can be posed as

a particular instance of (P) with a star-shaped variable, as was done by Kekatos and Giannakis

in [47]. In this subsection, we briefly describe this problem from their point of view and derive

the algorithm they propose, but adapted to solve (P) for a generic connected variable. As we had

mentioned in Chapter 2, the algorithm proposed in [47] is actually the only algorithm we found that

can solve (P) for connected variables that are neither global nor stars. Later, in subsection 4.3.2, we

will generalize it to solve (P) with a non-connected variable. For other problems and applications

of distributed optimization in the power grid, see, for example, [220, 48, 221, 222].

State estimation. To explain state estimation in the power grid, consider the network of

Figure 4.5, whose nodes are divided into 5 disjoint areas. The nodes represent either generators or

loads or, in the terminology of power systems, buses. Buses are connected through transmission

lines, represented as the edges of the network, and through which current flows. Each area in the

network, although controlled by its own operator, is also connected to other areas for robustness

and reliability. It is essential for the proper functioning of the power network to know or, at least, to

estimate the state of the system; this includes knowing power flows, voltage and current magnitudes

at the buses, and generator outputs. Figure 4.5 illustrates a typical scenario where circled nodes

indicate buses at which voltage measurements are taken, and edges with squares indicate lines where

current measurements are taken. Based on these measurements and on a model for the system, the

goal of state estimation is to determine what are the voltages and currents at the other buses and

lines of the network. Let us denote the state of the entire network, i.e., the set of all the voltages

and all the currents, with x ∈ R
n. The state of a given area p is a set Sp ∈ {1, . . . , n} of np = |Sp|

components of x, i.e., xSp denotes the state of area p. Let us represent the set of measurements taken

at this area with yp ∈ R
mp . These measurements are related with xSp through yp = hp(xSp) + wp,

where hp : Rnp −→ R
mp models area p and is typically a nonlinear function, and wp ∈ R

mp models

measurement noise and model inaccuracies. The areas that are connected with transmission lines

will share some state variables, i.e., Si ∩Sj. The problem of state estimation in power systems can

then be formulated as

minimize
x∈Rn

1

2

P∑

p=1

∥
∥yp − hp(xSp)

∥
∥

2
. (4.17)

Since each function hp is nonlinear, problem (4.17) is nonconvex. Yet, as mentioned in [47], ei-

ther using Gauss-Newton methods to solve (4.17) directly or using a DC-approximation model for

the system, one usually ends up with a linearized version of the system, i.e., yp = HpxSp + wp,

88 4. Connected and Non-Connected Classes

where Hp ∈ R
mp×np is the Jacobian of hp at some nominal operating point. So, instead of solving

the nonconvex problem (4.17), we can solve

minimize
x∈Rn

1

2

P∑

p=1

∥
∥yp −HpxSp

∥
∥

2
, (4.18)

which is convex. If we view each area in Figure 4.5 as a node of a network, then (4.18) (and

also (4.17)) have the format of (P), where each fp is given by fp(xSp) = (1/2)‖yp −HpxSp‖2. In

this case, the variable is star-shaped because each set Sp indexes components of the state of area p

and, possibly, of areas adjacent (i.e., neighbors) of area p.

The algorithm in [47]. The algorithm proposed in [47] solves (4.18) in a distributed way and

assumes that neighboring areas communicate, i.e., that they are able to exchange estimates of their

common state variables. However, that algorithm can be easily generalized to solve (P) under a

generic connected variable, i.e., all induced subgraphs are connected. The algorithm is presented

as Algorithm 4 and is derived in Appendix C.

Algorithm 4 [47]

Initialization: Choose ρ ∈ R; for all p ∈ V and l ∈ Sp, set γ
(p),0
l = x

(p),0
l = 0; set k = 0

1: repeat
2: for all p ∈ V [in parallel] do

3: Compute v
(p),k

l = γ
(p),k

l − ρ
2

(

Dp,l x
(p),k

l +
∑

j∈Np∩Vl
x

(j),k

l

)

, for all l ∈ Sp

4: Compute x
(p),k+1
Sp

= arg min
x

(p)

Sp
={x

(p)

l
}l∈Sp

fp(x
(p)
Sp

) +
∑

l∈Sp
v

(p),k

l

⊤
x

(p)
l + ρ

2

∑

l∈Sp
Dp,l

(
x

(p)
l

)2

5: For each component l ∈ Sp, exchange x
(p),k+1
l with neighbors Np ∩ Vl

6: Update the dual variables γ
(p),k+1
l = γ

(p),k

l + ρ
2

∑

j∈Np∩Vl
(x

(p),k+1
l − x

(j),k+1
l), for all l ∈ Sp

7: k ← k + 1
8: end for
9: until some stopping criterion is met

Algorithm 4 solves (P) by first reformulating it as

minimize
{x̄l}

n
l=1

f1(x
(1)
S1

) + f1(x
(2)
S2

) + · · · + f1(x
(P)
SP

)

subject to x
(p)
l = x

(j)
l , l ∈ Sp ∩ Sj , j ∈ Np , p = 1, . . . , P ,

(4.19)

where we created a copy of the component xl in all the nodes whose functions depend on xl, i.e.,

on all p ∈ Vl, where Gl = (Vl, El) is the subgraph induced by xl. The copy at node p is x
(p)
l . All the

copies held by node p are denoted with x
(p)
Sp

:= {x(p)
l }l∈Sp

. The constraints in (4.19) enforce copies

4.3. Algorithm derivation 89

of the component xl to be equal for neighboring nodes that depend on it. That is, if nodes i and j

are neighbors, (i, j) ∈ E , and both depend on xl, l ∈ Si and l ∈ Sj , then x
(i)
l = x

(j)
l will be on the

constraints of (4.19). Since we assume a connected variable, problems (P) and (4.19) are equivalent.

We also denote by x̄l the set of all copies of the component xl, i.e., x̄l = {x(p)
l }p∈Vl

. Similarly to

what was done for Algorithm 2, [47] introduces a variable per network edge and writes (4.19)

equivalently as

minimize
{x̄l}

n
l=1

,{z̄l}
n
l=1

f1(x
(1)
S1

) + f1(x
(2)
S2

) + · · ·+ f1(x
(P)
SP

)

subject to x
(p)
l = z

{p,j}
l , l ∈ Sp ∩ Sj , j ∈ Np , p = 1, . . . , P ,

(4.20)

where z
{i,j}
l = z

{j,i}
l is associated to the common component xl between nodes i and j, for (i, j) ∈

El. We used z̄l to denote the set of variables z
{i,j}
l associated to the component xl, i.e., z̄l =

{z{i,j}
l }(i,j)∈El

. Problem (4.20) has two sets of variables, {x̄l}nl=1 and {z̄l}nl=1, and linear constraints.

Therefore, the 2-block ADMM (2.18)-(2.20) can be applied and yields Algorithm 4, as shown in

Appendix C. Algorithm 4 has a structure very similar to Algorithm 2; indeed, it is derived using

the same principles, but adapted to the problem (P). In particular, all nodes perform the same

tasks in parallel. These tasks consist of solving an optimization problem in step 4 and sending

components of the respective solution to the neighbors that have common components, in step 5.

We used Dp,l to denote the degree of node p in the subgraph induced by component xl, Gl. Steps 3,

4, and 5 in Algorithm 4 correspond to step 3 of Algorithm 2: now, however, the prox notation

is not as convenient as it was for the global class algorithms. Also, if in Algorithm 2 each node

broadcasts all the components of its new update, in Algorithm 4 each node p needs only to transmit

to its neighbor j ∈ Np their common components xSp∩Sj
. After these exchanges occur, node p can

update its set of dual variables γl, l ∈ Sp, as in step 6.

The algorithm we propose for (P) relates to the algorithm we proposed for the global class (G)

in the same way that Algorithm 4 relates to Algorithm 2. We will derive it in the next section,

first for a connected variable, and then for a general variable, connected or not. Similarly to the

algorithms for the global class, our algorithm outperforms Algorithm 4 in terms of the number of

communications, as will be observed in Section 4.4.

4.3 Algorithm derivation

In this section, we derive our algorithm for (P). First, we consider a connected variable, i.e., every

induced subgraph is connected, and then we propose a way to address a non-connected variable,

i.e., when there is at least one induced subgraph that is non-connected.

90 4. Connected and Non-Connected Classes

4.3.1 Connected variable

The idea we use to derive an algorithm for (P) when the variable is connected is the same we

used before to derive Algorithm 3 for the global class: we manipulate (P) to make the multi-block

ADMM (2.22)-(2.26) applicable. The difference is in the way we manipulate the problem, more

specifically, in how we create copies of the variables. Recall our notation on the coloring scheme:

Cc ⊂ V denotes the nodes that have color c and C(p) denotes the color of node p; also, Cc = |Cc| is

the number of nodes with color c. As in the derivation of the global class algorithm, we will assume,

without loss of generality, that the nodes are numbered according to their colors: the first C1 nodes

have color 1, C1 = {1, . . . , C1}, the next C2 nodes have color 2, C2 = {C1 + 1, . . . , C1 + C2}, and so

on.

Problem manipulation. Recall that Gl = (Vl, El) denotes the subgraph induced by compo-

nent xl. In this subsection, we assume each Gl is connected. Similarly to [47], we create a copy of

the component xl only in the nodes that are interested in it, which are precisely the nodes in Gl;

let x
(p)
l be the copy at node p. Since a given node p depends on the components xSp of the vari-

able x, it will have |Sp| different (scalar) copies; let x
(p)
Sp

:= {x(p)
l }l∈Sp

be the set of all these copies,

at node p. We now rewrite (P) in a way slightly different than (4.19):

minimize
{x̄l}

n
l=1

f1(x
(1)
S1

) + f2(x
(2)
S2

) + · · ·+ fP (x
(P)
SP

)

subject to x
(i)
l = x

(j)
l , (i, j) ∈ El , l = 1, . . . , n ,

(4.21)

where the optimization variable is {x̄l}Ll=1 and it represents the set of all copies. We used x̄l to

denote all copies of the component xl, which are located only in the nodes of Gl: x̄l := {x(p)
l }p∈Vl

.

Although problems (4.19) and (4.21) are both equivalent to (P), (4.19) has twice the constraints

of (4.21). While in (4.19) each constraint appears twice (to make the introduction of the z’s in (4.20)

possible), our reformulation (4.21) uses less constraints. Recall that our notation (i, j) ∈ El (or E)

implies that i < j, and therefore there are no repeated equations in (4.21). Finally, note that

our assumption that the variable is connected is what makes problems (P) and (4.21) equivalent,

since each induced subgraph is connected. When the variable is non-connected, this equivalence no

longer holds.

Let Al denote the transpose of the node-arc incidence matrix of the subgraph Gl. Then, the

constraint x
(i)
l = x

(j)
l , (i, j) ∈ El can be written as Alx̄l = 0. We now use the coloring scheme (cf.

Assumption 4.5) to partition each variable x̄l as x̄l = (x̄1
l , . . . , x̄C

l), where

x̄c
l =

{x(p)
l }p∈Vl∩Cc , if Vl ∩ Cc 6= ∅

∅ , if Vl ∩ Cc = ∅
.

4.3. Algorithm derivation 91

Recall that Cc is the set of nodes that have color c. In words, x̄c
l represents the set of copies of xl

held by the nodes that have color c. If no node with color c depends on xl, then x̄c
l is empty. Using

a similar notation for the columns of the matrix Al, we write Alx̄l as Ā1
l x̄1

l + · · ·+ ĀC
l x̄C

l , for all l.

Therefore, (4.21) is equivalent to

minimize
x̄1,...,x̄C

∑

p∈C1
fp(x

(p)
Sp

) + · · ·+ ∑

p∈CC
fp(x

(p)
Sp

)

subject to Ā1x̄1 + · · · + ĀC x̄C = 0 ,
(4.22)

where x̄c = {x̄c
l }nl=1, and Āc is the diagonal concatenation of the matrices Āc

1, Āc
2, . . . , Āc

n, i.e.,

Āc = diag(Āc
1, Āc

2, . . . , Āc
n). For better visualization, we wrote the constraint in (4.22) as

Ā1
1

Ā1
2

. . .

Ā1
n

︸ ︷︷ ︸

Ā1

x̄1
1

x̄1
2
...

x̄1
n

︸ ︷︷ ︸

x̄1

+

Ā2
1

Ā2
2

. . .

Ā2
n

︸ ︷︷ ︸

Ā2

x̄2
1

x̄2
2
...

x̄2
n

︸ ︷︷ ︸

x̄2

+ · · ·+

ĀC
1

ĀC
2

. . .

ĀC
n

︸ ︷︷ ︸

ĀC

x̄C
1

x̄C
2
...

x̄C
n

︸ ︷︷ ︸

x̄C

= 0 .

(4.23)

Note that the cth term in the objective of (4.22) depends only on x̄c, the set of copies associated with

nodes with color c. Thus, (4.22) has the format of (2.21), the problem solved by the multi-block

ADMM, and thus the iterations (2.22)-(2.26) can be applied.

Applying multi-block ADMM. To apply the multi-block ADMM iterations (2.22)-(2.26)

to (4.22), we first need to write the augmented Lagrangian. Let λij
l be the dual variable associated

to the constraint x
(i)
l = x

(j)
l , for some l ∈ {1, . . . , n} and (i, j) ∈ El (cf. (4.21)). The augmented

Lagrangian of (4.22) is then

Lρ(x̄1, . . . , x̄C ; λ) =
C∑

c=1

∑

p∈Cc

fp(x
(p)
Sp

) +
C∑

c=1

λ⊤Ācx̄c +
ρ

2

∥
∥
∥

C∑

c=1

Ācx̄c
∥
∥
∥

2
, (4.24)

where λ = (λ1, . . . , λn) is the dual variable, whose lth block is λl := {λij
l }(i,j)∈El

. The multi-block

ADMM consists of a sequence of subproblems, obtained by minimizing Lρ with respect to each

block x̄c, and then updating each dual variable with

λij,k+1
l = λij,k

l + ρ
(
x

(i),k+1
l − x

(j),k+1
l

)
, (4.25)

for every (i, j) ∈ El and every l = 1, . . . , n. In (4.25), k denotes the iteration number and x
(p),k+1
l

is the estimate of the component xl, by node p, after iteration k. We now analyze the subproblem

each node solves to find those estimates. In particular, we will see that minimizing (4.24) with

92 4. Connected and Non-Connected Classes

respect to x̄c yields |Cc| problems that can be solved in parallel, i.e., all nodes with color c “work”

in parallel. For example, the copies of the nodes with color 1 are updated according to (2.22):

x̄1,k+1 = arg min
x̄1

∑

p∈C1

fp(x
(p)
Sp

) + λk⊤
Ā1x̄1 +

ρ

2

∥
∥
∥
∥Ā1x̄1 +

C∑

c=2

Ācx̄c,k

∥
∥
∥
∥

2

(4.26)

= arg min
x̄1

∑

p∈C1

(

fp(x
(p)
Sp

) +
∑

l∈Sp

∑

j∈Np∩Vl

(

λpj,k
l − ρ x

(j),k
l

)⊤
x

(p)
l +

ρ

2

∑

l∈Sp

Dp,l

(

x
(p)
l

)2
)

, (4.27)

whose equivalence is established in Lemma 4.6 below. As in Algorithm 4, Dp,l is the degree of node p

in the subgraph Gl, i.e., the number of neighbors of node p that also depend on xl. Of course, Dp,l

is only defined when l ∈ Sp. Note that all the dual variables λpj
l are well-defined because of our

assumption that the nodes are numbered according to their colors; namely, any neighbor j of a

node p ∈ C1 will have a color larger than 1, and hence p < j, making λpj
l well-defined. Recall

our convention that (i, j) ∈ E implies i < j. Before we establish the equivalence between (4.26)

and (4.27), note that (4.27) actually consists of |C1| problems that can be solved in parallel. This

is because nodes with the same color are not neighbors and, thus, none of the components of the

optimization variable x̄1, which corresponds to all the copies of the nodes with color 1, appears

as x
(j),k
l in the second term of (4.27). This means that all nodes p ∈ C1 solve, in parallel,

x
(p),k+1
Sp

= arg min
x

(p)
Sp

={x
(p)
l

}l∈Sp

fp(x
(p)
Sp

) +
∑

l∈Sp

∑

j∈Np∩Vl

(
λpj,k

l − ρ x
(j),k
l

)⊤
x

(p)
l +

ρ

2

∑

l∈Sp

Dp,l

(

x
(p)
l

)2
. (4.28)

Node p can only solve (4.28) if it knows x
(j),k
l and λpj,k

l , for j ∈ Np ∩ Vl and l ∈ Sp. This is

possible if, in the previous iteration, it received the respective copies of xl from its neighbors. This

is also enough for knowing λpj,k
l , although we will see later that no node needs to know each λpj,k

l

individually. We finally show how to obtain (4.27) from (4.26).

Lemma 4.6. (4.26) and (4.27) are equivalent.

Proof.

To go from (4.26) to (4.27), we first develop the last two terms of (4.26), respectively,

λk⊤
Ā1x̄1 (4.29)

and
ρ

2

∥
∥
∥Ā1x̄1 +

C∑

c=2

Ācx̄c,k
∥
∥
∥

2
. (4.30)

4.3. Algorithm derivation 93

We first address (4.29). Given the structure of Ā1, as seen in (4.23), we can write (4.29) as
∑n

l=1((Ā1
l)⊤λk

l)⊤x̄1
l . Recall that (Ā1

l)⊤, if it exists (i.e., if there is a node with color 1 that depends

on component xl), consists of the block of rows of the node-arc incidence matrix of Gl corresponding

to the nodes with color 1. Therefore, if there exists p ∈ C1 ∩ Vl, the vector (Ā1
l)⊤λk

l will have an

entry
∑

j∈Np∩Vl
sign(j − p)λpj,k

l . The sign function appears here because the column of the node-

arc incidence matrix corresponding to x
(i)
l − x

(j)
l = 0, for a pair (i, j) ∈ El, contains 1 in the ith

entry and −1 in the jth entry, where i < j. In the previous expression, we used an extension

of the definition of λij
l , which was only defined for i < j (due to our convention that for any

edge (i, j) ∈ E we have always i < j). Assume λij
l is initialized with zero; switching i and j

in (4.25), we obtain λji,k
l = −λij,k

l , which holds for all iterations k. To be consistent with the

previous equation, we define λij
l as λij

l := −λji
l whenever i > j. Therefore, (4.29) develops as

λk⊤
Ā1x̄1 =

n∑

l=1

((Ā1
l)⊤λk

l)⊤x̄1
l

=
n∑

l=1

∑

p∈C1

∑

j∈Np∩Vl

sign(j − p)
(

λpj,k
l

)⊤
x

(p)
l

=
∑

p∈C1

n∑

l=1

∑

j∈Np∩Vl

sign(j − p)
(

λpj,k
l

)⊤
x

(p)
l . (4.31)

Regarding (4.30), it can be written as

ρ

2

∥
∥
∥Ā1x̄1 +

C∑

c=2

Ācx̄c,k
∥
∥
∥

2
=

ρ

2

∥
∥
∥Ā1x̄1

∥
∥
∥

2
+ ρ(Ā1x̄1)⊤

C∑

c=2

Ācx̄c,k +
ρ

2

∥
∥
∥

C∑

c=2

Ācx̄c,k
∥
∥
∥

2
. (4.32)

Since the last term does not depend on x̄1, it can be dropped from the optimization problem. We

now use the structure of Ā1 to rewrite the first term of (4.32):

ρ

2

∥
∥
∥Ā1x̄1

∥
∥
∥

2
=

ρ

2

n∑

l=1

(x̄1
l)⊤(Ā1

l)⊤Ā1
l x̄1

l (4.33)

=
ρ

2

n∑

l=1

∑

p∈C1

Dp,l

(

x
(p)
l

)2
(4.34)

=
ρ

2

∑

p∈C1

∑

l∈Sp

Dp,l

(

x
(p)
l

)2
. (4.35)

From (4.33) to (4.34) we used the structure of Ā1
l . Namely, if it exists, (Ā1

l)⊤Ā1
l is a diagonal

matrix, where each diagonal entry is extracted from the diagonal of A⊤
l Al, the Laplacian matrix

for Gl. Since each entry in the diagonal of a Laplacian matrix contains the degrees of the respective

94 4. Connected and Non-Connected Classes

nodes, the diagonal of (Ā1
l)⊤Ā1

l contains Dp,l for all p ∈ C1. The reason why (Ā1
l)⊤Ā1

l is diagonal

is because nodes with the same color are never neighbors. As in (4.32), we exchanged the order of

the summations from (4.34) to (4.35).

Finally, we develop the second term of (4.32):

ρ(Ā1x̄1)⊤
C∑

c=2

Ācx̄c,k = ρ
C∑

c=2

n∑

l=1

(x̄1
l)⊤(Ā1

l)⊤(Āc
l) x̄c,k

l (4.36)

= −ρ
C∑

c=2

n∑

l=1

∑

p∈C1

∑

j∈Np∩Cc∩Vl

x
(p)
l

⊤
x

(j),k
l (4.37)

= −ρ
∑

p∈C1

∑

l∈Sp

x
(p)
l

⊤
C∑

c=2

∑

j∈Np∩Cc∩Vl

x
(j),k
l (4.38)

= −ρ
∑

p∈C1

∑

l∈Sp

∑

j∈Np∩Vl

x
(p)
l

⊤
x

(j),k
l . (4.39)

In (4.36) we just used the structure of Ā1 and Āc, as visualized in (4.23). From (4.36) to (4.37)

we used the fact that (Ā1
l)⊤Āc

l is a submatrix of A⊤
l Al, the Laplacian of Gl, containing some of its

off-diagonal elements. More concretely, (Ā1
l)⊤Āc

l contains the entries of A⊤
l Al corresponding to all

the nodes i ∈ C1 ∩ Vl and j ∈ Cc ∩ Vl. And, for such nodes, the corresponding entry in A⊤
l Al is −1

if i and j are neighbors, and 0 otherwise. From (4.38) to (4.39) we just used the fact that the set

{Cc}Cc=2 is nothing but a partition of the set of neighbors of any node with color 1. Using (4.31),

(4.32), (4.35), and (4.39) in (4.26), we get (4.27).

The optimization problem (4.27) decomposes into |C1| decoupled optimization problems, each

one solved by a node with color 1. For node p, the problem is (4.28). For the other colors, the

same reasoning and equations apply, just with one small difference: in the second term of (4.28) we

have x
(j),k+1
l from the neighbors with a smaller color and x

(j),k
l from the nodes with a larger color.

Algorithm 5 shows the resulting algorithm. As in the global class algorithm (Algorithm 3),

the coloring scheme functions as a schedule: the nodes with color 1 work first, the nodes with

color 2 work next, and so on. Each “work” consists of computing v
(p),k
l for all l ∈ Sp, as in step 4,

solving the optimization problem in step 5, and then sending the new component estimates to the

neighbors that also depend on those components, as in step 6. After a given node p has received the

new estimates from all its neighbors, it can update each dual variable γ
(p)
l as in step 9. Note that

the edge-wise dual variables λij
l were replaced by the node-wise dual variables γ

(p)
l . The reason is

because the optimization solved by node p (see (4.28)) depends on γ
(p),k
l :=

∑

j∈Np∩Vl
sign(j−p)λpj,k

l

4.3. Algorithm derivation 95

Algorithm 5 Algorithm for a connected variable

Initialization: Choose ρ ∈ R; for all p ∈ V and l ∈ Sp, set γ
(p),0
l = x

(p),0
l = 0; set k = 1

1: repeat
2: for c = 1, . . . , C do
3: for all p ∈ Cc [in parallel] do

4: Compute v
(p),k

l = γ
(p),k

l − ρ
∑

j∈Np∩Vl

C(j)<c

x
(j),k+1
l − ρ

∑

j∈Np∩Vl

C(j)>c

x
(j),k

l , for all l ∈ Sp

5: Compute x
(p),k+1
Sp

= arg min
x

(p)

Sp
={x

(p)

l
}l∈Sp

fp(x
(p)
Sp

) +
∑

l∈Sp
v

(p),k

l

⊤
x

(p)
l + ρ

2

∑

l∈Sp
Dp,l

(
x

(p)
l

)2

6: For each component l ∈ Sp, exchange x
(p),k+1
l with neighbors Np ∩ Vl

7: end for
8: end for
9: for all p ∈ V and l ∈ Sp [in parallel] do

γ
(p),k+1
l = γ

(p),k

l + ρ
∑

j∈Np∩Vl
(x

(p),k+1
l − x

(j),k+1
l)

10: end for
11: k ← k + 1
12: until some stopping criterion is met

and not on the individual λij
l ’s. The update of step 9 is obtained by replacing

λij,k+1
l = λij,k

l + ρ sign(j − i)
(
x

(i),k+1
l − x

(j),k+1
l

)
(4.40)

in the definition of γ
(p),k
l . Note that (4.40) differs from (4.25) in the extra “sign.” This is because

we extended the definition of the dual variable λij
l for i > j (see the proof of Lemma 4.6).

Note that if we make the variable global, i.e., if Sp = {1, . . . , n} for all p, Algorithm 5 becomes

the global class algorithm, that is, Algorithm 3. This means that Algorithm 5 is a generalization

of Algorithm 3 since, in fact, it cannot be obtained from it. The comments about the coordination

of the nodes we made for Algorithm 3 also apply to its generalization, Algorithm 5. Namely, if

each node knows its own color and the color of its neighbors, as specified in Assumption 4.5, then

the algorithm becomes automatically distributed, because each node can work immediately after

it has received estimates from its neighbors with smaller colors. See Figure 3.2 from Chapter 3 for

an illustration. Regarding the convergence of Algorithm 5, we have:

Theorem 4.7.

Let Assumptions 4.1-4.5 hold and let the variable of

minimize
x∈Rn

f1(xS1) + f2(xS2) + · · · + fP (xSP
) , (P)

96 4. Connected and Non-Connected Classes

be connected. Then, Algorithm 5 produces a sequence (xk
S1

, . . . , xk
SP

) convergent to (x⋆
S1

, . . . , x⋆
SP

),

where x⋆ solves (P), when at least one of the following conditions is satisfied:

(a) the coloring scheme uses two colors only (which implies that the network is bipartite);

(b) each function fp is strongly convex with modulus µp and

0 < ρ < min
c=1,...,C

2
∑

p∈Cc
µp

3 (C − 1) maxp∈Cc, l∈Sp
Dp,l

. (4.41)

Proof.

As in the proof of Theorem 3.6, we have to show that (4.22), which is the problem to which we

apply the multi-block ADMM, satisfies the conditions of Theorem 2.1. In fact, Assumptions 4.1,

4.2, and 4.3, together with the equivalence between (P) and (4.22) (for a connected variable), imply

that each function
∑

p∈Cc
fp(x

(p)
Sp

) in (4.22) is closed and convex over the full space. Next we see

that condition (a) (resp. (b)) implies condition (a) (resp. (b)) of Theorem 2.1.

(a) We first see that Assumption 4.4 together with the fact that the variable is connected

implies that each Āc has full column rank. Let c be any color in {1, 2, . . . , C}. By definition,

Āc = diag(Āc
1, Āc

2, . . . , Āc
n); therefore, we have to prove that each Āc

l has full column rank,

for l = 1, 2, . . . , n. Let then c and l be fixed. We are going to prove that (Āc
l)

⊤Āc
l , a square

matrix, has full rank, and therefore Āc
l has full column rank. Since Āl =

[

Āc
1 Āc

2 · · · Āc
n

]

,

(Āc
l)

⊤Āc
l corresponds to the lth block in the diagonal of the matrix A⊤

l Al, the Laplacian matrix

of the induced subgraph Gl. Recall that each induced subgraph Gl is connected, because the

variable is connected. Consequently, each node in Gl has at least one neighbor also in Gl and

hence each entry in the diagonal of A⊤
l Al is greater than zero.1 The same happens to the

entries in the diagonal of (Āc
l)

⊤Āc
l . In fact, these are the only nonzero entries of (Āc

l)
⊤Āc

l ,

since this matrix is diagonal. The reason is because (Āc
l)

⊤Āc
l corresponds to the Laplacian

entries of nodes that have the same color, which are never neighbors. Therefore, (Āc
l)

⊤Āc
l

has full rank. This shows that, independently of the coloring scheme, each matrix Āc has full

column rank. As a consequence, when the network is bipartite and the coloring scheme has

two colors, point (a) of Theorem 2.1 holds.

(b) When each function fp is strongly convex with modulus µp and ρ satisfies (4.41), then
∑

p∈Cc
fp

is strongly convex with modulus
∑

p∈Cc
µp [31, Lem. 2.1.4] and conditions (2.27) and (4.41)

1Implicitly, we are assuming that there is no component xl that appears in only one node, say node p; this would
lead to a Laplacian matrix A⊤

l Al equal to 0. This can be easily addressed by redefining fp, the function at node p,
to f̃p(·) = infxl

fp(. . . , xl, . . .).

4.3. Algorithm derivation 97

are equivalent. To see this, note that

σmax(Āc)2 = λmax((Āc)⊤Āc) = max
l=1,...,n

λmax((Āc
l)

⊤Āc
l) = max

l=1,...,n, p∈Cc

Dp,l = max
p∈Cc, l∈Sp

Dp,l ,

since each (Āc
l)

⊤Āc
l is a diagonal matrix whose entries are the degrees of the nodes with color c

that depend on component xl.

4.3.2 Non-connected variable

In this subsection we drop the assumption that the variable is connected. This means that there

exists at least one component xl for which the induced subgraph Gl is non-connected. In this case,

problem (4.21) is no longer equivalent to problem (P), because its constraints fail to enforce equality

between all the copies of xl. We propose a trick to make these problems equivalent, based on the

following assumption:

Assumption 4.8. When the variable is non-connected, the communication network and all the

sets Sp are known before the execution of the algorithm.

The reason we require both the communication network and the sets Sp to be known beforehand

is to allow some preprocessing: first, we identify the non-connected components of the variable,

and then, we select which nodes should retransmit them. Note that this assumption only requires

knowing beforehand the components each node depends on, but not the functions fp. In other

words, this preprocessing can be done before any data arrives.

Let xl be a non-connected component, i.e., the induced subgraph Gl = (Vl, El) is non-connected.

As we have seen, the constraint x
(i)
l = x

(j)
l , (i, j) ∈ El, in (4.21) is not enough to enforce equality of

all the copies of xl. We propose enlarging the subgraph Gl by selecting other nodes in the network

that will retransmit estimates of xl. In other words, we will add to Gl some nodes (and edges)

so that that the induced subgraph becomes connected. Since our goal is to minimize the overall

number of communications, we should add the least number of edges to this subgraph. It turns out

that this is exactly the problem of finding an optimal Steiner tree in the communication network.

Steiner tree problem. To describe the Steiner tree problem, consider an undirected graph G =

(V, E), in our case the communication network, and let R ⊂ V be a set of required nodes, in our

case, the nodes Vl of a non-connected induced subgraph Gl. Figure 4.6 shows an example where G
is the entire network, and R are the black nodes. A Steiner tree in G is any tree in that contains

the required nodes R; in other words, it is an acyclic connected subgraph (T ,F) ⊆ G such that

R ⊆ T and F ⊆ E . The Steiner nodes, which will be represented with S, are the nodes in that

98 4. Connected and Non-Connected Classes

Figure 4.6: Example of an optimal Steiner tree. The required nodes R are black, and the Steiner nodes S
are striped. The Steiner tree edges are represented with thicker lines.

tree that are not required, i.e., S := T \R. For example, in Figure 4.6, the Steiner nodes S are

striped and the Steiner tree edges F are thicker. Note that the set of black and striped nodes and

the thicker edges form a subgraph that is a tree.

Now we can state the Steiner tree problem: given an undirected graph G = (V, E), a set of

required nodes R ⊂ V, and a set of costs cij for each edge of the network (i, j) ∈ E, find a Steiner

tree whose edges have a minimal cost. In our case, since we want to minimize the total number

of communications, all edges are viewed equal, that is, they all have the same cost, for example,

cij = 1. The set of required nodes in our case are the nodes in the subgraph induced by a non-

connected component xl, i.e., R = Vl. Of course, we have to solve a Steiner tree problem for each

non-connected component. Unfortunately, solving Steiner tree problems is NP-hard [223]. However,

many approximation algorithms are available, some of which have approximation guarantees. For

example, the Steiner tree problem can be formulated as the following optimization problem [224]:

minimize
{zij}(i,j)∈E

∑

(i,j)∈E
cijzij

subject to
∑

i∈U
j 6∈U

zij ≥ 1 , ∀U : 0 < |U ∩ R| < |R|

zij ∈ {0, 1} , (i, j) ∈ E .

(4.42)

In the first constraint of (4.42), U represents any subset of nodes that separates at least two required

nodes, i.e., U contains at least one node in R, but not all of them. The optimization variable of

problem (4.42) is z ∈ R
E and each zij is associated to edge (i, j) ∈ E . If the optimal value is

z⋆
ij = 1, then edge (i, j) is in the selected Steiner tree. Note that the last constraint of (4.42)

imposes each component of z to be either 0 or 1. Let us denote the objective of problem (4.42)

4.3. Algorithm derivation 99

by h(z) :=
∑

(i,j)∈E cijzij . We say that an algorithm for (4.42) has an approximation ratio of α if

it produces a feasible point z̄ such that h(z̄) ≤ αh(z⋆), for any problem instance. The primal-dual

algorithm for combinatorial problems [224, 225], for example, has an approximation ratio of 2. To

the best of our knowledge, [226] proposed the algorithm for computing Steiner trees that has the

smallest approximation ratio, namely 1 + ln 3/2 ≃ 1.55.

Application to our problem. Based on Assumption 4.8 and on the concept of Steiner tree

problem, we now propose a modification to Algorithm 5 to make it applicable to a non-connected

variable. This modification applies to Algorithm 4 exactly the same way. According to Assump-

tion 4.8, both the communication network and the sets Sp are known before the execution of the

algorithm. This allows solving a Steiner tree problem for each non-connected component, as a

preprocessing step, which can be done in a distributed or in a centralized way (for distributed algo-

rithms computing Steiner trees see for example [227, 228]). More concretely, for every non-connected

component xl with induced subgraph Gl = (Vl, El), we can compute a Steiner tree (Tl,Fl) ⊆ G us-

ing Vl as the set of required nodes. Let Sl := Tl\Vl denote the Steiner nodes in that tree. The

functions associated to these Steiner nodes do not depend on xl, i.e., l 6∈ Sp for all p ∈ Sl. But

we artificially force them to depend on it by defining a new induced graph as G′
l = (V ′

l , E ′
l), with

V ′
l := Tl and E ′

l := El ∪ Fl. Then, we can create copies of xl in all nodes in V ′
l , and write (P)

equivalently as

minimize
{x̄l}

n
l=1

f1(x
(1)
S1

) + f2(x
(2)
S2

) + · · · + fP (x
(P)
SP

)

subject to x
(i)
l = x

(j)
l , (i, j) ∈ E ′

l , l = 1, . . . , n ,
(4.43)

where {x̄l}Ll=1 is the optimization variable, and x̄l := {x(p)
l }p∈V ′

l
denotes the set of all copies of xl.

If node p is a Steiner node for any component of the variable, it will hold “extra” copies, but

its function fp remains unchanged. In particular, it has the copies x
(p)
Sp∪S′

p
, where S′

p is the set of

components of which node p is a Steiner node, but its function fp depends only on x
(p)
Sp

:= {x(p)
l }l∈Sp

.

Of course, if a component xl is connected, we set G′
l = Gl, and if node p is not Steiner for any

component, we set S′
p = ∅. If we replace problem (4.21) by the modified problem (4.43) and repeat

the derivation that followed problem (4.21), we get Algorithm 6.

Algorithm 6 is essentially an adapted version of Algorithm 5, with a preprocessing step, which

can be computed in a centralized or in a distributed way. The preprocessing step relies on As-

sumption 4.8 by assuming that both the communication network and the dependency sets Sp are

known. Note that the specific functions fp are not required for this preprocessing step. Regarding

the main algorithm, it is similar to Algorithm 5 except that each node, in addition to estimating

the components its function originally depends on, it also estimates the components for which it is

100 4. Connected and Non-Connected Classes

Algorithm 6 Algorithm for a generic variable, connected or non-connected

Preprocessing:
1: Set S′

p = ∅ for all p ∈ V , and V ′
l = Vl for all l = {1, . . . , n}

2: for all non-connected components xl, l ∈ {1, . . . , n} do
3: Compute a Steiner tree (Tl,Fl), setting Vl as the set of required nodes
4: Set V ′

l = Tl and Sl := Tl\Vl (Steiner nodes)
5: For all p ∈ Sl, S′

p = S′
p ∪ {xl}

6: end for

Main algorithm:

Initialization: Choose ρ ∈ R; for all p ∈ V and l ∈ Sp ∪ S′
p, set γ

(p),0
l = x

(p),0
l = 0; set k = 0

7: repeat
8: for c = 1, . . . , C do
9: for all p ∈ Cc [in parallel] do

10: Compute v
(p),k

l = γ
(p),k

l − ρ
∑

j∈Np∩V′

l

C(j)<c

x
(j),k+1
l − ρ

∑

j∈Np∩V′

l

C(j)>c

x
(j),k

l , for all l ∈ Sp ∪ S′
p

11: Compute x
(p),k+1
Sp∪S′

p
= arg min

x
(p)

Sp∪S′
p

fp(x
(p)
Sp

) +
∑

l∈Sp∪S′
p

(

v
(p),k

l

⊤
x

(p)
l + ρ

2 D′
p,l

(

x
(p)
l

)2)

12: For each component l ∈ Sp ∪ S′
p, exchange x

(p),k+1
l to neighbors Np ∩ V ′

l

13: end for
14: end for
15: for all p ∈ V and l ∈ Sp ∪ S′

p [in parallel] do

γ
(p),k+1
l = γ

(p),k

l + ρ
∑

j∈Np∩V′

l

(x
(p),k+1
l − x

(j),k+1
l)

16: end for
17: k ← k + 1
18: until some stopping criterion is met

a Steiner node. The computation for these additional components can, however, be found in closed-

form: if node p is a Steiner node for component xl, it updates it as x
(p),k+1
l = −(1/(ρ Dp,l))v

(p),k
l

in step 11. In Algorithm 6, D′
p,l is defined as the degree of node p in the subgraph G′

l. The steps

we took to generalize Algorithm 5 to a non-connected variable can be easily applied the same way

to Algorithm 4, the algorithm proposed by [47].

4.4 Experimental results

In this section, we assess experimentally the performance of the proposed algorithms, namely

Algorithm 5 and Algorithm 6, with respect to prior distributed algorithms. We focus on two appli-

cations: networks flow problems and D-MPC. While network flow problems are formulated as (P)

with a star-shaped variable, D-MPC has more flexibility, since it can be formulated with any type

of variable (see Subsection 4.2.1). As mentioned before, most of the prior distributed optimization

4.4. Experimental results 101

algorithms solve (P) only when the variable is global or star-shaped. The only exception is the al-

gorithm proposed by [47], which we presented as Algorithm 4. Indeed, that algorithm can solve (P)

with any connected variable and, if using the adaptation we proposed in the previous section, it

can also solve it with a non-connected variable.

Communication steps. The performance metric we use in our experiments is the number of

communication steps (CSs). The concept is the same we introduced in Chapter 3 for the global

class: after all nodes have updated their estimates of the components they depend on and broadcast

them to their neighbors, we say that a CS has occurred. The only difference with respect to

the CS concept in Chapter 3 is in the size of the messages exchanged between nodes: here, two

neighbors (i, j) ∈ E only exchange the common components their functions depend on, i.e., xSi∩Sj
,

rather than the entire vector x. This applies to all the algorithms we compare in this chapter.

The only exception is Algorithm 3, the algorithm we proposed for the global class, which we show

here for comparison purposes. In fact, we will see that, even ignoring the difference in the size

of the exchanged messages, Algorithm 3 takes more CSs to converge than any of the algorithms

solving (P) with a non-global variable. This effectively illustrates how important it is to explore

the structure of the problem in order to design communication-efficient algorithms.

4.4.1 Network flow problems

We start with the experiments on network flow problems. First, we describe the model we used

in our experiments, then the experimental setup and the algorithms we compare, and finally we

present our results.

Model. Recall that a network flow problem has the format of (4.16). Its objective consists of the

sum of the costs φij(xij) associated to all the arcs of the directed network. The constraint Bx = d

enforces the laws of conservation of flow, whereas the constraint x ≥ 0 forbids negative flows on

each arc. We consider two scenarios for problem (4.16):

Scenario 1: φij(xij) =
1

2
(xij − aij)

2 , and the constraint x ≥ 0 is dropped,

Scenario 2: φij(xij) =
xij

cij − xij
+ ixij≤cij

(xij) .

In scenario 1, the cost function associated to each arc (i, j) ∈ A is quadratic, φij(xij) = 1
2(xij−aij)

2,

where aij is positive. Also, we drop the nonnegativity constraint x ≥ 0 in order to make the

algorithm in [162] applicable. Scenario 1 is thus very simple: it solves

minimize
x={xij}(i,j)∈A

∑

(i,j)∈A
1
2 (xij − aij)

2

subject to Bx = d .
(4.44)

102 4. Connected and Non-Connected Classes

Regarding scenario 2, besides the cost function being more complicated, φij(xij) = xij/(cij − xij),

where cij > 0, is the maximum capacity of arc (i, j), it also has the constraints 0 ≤ xij ≤ cij , for

each arc. That is, scenario 2 solves

minimize
x={xij}(i,j)∈A

∑

(i,j)∈A
xij

cij−xij

subject to Bx = d

0 ≤ xij ≤ cij ,

(4.45)

which can be used to model aggregate system delays in multicommodity flow problems [20, Ch.4].

The problem each node has to solve at each iteration, for example, at step 5 of Algorithm 5,

has a closed-form solution in scenario 1, but not in scenario 2. In scenario 2, node p has to solve a

problem with the following format:

minimize
y=(y1,...,yDp)

∑Dp

i=1(yi

ci−yi
+ viyi + aiy

2
i)

subject to b⊤
p y = dp

0 ≤ y ≤ c ,

(4.46)

where each yi corresponds to xpj if (p, j) ∈ A, or to xjp if (j, p) ∈ A. Since projecting a point onto

the set of constraints of (4.46) can be done in closed-form [229], any projected gradient method

is easy to apply. In our implementation, we chose [230], a gradient projection method with a

Barzilai-Borwein step.

Experimental setup. In both instances of the network flow problem we solve, we use a network

with P = 2000 nodes and E = 3996 edges, generated randomly in Network X [205] according to the

Barabasi-Albert model [202]; see Table 3.1 of Chapter 3 for a brief description. As in the network

flow problem illustrated in Figure 4.4, we consider that there is at most one arc between any pair

of nodes. As a consequence, the size of the problem variable, x, is equal to the number of edges E,

in this case 3996. The diameter of the generated network was 8, it had an average node degree

of 3.996, and it was colored with 3 colors in Sage [206]. We then assigned a direction to each

edge of this network: for each edge (i, j), we assigned the directions i −→ j and i ←− j with equal

probability, thus creating a set of arcs A from the set of edges E . To each edge, we also assigned

a number drawn randomly from the set {10, 20, 30, 40, 50, 100}. The probabilities were 0.2 for the

first four elements, and 0.1 for 50 and 100. These numbers played the role of the aij ’s in scenario 1

and the role of the capacities cij in scenario 2. To generate the vector d or, in other words, to

determine which nodes are sources or sinks, we proceeded as follows. For each k = 1, . . . , 100, we

picked a source sk randomly (uniformly) out of the set of 2000 nodes and then picked a sink rk

randomly (uniformly) out of the set of reachable nodes of sk. For example, if we were considering

4.4. Experimental results 103

the network of Figure 4.4 and picked sk = 4 as a source node, the set of its reachable nodes

would be {3, 5, 6, 7}. Then, we added to the entries sk and rk of d the values −fk/100 and fk/100,

respectively, where fk is a number drawn randomly exactly as cij (or aij). This corresponds to

injecting a flow of quantity fk/100 at node sk and extracting the same quantity at node rk. After

repeating this process 100 times, for k = 1, . . . , K, we obtained vector d.

Before executing the distributed algorithms and to assess their error, we computed the solutions

of (4.44), from scenario 1, and (4.45), from scenario 2, in a centralized way. In scenario 1, the

solution can be computed in closed-form, because the problem is quadratic with linear constraints.

In scenario 2, we used CVXOPT [231] to obtain a solution of (4.45).

Algorithms for comparison. The network flow problems (4.44) and (4.45) are formulated

as (P) with a star-shaped variable (see also (4.16)). As discussed before, in this case, the ADMM-

based algorithm [35, §7.2] becomes distributed. In fact, for network flow problems it becomes

exactly algorithm [47] (Algorithm 4); this is not surprising, since both are based on the same

underlying algorithm, the 2-block ADMM. Also, a star-shaped variable makes gradient methods

directly applicable. We then also consider Nesterov’s fast gradient method [31], more precisely, the

algorithm (2.10). Finally, we consider the distributed Newton method [162], which was designed

specifically for network flow problems. All these methods, including ours, have tuning parameters:

ρ for the ADMM-based algorithms, a Lipschitz constant L for Nesterov’s algorithm, and a step-

size α for the distributed Newton algorithm. Note that Nesterov’s algorithm requires the objective

function to be differentiable and have a Lipschitz-continuous gradient. While this is true for (4.44),

in scenario 1, it is not true for (4.45), in scenario 2. Namely, the gradient of the objective of (4.45)

is not Lipschitz-continuous in all the domain, although it is near the solution. Therefore, in sce-

nario 2, we have to estimate a Lipschitz constant the same way we estimate the parameters of the

other algorithms. To do that, we use the concept of precision, defined in Chapter 3: for example,

ρ̄ has precision γ for an ADMM-based algorithm if both ρ̄− γ and ρ̄ + γ lead to worse results, i.e.,

to more CSs. Regarding the number of CSs each of these algorithms takes per iteration, all the

ADMM-based ones (Algorithms 4 [47], 5, and [35, §7.2]) and Nesterov’s algorithm [31] take one CS

per iteration. Our implementation of the distributed Newton method [161], in turn, takes 3 CSs

per iteration, since we used a fixed stepsize α and set the parameter N , the order of the approxima-

tion of Newton’s direction, to 2. We will also show the performance of Algorithm 3, our proposed

algorithm for the global class, in scenario 1. That algorithm makes all the nodes compute the full

solution x⋆, which has dimensions 3996 in this case. Hence, each message exchanged in one CS of

Algorithm 3 is 3996 times larger than the messages exchanged by the other algorithms.

Results. The results of our experiments for scenarios 1 and 2 are shown, respectively, in Fig-

ures 4.7(a) and 4.7(b). These show the relative error on the primal variable ‖xk − x⋆‖∞/‖x⋆‖∞,

104 4. Connected and Non-Connected Classes

Communication steps

Relative error

100

10−1

10−2

10−3

10−4

0 100 200 300 400 500

Alg.5

[47, 35]

[162]

[31]

Alg.3 (global class)

(a) Scenario 1

Communication steps

Relative error

100

10−1

10−2

10−3

10−4

0 200 400 600 800 1000

Alg.5

[47, 35]

[31]

(b) Scenario 2

Figure 4.7: Results of our experiments for the network flow problems. The problem solved in (a) is (4.44),
a simple quadratic program. The problem solved in (b) is (4.45), which models aggregate
delays in multicommodity flow problems. In both cases, the network has P = 2000 nodes
and E = 3996 edges, and was generated randomly according to the Barabasi-Albert model.

where xk is the concatenation of the estimates of all nodes, versus the number of CSs. It can be

seen in Figure 4.7(a) that Algorithm 5 in scenario 1 was the one requiring the least amount of CSs

to achieve any relative error between 1 and 10−4. It was closely followed by the ADMM-based

algorithms [47] and [35, §7.2], whose lines coincide because they become the same algorithm when

applied to network flows. Nesterov’s method [31] and the Newton-based method [162] had a perfor-

mance very similar to each other, but worse than the ADMM-based algorithms. In the same plot

we can also see that Algorithm 3, which solves the global class, had the worst performance; fur-

thermore, each message exchange by that algorithm is 3996 times larger than a message exchanged

by the other algorithms. This clearly shows that if we want to derive communication-efficient al-

gorithms, we have to explore the structure of (P). Regarding the parameters for each algorithm

in these experiments, we used ρ = 2 for all the ADMM-based algorithms (precision 1), a Lipschitz

constant L = 70 for [31] (precision 5), and a stepsize α = 0.4 for [162] (precision 0.1).

The results for scenario 2, i.e., for problem (4.45), are shown in Figure 4.7(b). We were not

able to make the algorithm in [162] converge for this scenario (actually, that algorithm is not

guaranteed to converge for problem (4.45)). Overall, scenario 2 looks more challenging to solve,

since all algorithms took more CSs to achieve the same relative error. Again, Algorithm 5 was

the algorithm with the best performance. This time we could not find any choice for L that made

Nesterov’s algorithm [31] achieve the relative error of 10−4 in less than 1000 CSs. The best result,

obtained for L = 15000, is shown in Figure 4.7(b). The augmented Lagrangian parameter ρ was 0.08

for Algorithm 5 and 0.12 for algorithms [47, 35], both computed with precision 0.02.

4.4. Experimental results 105

4.4.2 D-MPC

We now describe our experiments for distributed model predictive control (D-MPC). Recall that

D-MPC can have a variable of any type, either connected or non-connected. We start by describing

the particular MPC model we used, and then the experimental setup.

Model. For convenience, we reproduce here our D-MPC model (4.3), which was proposed

earlier in Subsection 4.2.1:

minimize
x̄,ū

∑P
p=1

[

Φp({xj [T]}j∈Ωp) +
∑T −1

t=0 Ψt
p({xj [t], uj [t]}j∈Ωp)

]

subject to xp[t + 1] = Θt
p

({xj [t], uj [t]}j∈Ωp

)
, t = 0, . . . , T − 1 , p = 1, . . . , P

xp[0] = x0
p , p = 1, . . . , P .

(4.47)

Problem (4.47) is associated to a network with P dynamic systems where each dynamic system is

viewed as a node of that network. The pth system is described at each time instant t by the state

vector xp[t] ∈ R
np and has a control input up[t] ∈ R

mp . The D-MPC model (4.47) generalizes prior

D-MPC models in the sense that it allows the state of any system be influenced by the state or

input of any other system in the network, and not only by its neighbors; see also Figure 4.1 for

a visual comparison between these two scenarios. Therefore, the optimization variable in (4.47)

is arbitrary and not necessarily star-shaped. In our experiments, we consider a simple instance

of (4.47) that preserves this feature. Namely, we assume linear coupling through the inputs, i.e.,

xp[t + 1] = Apxp[t] +
∑

j∈Ωp
Bpjuj[t], where Ap ∈ R

np×np and each Bpj ∈ R
np×mj are arbitrary

matrices (in fact, randomly generated), known only at node p. The set Ωp ⊆ V is the set of nodes

whose control input influences the state of node p, xp. We assume that the control input at node p

influences always its own state, i.e., {p} ⊂ Ωp, for all p ∈ V. We also assume there is no coupling

through the objective functions. In particular, we consider Φp({xj [T]}j∈Ωp) = xp[T]⊤Q̄f
pxp[T]

and Ψt
p({xj [t]}j∈Ωp) = xp[t]⊤Q̄pxp[t]+up[t]⊤R̄p, where Q̄p and Q̄f

p are positive semidefinite matrices,

and R̄p is positive definite. With this choice, problem (4.47) becomes

minimize
x1,...,xP
u1,...,uP

∑P
p=1 u⊤

p Rpup + x⊤
p Qpxp

subject to xp = Cp{uj}j∈Sp + D0
p , p = 1, . . . , P ,

(4.48)

where, xp = (xp[0], . . . , xp[T]), up = (up[0], . . . , up[T − 1]), for each p, and

Qp =

IT ⊗ Q̄p 0

0 Q̄f
p

 , Rp = IT ⊗ R̄p ,

106 4. Connected and Non-Connected Classes

Cp =

0 0 · · · 0

Bp 0 · · · 0

AppBp Bp · · · 0
...

...
. . .

...

AT −1
pp Bp AT −2

pp Bp · · · Bp

, D0
p =

I

App

A2
pp
...

AT
pp

x0
p .

We defined the matrix Bp (in the entries of Cp) as the horizontal concatenation of the matrices Bpj,

for all j ∈ Ωp. Note that the variables xp and up in (4.48) now contain the states and inputs for

the entire horizon. For this reason, we changed from the notation j ∈ Ωp to the notation j ∈ Sp;

while Ωp is a subset of the set of nodes V, Sp is a subset of components of the optimization variable,

i.e., Sp ∈ {1, . . . , (T + 1)
∑P

p=1 np + T
∑P

p=1 mp}. One reason we chose this simple linear model is

that all the state variables xp in (4.48) can be eliminated; indeed, (4.48) can be written equivalently

as

minimize
u1,...,uP

P∑

p=1

{uj}⊤j∈Sp
Ep{uj}j∈Sp + w⊤

p {uj}j∈Sp , (4.49)

where wp = 2C⊤
p QpD0

p and each Ep is obtained by summing Rp with C⊤
p QpCp in the correct entries.

Note that (4.49) is an unconstrained quadratic program. Therefore, in a centralized scenario, where

all matrices Ep and all vectors wp are known at the same location, the solution of (4.49) is simply

the solution of a linear system. For the same reason, the solution of the problem each node has

to solve at each iteration, for example in step 5 of Algorithm 5, can be found by solving a linear

system.

Table 4.1: Networks used in the D-MPC experiments.

Name Source # Nodes # Edges Diam. # Colors Av. Deg. Description

A [202] 100 196 6 3 3.92 Barabasi-Albert (parameter 2)

B [201] 4941 6594 46 6 2.67 US Western states power grid

Experimental setup. We solved problem (4.49) in the two networks of Table 4.1. Net-

work A has 100 nodes, 196 edges, and was generated randomly according to the Barabasi-Albert

model [202], as briefly described in Table 3.1 of Chapter 3. A parameter of 2 means that every

time a node is added to the network it connects to other 2 nodes. Network B is considerably larger,

having 4941 nodes and 6594 edges, and it represents the topology of the power grid of the US

Western states [201]. Table 4.1 also shows the diameter of each network, the average degree of each

node, and the number of colors they are colored with. To color these networks, we used a built-in

function in Sage [206].

4.4. Experimental results 107

In all our experiments we considered a time horizon T of dimension 5, the state xp of each

node p always had dimensions np = 3, and the control input up was always scalar, mp = 1, for

all p. Since the size of the variable in (4.49) is mpT P , network A implied a variable of size 500

and network B implied a variable of size 24705. While each dynamical system in network A could

be unstable, each dynamical system in network B was always guaranteed stable. More specifically,

for both networks, we generated the entries of the dynamics matrix Ap of each system p from the

normal distribution (independently); however, for network B, after generating each Ap, we always

“shrunk” its eigenvalues to the interval [−1, 1], making the corresponding system stable. Regarding

the input-state matrices Bpj, each of its entries were also drawn from the normal distribution.

We now describe how we generated the system couplings, i.e., the sets Ωp ∈ V; see also the

dotted arrows in Figure 4.1. We generated three types of couplings, and thus of variables. We

generated star-shaped variables, where the state of system p is influenced by the inputs of all its

neighbors, that is, Ωp = Np, for all p. This case is illustrated in Figure 4.1(a) and was considered so

that we could compare Algorithms 4 and 5 with other prior D-MPC algorithms. We also generated

instances of the system couplings to make the variable connected (not necessarily star-shaped),

and non-connected. To generate a connected variable we proceeded as follows: given a node p, we

make it depend on up (recall our assumption that {p} ⊂ Ωp). Then, we initialize a set Fp, which

we will call the “fringe,” with the neighbors of node p, i.e., Fp = Np. Next, we select randomly

(uniformly) a node q from the fringe, q ∈ Fp, and make its state depend on up, i.e., p ∈ Ωq.

Then, we add its set of neighbors to the fringe and remove node q from it, since it already depends

on up: Fp =
(

Fp\{q}
)

∪ Nq. This process is repeated 3 times for each node p, and is done for all

the nodes in the network. To generate a non-connected variable, the process is exactly the same,

including the concept of fringe. The difference is that, at each iteration, any node in the entire

network can be selected, not just the nodes in the fringe; however, the nodes in the fringe have

twice the probability of being selected with respect to the remaining nodes in the network. We

generated a non-connected variable only for network A, running the described algorithm for each

one of its 500 components (the size of the variable for this network is mpT P = 1× 5× 100 = 500).

As a result, we obtained 400 components for which the respective induced subgraphs were non-

connected. According to the preprocessing step of Algorithm 6, we have to compute a Steiner tree

for each of these 400 components. To do that, we used a built-in function in Sage [206]. We ended

up with 44 nodes in the network (out of 100) that were Steiner nodes for at least one component.

Results. The results of our experiments are shown in Figure 4.8 for connected variables,

and in Figure 4.9 for a non-connected variable. Each plot shows how the relative error as a

function of the number of CSs. The relative error is measured the same way as in the network

flow experiments: ‖xk − x⋆‖∞/‖x⋆‖∞, where xk is the concatenation of all the nodes’ control

108 4. Connected and Non-Connected Classes

Communication steps

Relative error

100

10−1

10−2

10−3

10−4

0 200 400 600 800 1000

Alg.5

[35]

[47]

[31]

(a) Network A with a star-shaped variable

Communication steps

Relative error

100

10−1

10−2

10−3

10−4

0 200 400 600 800 1000

Alg.5

[35]

[47]

[31]

(b) Network B with a star-shaped variable

Communication steps

Relative error

100

10−1

10−2

10−3

10−4

0 50 100 150 200 250

Alg.5

[47]

(c) Network A with a generic connected variable

Communication steps

Relative error

100

10−1

10−2

10−3

10−4

0 50 100 150 200 250

Alg.5
[47]

(d) Network B with a generic connected variable

Figure 4.8: Results for D-MPC with a connected variable. On the left, (a) and (c) show the results for
network A, and, on the right, (b) and (d) show the results for network B. The optimization
variable is star-shaped on the top plots, (a) and (b), and is non-star-shaped (and non-global)
on the bottom plots, (c) and (d).

input estimates. The results for networks A and B, both with a star-shaped variable, are shown

in Figures 4.8(a) and 4.8(b), respectively. The relative behavior of all the compared algorithms

is the same: the proposed Algorithm 5 required uniformly less CSs to achive any relative error

between 1 and 10−4; it was followed by the ADMM-based algorithms [35, §7.2] and [47] (shown as

Algorithm 4), with [35, §7.2] being more efficient than [47]. Finally, Nesterov’s algorithm [31] failed

to converge in both cases. A curious fact is that all algorithms required more CSs to converge in

the network of Figure 4.8(a), which has 100 nodes, than in the network of Figure 4.8(b), which is

considerably larger, with nearly 5000 nodes. In fact, what influenced the performance of all the

algorithms was the stability of the systems: while each system in Figure 4.8(b) was guaranteed to

be stable, no system in Figure 4.8(a) was guaranteed to be stable. The difficulty of each problem

instance can be measured by the magnitude of the Lipschitz constant of the gradient of the objective

4.4. Experimental results 109

Communication steps

Relative error

100

10−1

10−2

10−3

10−4

0 50 100 150 200

Alg.6

[47] (generalized)

Figure 4.9: Results for D-MPC with a non-connected variable. All the dynamic systems were designed
stable in this case, and the network was A.

function of (4.49): 1.63× 106 for Figure 4.8(a) and 3395 for Figure 4.8(b). Note that this Lipschitz

constant can be computed in closed-form. Regarding the augmented Lagrangian parameter ρ, its

was computed, with precision 5, for Figure 4.8(a) as 120 for [35, §7.2] and as 135 for the other

algorithms. For Figure 4.8(b), it was computed as 25 for Algorithm 5 and [35, §7.2] and as 30

for [47], also with precision 5.

Figures 4.8(c) and 4.8(d) show the results for generic, non-star-shaped variables for networks A

and B, respectively. Since the ADMM-based algorithm [35, §7.2] and Nesterov’s algorithm [31] are

distributed only for star-shaped variables, they do not appear in these plots. Only the proposed

Algorithm 5 and the algorithm in [47] (see Algorithm 4) can handle generic connected variables. In

both plots, Algorithm 5 required uniformly less CSs than [47] to achieve any relative error between 1

and 10−4. Again, both algorithms required more CSs to converge in the smaller network A than in

the larger network B. The reason, as we saw for the other plots, is because each system in network A

can be unstable, while all systems in network B are stable. The value of ρ was the same for both

algorithms: 40 for network A in Figure 4.8(c) (precision 5), and 23 for network B (precision 1).

Finally, we present the results for a non-connected variable in Figure 4.9. Neither Algorithm 5

nor the algorithm in [47] are applicable in this case. However, they can be adapted to non-connected

variables, as described in Subsection 4.3.2. The generalization of Algorithm 5 yields Algorithm 6,

and the exact same generalization can be applied to the algorithm in [47]. Figure 4.9 shows

that the behavior we had seen for the non-generalized versions of the algorithms in the previous

experiments translates into the generalized versions: Algorithm 6 requires uniformly less CSs than

the generalized version of [47] to achieve any relative error between 1 and 10−4. Note that, although

we used network A in these experiments, we guaranteed that all the systems were stable.

110 4. Connected and Non-Connected Classes

Chapter 5

Conclusions and Future Work

We restate our main problem

minimize
x∈Rn

f1(xS1) + f2(xS2) + · · · + fP (xSP
) . (P)

and recall the main goals of this thesis, as presented before in Chapter 1:

We aim to design, analyze, and implement algorithms that solve optimization problems of
the form (P) on networks. The algorithms should be

Distributed: no node has complete knowledge about the problem data and no central
node is allowed; also, each node communicates only with its neighbors;

Communication-efficient: the number of communications they use is minimized;

Network-independent: the algorithms run on networks with arbitrary topology and
their output is independent of the network.

First, we summarize our contributions to achieve this goal and discuss current limitations; then,

we describe potential future work.

5.1 Major contributions

We group the contributions of the thesis into the following categories:

• Classification scheme. The optimization problem (P) is quite generic because each function

may depend on an arbitrary subset of components of the optimization variable. This makes

the design of a distributed algorithm a challenging task. We solve this problem with a

111

112 5. Conclusions and Future Work

classification scheme that allowed us to first identify particular instances of (P) that are

easier to solve in a distributed way. After that, we generalized the algorithms to solve larger

classes and eventually all problems of the form (P). Besides helping us develop our algorithms,

our classification scheme is also useful to categorize applications and to organize prior work

on distributed optimization.

• Algorithms. Based on the proposed classification scheme, we developed a set of algorithms

that solve subclasses of distributed optimization problems of the form (P). Each algorithm

was built from a previous one, by modifying it to increase generality. Our most general algo-

rithm solves (P) in full generality. Our algorithms satisfy all the requirements we had set forth:

they are distributed, network-independent and, most significantly, they are communication-

efficient. Under certain conditions, they are proven to converge to the same solution as a

centralized algorithm and, as shown through several experiments, they usually outperform

prior distributed optimization algorithms; namely, they use systematically less communi-

cations to achieve a prescribed solution accuracy. A surprising fact is that, despite their

generality, they sometimes even outperform distributed algorithms that were designed for

specific applications.

• Applications. We applied our algorithms to several known distributed problems, and also

proposed new applications for them, such as several instances of compressed sensing (or sparse

approximation) problems. Namely, we solve the three most important optimization problems

in compressed sensing in both the cases where the sensing matrix is partitioned vertically (by

rows) and horizontally (by columns). We also propose a new, more general framework for

distributed model predictive control (D-MPC). This framework models scenarios where, for

example, two dynamical systems that are coupled through their dynamics do not communicate

directly. Thus, it is useful in scenarios where establishing communications between systems

is expensive.

• Implementation and benchmarking. Since there are no tight lower bounds on how many

communications are needed to solve (P) in a distributed setting, the performance assessment of

our algorithms had to be done by comparing them to other prior distributed algorithms. This

involved implementing both our algorithms and the algorithms for which no implementation

was publicly available. We performed several experiments on different types of networks and

for different applications where all the algorithms were compared. The size of both the data

and the networks varied considerably. For example, the smallest network had only 10 nodes,

while the largest one had around 5000 nodes. As mentioned before, these experiments enabled

us to confirm the communication-efficiency of our algorithms.

5.3. Current limitations 113

5.2 Current limitations

Despite the excellent communication-efficiency of our algorithms, they still have several limitations:

• Selection of ρ. The algorithms we proposed are based on an augmented Lagrangian method

called multi-block alternating direction method of multipliers (ADMM). Augmented La-

grangian methods are generally parametrized by a scalar parameter, which we denote with ρ,

and their performance is strongly dependent on that parameter. Currently, there is no known

method for selecting ρ before the execution of the algorithm. And, although there are some

heuristics to adapt ρ while the algorithm is running, implementing those heuristics in dis-

tributed algorithms destroys their distributivity, since it requires aggregating information that

is spread over the entire network. Therefore, the performance of the algorithms we proposed

are conditionally dependent on a good choice for the parameter ρ. While in some situations it

is possible to select beforehand a good ρ using training data, this is still a current limitation.

• Convergence results. As mentioned, our algorithms are based on the centralized multi-

block ADMM algorithm. There is a proof of the convergence of this algorithm only in the case

where all the cost functions are strongly convex. Yet, it has been observed experimentally,

including in this thesis, that the multi-block ADMM converges for generic closed convex

functions. Proving its convergence for this case is, however, still a well-known open problem.

The lack of theoretical results for the multi-block ADMM transfers directly to our algorithms.

In particular, we could only prove their convergence for generic closed convex functions when

the network is bipartite. When it is not, our algorithms are only (theoretically) guaranteed

to converge when the functions associated to each node are strongly convex.

• Coloring scheme. All our algorithms use the concept of network coloring and require a

coloring scheme to be available before their execution. This coloring scheme is used by our

algorithms to synchronize the order of operation of the nodes. In many platforms, most

notably, in wireless networks, the nodes already have to operate with such a synchronization

scheme in order to avoid packet collisions. In those cases, our algorithms integrate naturally

with these low-level protocols. There are, however, some platforms that use other types of

protocols or that even all fully parallel communication. In those cases, the coloring scheme

required by our algorithms is clearly a limitation.

5.3 Future work

We see three main future research directions, as described next:

114

• Algorithm analysis. We mentioned as a limitation of our algorithms the lack of convergence

results. This is closely related to the lack of convergence of the multi-block ADMM, a currently

well-known open problem. Therefore, results on this direction would have a significant impact

on the distributed algorithms we proposed. Also in this category is the task of developing

an heuristic to adapt the augmented Lagrangian parameter ρ during the execution of the

algorithm, and in a distributed way.

• New distributed algorithms. Another possible research direction is the development of

new distributed optimization algorithms. The current most efficient algorithms are based on

ADMM, which can be viewed as an application of a monotone operator splitting method to

an optimization problem. Therefore, exploring monotone operator theory and devising new

splitting methods may yield new and more efficient distributed optimization algorithms. A

topic that became more relevant with the advent of the “big data” is privacy. In our view,

it would be interesting to study privacy guarantees offered by distributed algorithms in the

processing of distributed data.

• New applications. Although there are many applications for distributed optimization,

including the ones presented in this thesis, the majority of them involve convex problems. Yet,

many optimization problems formulated on networks are inherently nonconvex, for example,

network coloring or the computation of Steiner trees. An interesting area to explore is the

design of distributed approximation schemes for these types of nonconvex problems.

Appendix A

ADMM-based Algorithms For The

Global Class: Derivation

In this appendix, we derive Algorithms 1 and 2, from Chapter 2. Although these algorithms were

proposed in [25] and [26], respectively, they were derived there for particular instances of the global

class (G). Here, we generalize them to solve the entire class. Before their derivation, we need some

identities for quantities defined on the edges of a network.

A.1 Network identities

Recall that we adopted the convention in Section 1.3.1 that if (i, j) ∈ E , then i < j. The following

lemma will be useful for exchanging between “edge notation” and “node notation.”

Lemma A.1.

(a) Let aij be any quantity associated with the edge (i, j) ∈ E. Then,

∑

(i,j)∈E

aij =
P∑

p=1

(
∑

j∈Np

p<j

apj +
∑

j∈Np

j<p

ajp

)

. (A.1)

Furthermore, if aij = aji for all (i, j) ∈ E, (A.1) becomes

∑

(i,j)∈E

aij =
P∑

p=1

∑

j∈Np

apj . (A.2)

115

116 A. ADMM-based Algorithms For The Global Class: Derivation

(b) Let aij and aji be associated with edge (i, j) ∈ E. Then,

P∑

p=1

∑

j∈Np

apj =
P∑

p=1

∑

j∈Np

ajp . (A.3)

Proof.

(a) We have

∑

(i,j)∈E

aij =
∑

(p,j)∈E

apj +
∑

(i,p)∈E

aip +
∑

(i,j)∈E
i,j 6=p

aij

=
∑

j∈Np

p<j

apj +
∑

j∈Np

j<p

ajp +
∑

(i,j)∈E
i,j 6=p

aij ,

and repeating iteratively for all P nodes,

=
P∑

p=1

(
∑

j∈Np

p<j

apj +
∑

j∈Np

j<p

ajp

)

.

When apj = ajp, then
∑

(i,j)∈E

aij =
P∑

p=1

∑

j∈Np

apj .

(b) There holds

P∑

p=1

∑

j∈Np

apj =
∑

i∈N1

ai1 +
P∑

p=1

∑

j∈Np

j 6=1

apj

=
∑

i∈N1

ai1 +
∑

i∈N2

ai2 +
P∑

p=1

∑

j∈Np

j 6=1,2

apj ,

and repeating for all nodes,

=
P∑

p=1

∑

j∈Np

ajp .

A.2. Derivation of Algorithm 1 117

A.2 Derivation of Algorithm 1

We reproduce here problem (2.33), which was obtained as a reformulation of (G):

minimize
x̄,z̄

f1(x1) + f2(x2) + · · · + fP (xP)

subject to xp = zj , j ∈ N+
p , p = 1, . . . , P .

Recall that each node p has two copies of the original problem variable x ∈ R
n: xp ∈ R

n and zp ∈ R
n.

The collection of the xp’s and of the zp’s are x̄ = (x1, . . . , xP) and z̄ = (z1, . . . , zP), respectively.

We can apply the 2-block ADMM (2.18)-(2.20) to this problem, seeing x̄ and z̄ as the two block

variables. The augmented Lagrangian is

Lρ(z, x; λ) =
P∑

p=1

fp(xp) +
P∑

p=1

∑

j∈N +
p

λ⊤
pj(xp − zj) +

ρ

2

P∑

p=1

∑

j∈N +
p

‖xp − zj‖2 , (A.4)

where λpj is the dual variable associated to the constraint xp− zj = 0, and λ = (. . . , λij , . . .) is the

collection of dual variables. We consider z̄ as the first block variable, and x̄ as the second block

variable.

Minimization in z̄. Fixing x̄ and λ at x̄k and λk, respectively, z̄ is updated as

z̄k+1 = arg min
z̄

P∑

p=1

∑

j∈N +
p

λk
jp

⊤
(xk

j − zp) +
ρ

2

P∑

p=1

∑

j∈N +
p

∥
∥xk

j − zp

∥
∥

2
, (A.5)

where we used the identity (A.3). Note that we also dropped the first term in (A.4), since it does

not depend on z̄. Now, (A.5) decouples into P problems that can be solved in parallel. The problem

associated to node p is

zk+1
p = arg min

zp

∑

j∈N +
p

λk
jp

⊤(
xk

j − zp
)

+
ρ

2

∑

j∈N +
p

∥
∥zp − xk

j

∥
∥

2

= arg min
zp

−
(

∑

j∈N +
p

λk
jp + ρ

∑

j∈N +
p

xk
j

)⊤

zp +
ρ(Dp + 1)

2
‖zp‖2 ,

which has the closed-form solution

zk+1
p =

1

ρ(Dp + 1)

(∑

j∈N +
p

λk
jp + ρ

∑

j∈N +
p

xk
j

)

= τp

∑

j∈N +
p

λk
jp +

1

Dp + 1

∑

j∈N +
p

xk
j , (A.6)

118 A. ADMM-based Algorithms For The Global Class: Derivation

where τp = 1/(ρ(Dp + 1)).

Minimization in x̄. Fixing z̄ and λ at z̄k+1 and λk, respectively, x̄ is updated as

x̄k+1 = arg min
x̄

P∑

p=1

fp(xp) +
P∑

p=1

∑

j∈N +
p

λk
pj

⊤(
xp − zk+1

j

)
+

ρ

2

P∑

p=1

∑

j∈N +
p

∥
∥xp − zk+1

j

∥
∥

2
,

which decouples into P optimization problems that can be solved in parallel. The problem associ-

ated to node p is

xk+1
p = arg min

xp

fp(xp) +
∑

j∈N +
p

λk
pj

⊤(
xp − zk+1

j

)
+

ρ

2

∑

j∈N +
p

∥
∥xp − zk+1

j

∥
∥

2

= arg min
xp

fp(xp) +

(
∑

j∈N +
p

λk
pj − ρ

∑

j∈N +
p

zk+1
j

)⊤

xp +
ρ(Dp + 1)

2
‖xp‖2 ,

and after completing the square,

= arg min
xp

fp(xp) +
1

2τp

∥
∥
∥
∥xp + τp

(
∑

j∈N +
p

λk
pj − ρ

∑

j∈N +
p

zk+1
j

)∥
∥
∥
∥

2

= proxτpfp

(
1

Dp + 1

∑

j∈N +
p

zk+1
j − τp

∑

j∈N +
p

λk
pj

)

, (A.7)

where the operator prox is defined in (2.34).

Update of the dual variables. According to ADMM (cf. (2.20)), each dual variable λpj,

for j ∈ N+
p and p = 1, . . . , P , is updated as λk+1

pj = λk
pj + ρ(xk+1

p − zk+1
j). Node p, however,

does not need to know each individual λij . In fact, (A.6) and (A.7) only depend on the sums

µk
p :=

∑

j∈N +
p

λk
jp and ηk

p :=
∑

j∈N +
p

λk
pj, respectively. And these sums (or better, these new dual

variables µp and ηp) can be updated as

µk+1
p =

∑

j∈N +
p

λk+1
jp =

∑

j∈N +
p

λk
jp

︸ ︷︷ ︸

µk
p

+ρ
∑

j∈N +
p

(xk+1
j − zk+1

p) = µk
p +

1

τp

(1

Dp + 1

∑

j∈N +
p

xk+1
j − zk+1

p

)

ηk+1
p =

∑

j∈N +
p

λk+1
pj =

∑

j∈N +
p

λk
pj

︸ ︷︷ ︸

ηk
p

+ρ
∑

j∈N +
p

(xk+1
p − zk+1

j) = ηk
p +

1

τp

(

xk+1
p − 1

Dp + 1

∑

j∈N +
p

zk+1
j

)

.

These updates constitute step 5 of Algorithm 1. If we replace
∑

j∈N +
p

λk
jp in (A.6) and

∑

j∈N +
p

λk
pj

in (A.7) by µk
p and ηk

p , respectively, we get steps 3 and 4.

A.3. Derivation of Algorithm 2 119

A.3 Derivation of Algorithm 2

The reformulation [26] makes of (G) is (2.35), which we reproduce here:

minimize
x̄,z̄

f1(x1) + f2(x2) + · · ·+ fP (xP)

subject to xi = zij , (i, j) ∈ E
xj = zij , (i, j) ∈ E .

Associating the dual variables λij to the first set of constraints and ηij to the second one, the

augmented Lagrangian is

Lρ(x̄, z̄; λ, η) =
P∑

p=1

fp(xp) +
∑

(i,j)∈E

(

λ⊤
ij(xi − zij) + η⊤

ij(xj − zij) +
ρ

2
‖xi − zij‖2 +

ρ

2
‖xj − zij‖2

)

,

(A.8)

where λ (resp. η) is the collection of the dual variables λij (resp. ηij). The 2-block ADMM (2.18)-

(2.20) applied to this problem translates into

x̄k+1 = arg min
x̄

Lρ(x̄, z̄k; λk, ηk) (A.9)

z̄k+1 = arg min
z̄

Lρ(x̄k+1, z̄; λk, ηk) (A.10)

λk+1
ij = λk

ij + ρ(xk+1
i − zk+1

ij) , (i, j) ∈ E (A.11)

ηk+1
ij = ηk

ij + ρ(xk+1
j − zk+1

ij) , (i, j) ∈ E . (A.12)

We first analyze the minimization with respect to z̄, (A.10); then, we analyze the minimization with

respect to x̄, (A.9); and, finally, we will see how to simplify the updates of the dual variables (A.11)

and (A.12).

Minimization in z̄. Since the augmented Lagrangian is quadratic in z̄, problem (A.10) has a

closed form solution. To compute it component-wise, just select (i, j) ∈ E , and

∂

∂zij
Lρ(x̄k+1, z̄; λk, ηk)

∣
∣
∣
∣
zij=zk+1

ij

= 0 ⇐⇒ −(λk
ij + ηk

ij)− ρ(xk+1
i − zk+1

ij)− ρ(xk+1
j − zk+1

ij) = 0

⇐⇒ zk+1
ij =

λk
ij + ηk

ij

2ρ
+

xk+1
i + xk+1

j

2
. (A.13)

Replacing (A.13) in (A.11) and (A.12), we get, respectively,

λk+1
ij = λk

ij + ρ

(

xk+1
i −

λk
ij + ηk

ij

2ρ
−

xk+1
i + xk+1

j

2

)

=
λk

ij − ηk
ij

2
+ ρ

xk+1
i − xk+1

j

2
(A.14)

120 A. ADMM-based Algorithms For The Global Class: Derivation

ηk+1
ij = ηk

ij + ρ

(

xk+1
j −

λk
ij + ηk

ij

2ρ
−

xk+1
i + xk+1

j

2

)

=
ηk

ij − λk
ij

2
+ ρ

xk+1
j − xk+1

i

2
. (A.15)

Note that if we sum up (A.14) and (A.15), we get

λk+1
ij + ηk+1

ij = 0 , (A.16)

which holds for all k ≥ 1. Let us assume that it also holds for k = 0, i.e., λ0
ij and η0

ij are initialized

with symmetric values. Then, the first term in (A.13) is zero, and updating zij simplifies to

zk+1
ij =

xk+1
i + xk+1

j

2
. (A.17)

Similarly, the updates of the dual variables, (A.14) and (A.15) simplify, respectively, to

λk+1
ij = λk

ij + ρ
xk+1

i − xk+1
j

2
(A.18)

ηk+1
ij = ηk

ij + ρ
xk+1

j − xk+1
i

2
, (A.19)

Since we assume that writing (i, j) ∈ E means that i < j, the sets of dual variables λij and ηij are

only defined for i < j. Let us extend their definition in a meaningful way, i.e., such that (A.18)

and (A.19) make sense. Then, for i > j, we define λk
ij and ηk

ij, respectively, as

λk
ij = ηk

ji , i > j (A.20)

ηk
ij = λk

ji , i > j . (A.21)

Next, we use the identity (A.16), which holds for all k, and the simplified updates (A.17), (A.18),

and (A.19) to find a simple expression for the minimization in x̄, (A.9).

Minimization in x̄. If we set zij = zk
ij , λij = λk

ij , and ηij = ηk
ij in the augmented La-

grangian (A.8), the second term becomes

∑

(i,j)∈E

(

λk
ij

⊤
(xi − zk

ij) + ηk
ij

⊤
(xj − zk

ij) +
ρ

2
‖xi − zk

ij‖2 +
ρ

2
‖xj − zk

ij‖2
)

(A.22)

=
∑

(i,j)∈E

(

λk
ij

⊤
xi + ηk

ij
⊤

xj − (λk
ij + ηk

ij
︸ ︷︷ ︸

=0

)⊤zk
ij +

ρ

2
‖xi − zk

ij‖2 +
ρ

2
‖xj − zk

ij‖2
)

, (A.23)

=
∑

(i,j)∈E

(

λk
ij

⊤
xi + λk

ji
⊤

xj
︸ ︷︷ ︸

:=aij

)

+
ρ

2

∑

(i,j)∈E

(

‖xi − zk
ij‖2 + ‖xj − zk

ij‖2
︸ ︷︷ ︸

:=bij

)

. (A.24)

A.3. Derivation of Algorithm 2 121

From (A.22) to (A.23), we just rearranged the first two terms in the sum and used identity (A.16).

From (A.23) to (A.24), we used definition (A.20). Now note that aij = aji and also that bij = bji

(since, by (A.17), zk
ij = zk

ji). By identity (A.2) in Lemma A.1, we can write (A.24) as

P∑

p=1

∑

j∈Np

(

λk
pj

⊤
xp + λk

jp
⊤

xj

)

+
ρ

2

P∑

p=1

∑

j∈Np

(

‖xp − zk
pj‖2 + ‖xj − zk

pj‖2
)

=
P∑

p=1

∑

j∈Np

λk
pj

⊤
xp +

P∑

p=1

∑

j∈Np

λk
jp

⊤
xj +

ρ

2

P∑

p=1

∑

j∈Np

‖xp − zk
pj‖2 +

ρ

2

P∑

p=1

∑

j∈Np

‖xj − zk
pj‖2 (A.25)

=2
P∑

p=1

∑

j∈Np

λk
pj

⊤
xp + ρ

P∑

p=1

∑

j∈Np

‖xp − zk
pj‖2 . (A.26)

From (A.25) to (A.26), we used identity (A.3) from Lemma A.1 in the second and fourth terms,

and also that zk
ij = zk

ji. We can now write (A.26) as

P∑

p=1

∑

j∈Np

(

2 λk
pj

⊤
xp + ρ

∥
∥xp − zk

pj

∥
∥

2
)

=
P∑

p=1

∑

j∈Np

((

2 λk
pj − 2ρ zk

pj

)⊤
xp + ρ‖xp‖2 + ρ

∥
∥zk

pj

∥
∥

2
)

=
P∑

p=1

((

2
∑

j∈Np

λk
pj

︸ ︷︷ ︸

:=µk
p

−2ρ
∑

j∈Np

zk
pj

)⊤
xp + ρDp

(

‖xp‖2 + ‖zk
pj‖2

))

(A.27)

=
P∑

p=1

((

µk
p − 2ρ

∑

j∈Np

zk
pj

)⊤
xp + ρDp

(

‖xp‖2 + ‖zk
pj‖2

))

.

(A.28)

Therefore, updating x̄ as in (A.9) amounts to

x̄k+1 = arg min
x̄

P∑

p=1

(

fp(xp) +
(

µk
p − 2ρ

∑

j∈Np

zk
pj

)⊤
xp + ρDp‖xp‖2

)

, (A.29)

where we dropped ‖zk
pj‖2 in the last term in (A.28), since it is independent of the problem variable x̄.

Problem (A.29) yields P independent optimization problems, each depending only on an xp, which

can be executed in parallel. The problem associated to node p is

xk+1
p = arg min

xp

fp(xp) +
(

µk
p − 2ρ

∑

j∈Np

zk
pj

)⊤
xp + ρDp‖xp‖2

122 A. ADMM-based Algorithms For The Global Class: Derivation

= arg min
xp

fp(xp) + ρDP

∥
∥
∥
∥xp −

(1

Dp

∑

j∈Np

zk
pj −

1

2ρDp
µk

p

)
∥
∥
∥
∥

2

(A.30)

= proxτpfp

(
1

Dp

∑

j∈Np

zk
pj − τpµk

p

)

(A.31)

= proxτpfp

(
1

2Dp

∑

j∈Np

(xk
p + xk

j)− τpµk
p

)

. (A.32)

From (A.30) to (A.31), we used the definition of the prox operator (2.34) and τp = 1/(2ρDp).

From (A.31) to (A.32), we replaced zk
pj as in (A.17).

Update of the dual variables. Each node p does not need to know each individual λij

associated to its incident edges. In fact, as shown in (A.27), it only need to know µk
p =

∑

j∈Np
λk

pj.

According to (A.18), this variable is updated as

µk+1
p = 2

∑

j∈Np

λk+1
pj = 2

∑

j∈Np

λk
pj

︸ ︷︷ ︸

µk
p

+ρ
∑

j∈Np

(xk+1
p − xk+1

j) = µk
p +

1

2τp

(

xk+1
p − 1

Dp

∑

j∈Np

xk+1
j

)

. (A.33)

We thus see that (A.33) corresponds to step 4 in Algorithm 2, while (A.32) corresponds to step 3.

Appendix B

Some Conjugate Functions

In this appendix, we compute some conjugate functions that appear throughout the thesis, espe-

cially in compressed sensing problems.

ℓ1-norm plus quadratic regularization. In Subsection 3.2.2, we reformulate BP (3.4) as

a problem in the global class (G). That reformulation uses duality and, in (3.19), we use the

convex conjugate of the function h(x) = ‖x‖1 + (c/2)‖x‖2 where the term ‖x‖2 plays the role of a

regularization function. We now show that the convex conjugate of h has a closed-form expression.

Suppose x ∈ R
n. We have

h⋆(λ) = sup
x

λ⊤x− ‖x‖1 −
c

2
‖x‖2

= −inf
x
‖x‖1 +

c

2
‖x‖2 − λ⊤x

= −
n∑

i=1

inf
xi

|xi|+
c

2
x2

i − λixi . (B.1)

Applying the optimality condition for convex problems to the problem in the ith component,

0 ∈ ∂|xi|+ c xi − λi . (B.2)

When xi > 0, ∂|xi| = {1}, and (B.2) becomes xi = (λi−1)/c. This happens when λi > 1, otherwise

the expression would give a negative xi. Similarly, when xi < 0, ∂|xi| = {−1}, and (B.2) becomes

xi = (λi + 1)/c. This expression is negative when λi < −1. Finally, when xi = 0, ∂|xi| = [−1, 1],

and (B.2) becomes the condition under which xi = 0 : |λi| ≤ 1. This explains expression (3.20).

ℓ2-norm plus quadratic regularization. Here, we derive (3.45), which is a closed-form

expression for the conjugate of the function h(x) = ‖x‖ + (c/2)‖x‖2, where ‖ · ‖ is the ℓ2-norm.

123

124 B. Some Conjugate Functions

The convex conjugate of h is

h⋆(λ) = sup
x

λ⊤x− ‖x‖ − c

2
‖x‖2 (B.3)

= −inf
x
‖x‖+

c

2
‖x‖2 − λ⊤x . (B.4)

The subgradient of the norm function is

∂‖x‖ =

B(0, 1) , x = 0
x

‖x‖ , x 6= 0 ,

where B(0, 1) = {x : ‖x‖ ≤ 1} is the ball with radius 1, centered at the origin. The optimality

conditions for (B.4) then tell us that x = 0 if ‖λ‖ ≤ 1 and that, for x 6= 0,

0 =
x

‖x‖ + c x− λ . (B.5)

From (B.5), we first find the norm of x and then compute an expression for x. To find the norm

of x, first rewrite (B.5) as λ = (1/‖x‖ + c)x, and compute the squared norm of both sides of the

equation. This yields

(
1

‖x‖ + c

)2

‖x‖2 = ‖λ‖2 ⇐⇒ 1 + 2c‖x‖ + c2‖x‖2 = ‖λ‖2 ,

which is a quadratic expression on ‖x‖2. Solving the quadratic equation, gives us ‖x‖ = (‖λ‖−1)/c,

which is positive because ‖λ‖ > 1. Replacing in (B.5) gives

x =
1

c

(

1− 1

‖λ‖
)

λ .

To compute the value (B.4), just take the inner product of (B.5) with x and subtract (c/2)‖x‖2 to

both sides of the equation. This gives

− c

2
‖x‖2 = ‖x‖+

c

2
‖x‖2 − λ⊤x .

Using the expression for the norm of x, we get

h⋆(λ) =
1

2c

(

‖λ‖2 − 2‖λ‖+ 1
)

,

for ‖λ‖ > 1. This explains (3.45).

Appendix C

ADMM-based Algorithm For The

Connected Class: Derivation

In this appendix, we derive Algorithm 4, an ADMM-based algorithm presented in Chapter 4 that

was proposed in [47] to solve (P) with a star-shaped variable. That algorithm can be easily gener-

alized to a generic connected variable, as we do next. To do that, we apply the 2-block ADMM to

the reformulation (4.20), reproduced here for convenience:

minimize
{x̄l}

n
l=1

,{z̄l}
n
l=1

f1(x
(1)
S1

) + f1(x
(2)
S2

) + · · ·+ f1(x
(P)
SP

)

subject to x
(p)
l = z

{p,j}
l , l ∈ Sp ∩ Sj , j ∈ Np , p = 1, . . . , P ,

(C.1)

whose variable consists of x̄ := {x̄l}nl=1, and z̄ := {z̄l}nl=1. The augmented Lagrangian of (C.1) is

Lρ(x̄, z̄; λ̄) =
P∑

p=1

fp

(

x
(p)
Sp

)

+
P∑

p=1

∑

j∈Np

∑

l∈Sp∩Sj

[

λpj
l

⊤
(x

(p)
l − z

{p,j}
l) +

ρ

2

∥
∥
∥x

(p)
l − z

{p,j}
l

∥
∥
∥

2
]

, (C.2)

Note that λpj
l and λjp

l are associated to different constraints. The 2-block ADMM (2.18)-(2.20)

applied to this problem translates into

x̄k+1 = arg min
x̄

Lρ(x̄, z̄k; λ̄k) (C.3)

z̄k+1 = arg min
z̄

Lρ(x̄k+1, z̄; λ̄k) (C.4)

λpj,k+1
l = λpj,k

l + ρ
(

x
(p),k+1
l − z

{p,j},k+1
l

)

(C.5)

λjp,k+1
l = λjp,k

l + ρ
(

x
(j),k+1
l − z

{p,j},k+1
l

)

. (C.6)

125

126 C. ADMM-based Algorithm For The Connected Class: Derivation

As in the derivation of Algorithm 2 in Appendix A, we first analyze the minimization with respect

to z̄, (C.4); then, we analyze the minimization with respect to x̄, (C.3); and, finally, we will see

how to simplify the updates of the dual variables (C.5) and (C.6).

Minimization in z̄. No function fp depends on any component of z̄, which means that (C.4)

is an unconstrained quadratic program and, thus, it has a closed-form solution. Furthermore, it

decomposes across each component. In particular the minimization with respect to z
{p,j}
l = z

{j,p}
l

is

z
{p,j},k+1
l = arg min

z
{p,j}
l

λpj,k
l

⊤(
x

(p),k+1
l − z

{p,j}
l

)
+

ρ

2

∥
∥
∥x

(p),k+1
l − z

{p,j}
l

∥
∥
∥

2

+ λjp,k
l

⊤(
x

(j),k+1
l − z

{p,j}
l

)
+

ρ

2

∥
∥
∥x

(j),k+1
l − z

{p,j}
l

∥
∥
∥

2

= arg min
z

{p,j}
l

− (

λpj,k
l + λjp,k

l

)⊤
z

{p,j}
l + ρ

∥
∥
∥z

{p,j}
l

∥
∥
∥

2
−ρ x

(p),k+1
l

⊤
z

{p,j}
l − ρ x

(j),k+1
l

⊤
z

{p,j}
l

= arg min
z

{p,j}
l

−
(

λpj,k
l + λjp,k

l + ρ(x
(p),k+1
l + x

(j),k+1
l)

)⊤
z

{p,j}
l + ρ

∥
∥
∥z

{p,j}
l

∥
∥
∥

2

=
λpj,k

l + λjp,k
l

2ρ
+

x
(p),k+1
l + x

(j),k+1
l

2
. (C.7)

Replacing (C.7) in (C.5) and (C.6), we get, respectively,

λpj,k+1
l = λpj,k

l + ρ
(

x
(p),k+1
l − λpj,k

l + λjp,k
l

2ρ
− x

(p),k+1
l + x

(j),k+1
l

2

)

=
λpj,k

l − λjp,k
l

2
+

ρ

2

(
x

(p),k+1
l − x

(j),k+1
l

)
(C.8)

λjp,k+1
l = λjp,k

l + ρ
(

x
(j),k+1
l − λpj,k

l + λjp,k
l

2ρ
− x

(p),k+1
l + x

(j),k+1
l

2

)

=
λjp,k

l − λpj,k
l

2
+

ρ

2

(

x
(j),k+1
l − x

(p),k+1
l

)

(C.9)

Summing (C.8) with (C.9), we get

λpj,k+1
l + λjp,k+1

l = 0 ,

which holds for all k ≥ 1. Let us assume that it also holds for k = 0, i.e., λpj
l and λjp

l are initialized

with symmetric values. Then, the first term in (C.7) is zero, and updating z
{p,j}
l simplifies to

z
{p,j},k+1
l =

x
(p),k+1
l + x

(j),k+1
l

2
. (C.10)

127

Minimization in x̄. We now turn to the minimization in x̄ (C.3). If we fix each z
{p,j}
l at z

{p,j},k
l

and each λpj
l at λpj,k

l , the augmented Lagrangian (C.2) is the sum of p terms, where the pth term

depends only on xSp . Thus, problem (C.3) decomposes into P optimization problems that can be

solved in parallel. The problem associated with node p is

x
(p),k+1
Sp

= arg min
x

(p)
Sp

fp

(

x
(p)
Sp

)

+
∑

j∈Np

∑

l∈Sp∩Sj

[

λpj,k
l

⊤
(x

(p)
l − z

{p,j},k
l) +

ρ

2

∥
∥
∥x

(p)
l − z

{p,j},k
l

∥
∥
∥

2
]

= arg min
x

(p)
Sp

fp

(

x
(p)
Sp

)

+
∑

j∈Np

∑

l∈Sp∩Sj

[

λpj,k
l

⊤
x

(p)
l +

ρ

2

∥
∥
∥x

(p)
l

∥
∥
∥

2
− ρz

{p,j},k
l

⊤
x

(p)
l

]

(C.11)

= arg min
x

(p)
Sp

fp

(

x
(p)
Sp

)

+
∑

l∈Sp

∑

j∈Np∩Vl

[(

λpj,k
l − ρz

{p,j},k
l

)⊤
x

(p)
l +

ρ

2

∥
∥
∥x

(p)
l

∥
∥
∥

2
]

(C.12)

= arg min
x

(p)
Sp

fp

(

x
(p)
Sp

)

+
∑

l∈Sp

∑

j∈Np∩Vl

(

λpj,k
l − ρz

{p,j},k
l

)⊤
x

(p)
l +

ρ

2

∑

l∈Sp

∑

j∈Np∩Vl

∥
∥
∥x

(p)
l

∥
∥
∥

2

= arg min
x

(p)
Sp

fp

(

x
(p)
Sp

)

+
∑

l∈Sp

∑

j∈Np∩Vl

(

λpj,k
l − ρz

{p,j},k
l

)⊤
x

(p)
l +

ρ

2

∑

l∈Sp

Dp,l

∥
∥
∥x

(p)
l

∥
∥
∥

2
(C.13)

= arg min
x

(p)
Sp

fp

(

x
(p)
Sp

)

+
∑

l∈Sp

∑

j∈Np∩Vl

(

λpj,k
l − ρ

2
(x

(p),k
l + x

(j),k
l)

)⊤
x

(p)
l +

ρ

2

∑

l∈Sp

Dp,l

∥
∥
∥x

(p)
l

∥
∥
∥

2

(C.14)

= arg min
x

(p)
Sp

fp

(

x
(p)
Sp

)

+
∑

l∈Sp

(

γ
(p),k
l − ρ

2
(Dp,lx

(p),k
l +

∑

j∈Np∩Vl

x
(j),k
l)

)⊤
x

(p)
l +

ρ

2

∑

l∈Sp

Dp,l

∥
∥
∥x

(p)
l

∥
∥
∥

2
,

(C.15)

where Dp,l is the degree of node p in the subgraph induced by xl, Gl. From (C.11) to (C.12),

we used the fact that, for a fixed node p,
∑

j∈Np

∑

l∈Sp∩Sj
(·) =

∑

l∈Sp

∑

j∈Np∩Vl
(·). From (C.13)

to (C.14), we used (C.10). Finally, from (C.14) to (C.15), we defined γ
(p),k
l =

∑

j∈Np∩Vl
λpj,k

l .

Update of the dual variables. Note from (C.15) that node p depends only on γ
(p),k
l =

∑

j∈Np∩Vl
λpj,k

l and not on the individual λpj
l s. Using (C.5), the update of γ

(p),k
l comes as

γ
(p),k+1
l =

∑

j∈Np∩Vl

λpj,k+1
l

=
∑

j∈Np∩Vl

λpj,k
l

︸ ︷︷ ︸

=γ
(p),k

l

+ρ
(

x
(p),k+1
l − z

{p,j},k+1
l

)

= γ
(p),k
l + ρ

∑

j∈Np∩Vl

(

x
(p),k+1
l − z

{p,j},k+1
l

)

128 C. ADMM-based Algorithm For The Connected Class: Derivation

= γ
(p),k
l + ρ

∑

j∈Np∩Vl

(

x
(p),k+1
l − x

(p),k+1
l + x

(j),k+1
l

2

)

= γ
(p),k
l +

ρ

2

∑

j∈Np∩Vl

(

x
(p),k+1
l − x

(j),k+1
l

)

, (C.16)

where we have used (C.10). We thus see that (C.16) corresponds to step 6 of Algorithm 4,

while (C.15) corresponds to step 4.

Bibliography

[1] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

[2] D. Bertsekas, Nonlinear Programming. Athena Scientific, 2nd ed., 1999.

[3] A. Ben-Tal and A. Nemirovski, Lectures on Modern Convex Optimization. MPS-SIAM Series on
Optimization, 2001.

[4] M. Rabbat and R. Nowak, “Distributed optimization in sensor networks,” in Intern. Conf. Information
Proc. in Sensor Networks (IPSN), pp. 20–27, 2004.

[5] D. Bertsekas, “Incremental gradient, subgradient, and proximal methods for convex optimization: A
survey,” tech. rep., LIDS-2848, 2010.

[6] I. Akyildiz, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks: a survey,” Computer
Networks, vol. 38, pp. 393–422, 2002.

[7] M. DeGroot, “Reaching a consensus,” J. American Statistical Association, vol. 69, no. 345, pp. 118–121,
1974.

[8] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Systems and Control Letters,
vol. 53, pp. 65–78, 2004.

[9] T. Erseghe, D. Zennaro, E. Dall’Anese, and L. Vangelista, “Fast consensus by the alternating direction
multipliers method,” IEEE Trans. Signal Processing, vol. 59, no. 11, pp. 5523–5537, 2011.

[10] A. Olshevsky and J. Tsitsiklis, “Convergence speed in distributed consensus and averaging,” SIAM
Review, vol. 53, no. 4, pp. 747–772, 2011.

[11] B. Oreshkin, M. Coates, and M. Rabbat, “Optimization and analysis of distributed averaging with
short node memory,” IEEE Trans. Signal Processing, vol. 58, no. 5, pp. 2850–2865, 2010.

[12] S. Kar and J. M. F. Moura, “Distributed consensus algorithms in sensor networks with imperfect
communication: Link failures and channel noise,” IEEE Trans. Signal Processing, vol. 57, no. 1,
pp. 355–369, 2009.

[13] D. Donoho, “Compressed sensing,” IEEE Trans. Info. Theory, vol. 52, no. 4, pp. 1289–1306, 2006.

[14] E. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from
highly incomplete frequency information,” IEEE Trans. Info. Theory, vol. 52, no. 2, pp. 489–509, 2006.

[15] S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis pursuit,” SIAM J. Sci. Comp.,
vol. 20, no. 1, pp. 33–61, 1998.

[16] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J. Royal Statistical. Soc., Series B,
vol. 58, no. 1, pp. 267–288, 1996.

[17] C. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[18] D. Šlijak, Large-Scale Dynamic Systems. Dover Publications, 2007.

129

130 C. BIBLIOGRAPHY

[19] E. Camponogara, D. Jia, B. Krogh, and S. Talukdar, “Distributed model predictive control,” IEEE
Control Syst. Mag., vol. 22, no. 1, pp. 44–52, 2002.

[20] R. Ahuja, T. Magnanti, and J. Orlin, Network Flows: Theory, Algorithms, and Applications. Prentice
Hall, 1993.

[21] B. Krishnamachari, Networking Wireless Sensors. Cambridge University Press, 2005.

[22] D. Han and X. Yuan, “A note on the alternating direction method of multipliers,” J. Optimization
Theory and Appl., vol. 155, no. 1, pp. 227–238, 2012.

[23] R. Glowinski and A. Marrocco, “Sur l’approximation, par éléments finis d’ordre un, et la résolution,
par pénalisation-dualité, d’une classe de problèmes de dirichelet non linéaires,” Revue Française
d’Automatique, Informatique, et Recherche Opérationelle, vol. 9, no. 2, pp. 41–76, 1975.

[24] D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear variational problems via
finite element approximations,” Computers and Mathematics with Applications, vol. 2, no. 1, pp. 17–40,
1976.

[25] I. Schizas, A. Ribeiro, and G. Giannakis, “Consensus in ad hoc WSNs with noisy links - Part I:
Distributed estimation of deterministic signals,” IEEE Trans. Signal Processing, vol. 56, no. 1, pp. 350–
364, 2008.

[26] H. Zhu, G. Giannakis, and A. Cano, “Distributed in-network channel decoding,” IEEE Trans. Signal
Processing, vol. 57, no. 10, pp. 3970–3983, 2009.

[27] D. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods. Athena
Scientific, 1997.

[28] M. Snir, S. Otto, S. Hess-Lederman, D. Walker, and J. Dongarra, MPI: The Complete Reference. MIT
Press, 1996.

[29] P. Fischione, P. Park, and K. Johansson, Wireless Network Based Control, ch. Design Principles of
Wireless Sensor Network Protocols for Control Applications. Springer, 2011.

[30] J. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis. Springer, 2004.

[31] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic
Publishers, 2004.

[32] B. Bollobás, Modern Graph Theory. Springer, 2008.

[33] C. Tan, D. Palomar, and M. Chiang, “Distributed optimization of coupled systems with applica-
tions to network utility maximization,” in IEEE Intern. Conf. Acoustics, Speech, and Sig. Processing
(ICASSP), pp. 981–984, 2006.

[34] F. Kschischang, B. Frey, and H. Loeliger, “Factor graphs and the sum-product algorithm,” IEEE
Trans. Info. Theory, vol. 47, no. 2, pp. 498–519, 2001.

[35] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical
learning via the alternating method of multipliers,” Foundations and Trends in Machine Learning,
vol. 3, no. 1, pp. 1–122, 2011.

[36] G. Dantzig and P. Wolfe, “Decomposition principle for linear programs,” Operations Research, vol. 8,
no. 1, pp. 101–111, 1960.

[37] J. Benders, “Partitioning procedures for solving mixed-variables programming problems,” Numerische
Mathematik, vol. 4, pp. 238–252, 1962.

[38] H. Everett, “Generalized Lagrange multiplier method for solving problems of optimum allocation of
resources,” Operations Research, vol. 11, no. 3, pp. 399–417, 1963.

131

[39] J. Tsitsiklis, D. Bertsekas, and M. Athans, “Distributed asynchronous deterministic and stochastic
gradient optimization algorithms,” IEEE Trans. Autom. Control, vol. AC-31, no. 9, pp. 803–812, 1986.

[40] C. Soares, J. Xavier, and J. Gomes, “DCOOL-NET: Distributed cooperative localization for sensor
networks.” preprint: http://arxiv.org/abs/1211.7277, 2012.

[41] P. Forero, A. Cano, and G. Giannakis, “Distributed clustering using wireless sensor networks,” IEEE
J. Selected Topics in Signal Processing, vol. 5, no. 4, pp. 707–724, 2011.

[42] J. Bazerque and G. Giannakis, “Distributed spectrum sensing for cognitive radio networks by exploiting
sparsity,” IEEE Trans. Signal Processing, vol. 58, no. 3, pp. 1847–1862, 2010.

[43] P. Forero, A. Cano, and G. Giannakis, “Consensus-based distributed support vector machines,” J.
Machine Learning Research, vol. 11, pp. 1663–1707, 2010.

[44] A. Navia-Vázquez, D. Gutiérrez-González, E. Parrado-Hernández, and J. Navarro-Abellán, “Dis-
tributed support vector machines,” IEEE Trans. Neural Networks, vol. 17, no. 4, pp. 1091–1097,
2006.

[45] K. Flouri, B. Beferull-Lozano, and P. Tsakalides, “Distributed consensus algorithms for SVM training
in wireless sensor networks,” in European Signal Proc. Conf. (Eusipco), 2008.

[46] C. Conte, T. Summers, M. Zeilinger, M. Morari, and C. Jones, “Computational aspects of dis-
tributed optimization in model predictive control,” in IEEE Intern. Conf. Decision and Control (CDC),
pp. 6819–6824, 2012.

[47] V. Kekatos and G. Giannakis, “Distributed robust power system state estimation,” IEEE Trans. Power
Systems, vol. 28, no. 2, pp. 1617–1626, 2012.

[48] M. Kraning, E. Chu, J. Lavaei, and S. Boyd, “Dynamic network energy management via proximal
message passing,” Found. Trends in Optimization, vol. 1, no. 2, pp. 70–122, 2013.

[49] T. Chang, A. Nedić, and A. Scaglione, “Distributed constrained optimization by consensus-based
primal-dual perturbation method.” preprint: http://arxiv.org/abs/1304.5590, 2013.

[50] E. Dall’Anese, H. Zhu, and G. Giannakis, “Distributed optimal power flow for smart microgrids,”
IEEE Trans. Smart Grid, vol. 4, no. 3, pp. 1464–1475, 2013.

[51] I. Necoara, V. Nedelcu, and I. Dumitrache, “Parallel and distributed optimization methods for esti-
mation and control in networks,” Journal of Process Control, vol. 21, pp. 756–766, 2011.

[52] D. Palomar and M. Chiang, “A tutorial on decomposition methods for network utility maximization,”
IEEE J. Selected Areas in Communications, vol. 24, no. 8, pp. 1439–1451, 2006.

[53] L. Vandenberghe, “Dual decomposition,” Spring 2011-12. Lecture Notes, Optimization Methods for
Large-Scale Systems (EE-236C), UCLA.

[54] D. Bertsekas, A. Nedić, and A. Ozdaglar, Convex Analysis and Optimization. Athena Scientific, 2003.

[55] L. Vandenberghe, “Subgradient method,” Spring 2011-12. Lecture Notes, Optimization Methods for
Large-Scale Systems (EE-236C), UCLA.

[56] S. Boyd and A. Mutapic, “Subgradient methods,” Winter 2007. Lecture Notes, Convex Optimization
II (EE364b), Stanford University.

[57] A. Beck, Convergence Rate Analysis of Gradient Based Algorithms. PhD thesis, Tel-Aviv University,
2002.

[58] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse prob-
lems,” SIAM J. Im. Sc., vol. 2, no. 1, pp. 183–202, 2009.

132 C. BIBLIOGRAPHY

[59] A. Beck and M. Teboulle, Convex Optimization in Signal Processing and Communications,
ch. Gradient-based algorithms with applications to signal-recovery problems. Cambridge University
Press, 2010.

[60] P. Tseng, “On accelerated proximal gradient methods for convex-concave optimization.” Submitted to
SIAM J. Optim., 2008.

[61] O. Devolder, F. Glineur, and Y. Nesterov, “First-order methods of smooth convex optimization with
inexact oracle,” Math. Program., Ser. A, pp. 1–39, 2013.

[62] Y. Nesterov, “Smooth minimization of non-smooth functions,” Math. Program., vol. 103, no. 1, pp. 127–
152, 2005.

[63] A. d’Aspremont, “Smooth optimization with approximate gradient,” SIAM J. Optim., vol. 19, no. 3,
pp. 1171–1183, 2008.

[64] L. Vandenberghe, “Fast proximal gradient methods,” Spring 2011-12. Lecture Notes, Optimization
Methods for Large-Scale Systems (EE-236C), UCLA.

[65] A. Zakarian, Nonlinear Jacobi and ǫ-relaxation methods for parallel network optimization. PhD thesis,
University of Wisconsin, Madison, 1995.

[66] J. Mota, “Distributed algorithms for sparse approximation,” Master’s thesis, Instituto Superior
Técnico, Technical University of Lisbon, Portugal, 2008. http://users.isr.ist.utl.pt/ j̃mota/.

[67] P. Tseng, “Convergence of a block coordinate descent method for nondifferentiable minimization,” J.
Optimization Theory and Appl., vol. 109, no. 3, pp. 475–494, 2001.

[68] M. Hestenes, “Multiplier and gradient methods,” J. Optimization Theory and Appl., vol. 4, no. 5,
pp. 303–320, 1969.

[69] M. Powell, Optimization, ch. A method for nonlinear constraints in minimization problems. Academic
Press, 1969.

[70] R. Rockafellar, “Augmented Lagrangians and applications of the proximal point algorithm in convex
programming,” Mathematics of Operations Research, vol. 1, no. 2, pp. 97–116, 1976.

[71] J. Eckstein, Splitting Methods for Monotone Operators with Applications to Parallel Optimization.
PhD thesis, Laboratory for Information and Decision Systems, Massachusetts Institute of Technology,
1989.

[72] D. Bertsekas, “Multiplier methods: A survey,” Automatica, vol. 12, pp. 133–145, 1976.

[73] D. Bertsekas, Constrained Optimization and Lagrange Multiplier Methods. Athena Scientific, 1996.

[74] R. Rockafellar, “The multiplier method of Hestenes and Powell applied to convex programming,” J.
Optimization Theory and Appl., vol. 12, no. 6, pp. 555–562, 1973.

[75] J. Eckstein, “Augmented Lagrangian and alternating direction methods for convex optimization: A
tutorial and some illustrative computational results,” tech. rep., Rutcor Research Report, 32-2012,
2012.

[76] B. Martinet, “Regularisation d’inequations variationelles par approximations successives,” Revue
Française d’Informatique et de Recherche Operationelle, vol. 4, no. R-3, pp. 154–158, 1970.

[77] B. Martinet, “Determination approchée d’un point fixe d’une application pseudo-contractante. cas de
l’application prox,” Comptes Rendus de l’Academie des Sciences (Paris), vol. 274, no. A, pp. 163–165,
1972.

[78] R. Rockafellar, “Monotone operators and the proximal point algorithm,” SIAM J. Control and Opti-
mization, vol. 14, no. 5, pp. 877–898, 1976.

133

[79] J. Douglas and H. Rachford, “On the numerical solution of heat conduction problems in two and three
space variables,” Trans. American Math. Society, vol. 82, pp. 421–439, 1956.

[80] P. Lions and B. Mercier, “Splitting algorithms for the sum of two nonlinear operators,” SIAM J. Num.
Analysis, vol. 16, no. 6, pp. 964–979, 1979.

[81] D. Gabay, Augmented Lagrangian Methods: Applications to the Solution of Boundary-Value Problems,
ch. Applications of the method of multipliers to variational inequalities. North-Holland: Amsterdam,
1983.

[82] J. Eckstein and D. Bertsekas, “On the Douglas-Rachford splitting method and the proximal point
algorithm for maximal monotone operators,” Math. Program., vol. 55, pp. 293–318, 1992.

[83] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “A proof of convergence for the alternating direction
method of multipliers applied to polyhedral-constrained functions.” preprint: http://arxiv.org/abs/

1112.2295, 2011.

[84] J. Eckstein and D. Bertsekas, “An alternating direction method for linear programming,” tech. rep.,
LIDS-P-1967, 1990.

[85] B. He and X. Yuan, “On the O(1/n) convergence rate of the Douglas-Rachford alternating direction
method,” SIAM J. Numer. Anal., vol. 50, no. 2, pp. 700–709, 2012.

[86] B. He and X. Yuan, “On non-ergodic convergence rate of Douglas-Rachford alternating direction
method of multipliers.” preprint: http://www.optimization-online.org/DB_HTML/2012/01/3318.

html, 2012.

[87] T. Goldstein, B. O’Donoghue, and S. Setzer, “Fast alternating direction optimization methods,” tech.
rep., CAM report 12-35, UCLA, 2012.

[88] D. Boley, “Linear convergence of ADMM on a model problem,” tech. rep., TR 12-009, Dept. Computer
Science, University of Minnesota, 2012.

[89] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson, “Optimal parameter selection for the alter-
nating direction method of multipliers (ADMM): quadratic problems.” preprint: http://arxiv.org/

abs/1306.2454, 2013.

[90] W. Deng and W. Yin, “On the global and linear convergence of the generalized alternating direction
method of multipliers,” tech. rep., Rice University, Dept. Computational and Applied Mathematics,
2012.

[91] P. Tseng, “Applications of a splitting algorithm to decomposition in convex programming and varia-
tional inequalities,” SIAM J. Control and Optimization, vol. 29, no. 1, pp. 119–138, 1991.

[92] D. Goldfarb and S. Ma, “Fast multiple splitting algorithms for convex optimization,” tech. rep., De-
partment of IEOR, Columbia Univ., 2009.

[93] D. Goldfarb, S. Ma, and K. Scheinberg, “Fast alternating linearization methods for minimizing the
sum of two convex functions,” tech. rep., Department of IEOR, Columbia Univ., 2010.

[94] E. Wei and A. Ozdaglar, “On the O(1/k) convergence of asynchronous distributed alternating direction
method of multipliers.” preprint: http://arxiv.org/abs/1307.8254, 2013.

[95] M. Afonso, J. Bioucas-Dias, and M. Figueiredo, “An augmented Lagrangian approach to the con-
strained optimization formulation of imaging inverse problems,” IEEE Trans. Im. Proc., vol. 20, no. 3,
pp. 681–695, 2011.

[96] A. Martins, M. Figueiredo, P. Aguiar, N. Smith, and E. Xing, “An augmented Lagrangian approach
to constrained MAP inference,” in Proc. 28th Intern. Conf. Machine Learning, Bellevue, WA, USA,
2011.

134 C. BIBLIOGRAPHY

[97] B. He, M. Tao, and X. Yuan, “Alternating direction method with Gaussian back substitution for
separable convex programming,” SIAM J. Optim., vol. 22, no. 2, pp. 313–340, 2012.

[98] M. Hong and Z. Luo, “On the linear convergence of the alternating direction method of multipliers.”
preprint: http://arxiv.org/abs/1208.3922, 2013.

[99] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “Distributed basis pursuit.” preprint: http://arxiv.

org/abs/1009.1128v2, version 2, July, 2011.

[100] A. Nedić and A. Ozdaglar, “On the rate of convergence of distributed subgradient methods for multi-
agent optimization,” in IEEE Intern. Conf. Decision and Control (CDC), pp. 4711–4716, 2007.

[101] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-agent optimization,” IEEE
Trans. Autom. Control, vol. 54, no. 1, pp. 48–61, 2009.

[102] I. Lobel, A. Ozdaglar, and D. Feijer, “Distributed multi-agent optimization with state-dependent
communication,” Math. Program., Ser. B, vol. 129, pp. 255–284, 2011.

[103] A. Nedić and A. Ozdaglar, Convex Optimization in Signal Processing and Communications, ch. Coop-
erative distributed multi-agent optimization. Cambridge University Press, 2010.

[104] S. Ram, A. Nedić, and V. Veeravalli, “Asynchronous gossip algorithms for stochastic optimization,” in
Joint 48th IEEE Conf. Decision and Control and 28th Chinese Control Conf., Shanghai, P.R. China,
pp. 3581–3586, 2009.

[105] J. Tsitsiklis, Problems in decentralized decision making and computation. PhD thesis, Massachussets
Institute of Technology, 1984.

[106] M. Rabbat and R. Nowak, “Quantized incremental algorithms for distributed optimization,” IEEE J.
Selected Areas in Communications, vol. 23, no. 4, pp. 798–808, 2005.

[107] B. Johansson, M. Rabi, and M. Johansson, “A randomized incremental subgradient method for dis-
tributed optimization in networked systems,” SIAM J. Optim., vol. 20, no. 3, pp. 1157–1170, 2009.

[108] M. Rabbat, R. Nowak, and J. Bucklew, “Generalized consensus algorithms in networked systems with
erasure links,” in IEEE Workshop Signal Proc. Advances in Wireless Comunications, pp. 1088–1092,
2005.

[109] B. Johansson, T. Keviczky, M. Johansson, and K. Johansson, “Subgradient methods and consensus
algorithms for solving convex optimization problems,” in IEEE Intern. Conf. Decision and Control
(CDC), pp. 4185–4190, 2008.

[110] M. Zhu and S. Mart́ınez, “On distributed convex optimization under inequality and equality con-
straints,” IEEE Trans. Autom. Control, vol. 57, no. 1, pp. 151–164, 2012.

[111] M. Zhu and S. Mart́ınez, “On distributed optimization under inequality and equality constraints via
penalty primal-dual methods,” in American Control Conf., pp. 2434–2439, 2010.

[112] J. Chen and A. Sayed, “Diffusion adaptation strategies for distributed optimization and learning over
networks,” IEEE Trans. Signal Processing, vol. 60, no. 8, pp. 4289–4305, 2012.

[113] D. Jakovetić, J. Xavier, and J. M. F. Moura, “Fast distributed gradient methods.” preprint: http:

//arxiv.org/abs/1112.2972, 2011.

[114] J. Duchi, A. Argawal, and M. Wainwright, “Dual averaging for distributed optimization: convergence
analysis and network scaling,” IEEE Trans. Autom. Control, vol. 57, no. 3, pp. 592–606, 2012.

[115] Y. Nesterov, “Primal-dual subgradient methods for convex problems,” Math. Program., Ser. B, vol. 120,
pp. 221–259, 2009.

[116] E. Ghadimi, I. Shames, and M. Johansson, “Accelerated gradient methods for networked optimization.”
preprint: http://arxiv.org/abs/1211.2132, 2012.

135

[117] B. Polyak, Introduction to Optimization. Optimization Software, 1987.

[118] A. Ruszczynski, “Augmented Lagrangian decomposition for sparse convex optimization,” Inter. Inst.
Applied Systems Analysis, 1992.

[119] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “Basis pursuit in sensor networks,” in IEEE Intern.
Conf. Acoustics, Speech, and Sig. Processing (ICASSP), pp. 2916–2919, 2011.

[120] D. Jakovetić, J. Xavier, and J. M. F. Moura, “Cooperative convex optimization in networked sys-
tems: Augmented Lagrangian algorithms with directed gossip communication,” IEEE Trans. Signal
Processing, vol. 59, no. 8, pp. 3889–3902, 2011.

[121] I. Necoara, “Random coordinate descent algorithms for multi-agent convex optimization over net-
works,” IEEE Trans. Autom. Control, vol. 58, no. 8, pp. 2001–2012, 2013.

[122] J. Moreau, “Fonctions convexes duales et points proximaux dans un espace Hilbertien,” Comptes
Rendus de l’Academie des Sciences (Paris), Série A, vol. 255, pp. 2897–2899, 1962.

[123] P. Combettes and J. Pesquet, Fixed-Point Algorithms for Inverse Problems in Science and Engineering,
ch. Proximal Splitting Methods in Signal Processing, pp. 185–212. Springer, New York, 2011.

[124] G. Mateos, J. Bazerque, and G. Giannakis, “Distributed sparse linear regression,” IEEE Trans. Signal
Processing, vol. 58, no. 10, pp. 5262–5276, 2010.

[125] W. Shi, Q. Ling, G. Wu, and W. Yin, “Linearly convergent decentralized consensus optimization with
the alternating direction method of multipliers,” in IEEE Intern. Conf. Acoustics, Speech, and Sig.
Processing (ICASSP), pp. 4613–4617, 2013.

[126] W. Shi, Q. Ling, G. Wu, and W. Yin, “On the linear convergence of the ADMM in decentralized
consensus optimization.” preprint: http://arxiv.org/abs/1307.5561, 2013.

[127] Q. Ling, M. Tao, W. Yin, and X. Yuan, “A multi-block alternating direction method with parallel
splitting for decentralized consensus optimization,” EURASIP J. Wireless Comm. and Networking,
vol. 338, 2012.

[128] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Asynchronous distributed optimization using
a randomized alternating direction method of multipliers.” preprint: http://arxiv.org/abs/1303.

2837, 2013.

[129] F. Kelly, “Charging and rate control for elastic traffic,” European Trans. Telecommunications, vol. 8,
pp. 33–37, 1997.

[130] F. Kelly, A. Maulloo, and D. Tan, “Rate control for communication networks: Shadow prices, propor-
tional fairness and stability,” J. Operational Research Society, vol. 49, no. 3, pp. 237–252, 1998.

[131] S. Low and D. Lapsley, “Optimization flow control, I: Basic algorithm and convergence,” IEEE/ACM
Trans. Networking, vol. 7, no. 6, pp. 861–874, 1999.

[132] S. Low, L. Peterson, and L. Wang, “Understanding Vegas: a duality model,” Journal of the ACM,
vol. 49, no. 2, pp. 207–235, 2002.

[133] S. Shakkottai and R. Srikant, “Network optimization and control,” Found. Trends Networking, vol. 2,
no. 3, pp. 271–379, 2007.

[134] M. Chiang, S. Low, A. Calderbank, and J. Doyle, “Layering as optimization decomposition: a mathe-
matical theory of network architectures,” Proceedings of the IEEE, vol. 95, no. 1, pp. 255–312, 2007.

[135] S. Athuraliya and S. Low, “Optimization flow control with Newton-like algorithm,” J. Telecomm. Syst.,
vol. 15, pp. 345–358, 2000.

[136] D. Bertsekas, “Centralized and distributed Newton methods for network optimization and extensions,”
tech. rep., LIDS-2866, 2011.

136 C. BIBLIOGRAPHY

[137] E. Wei, A. Ozdaglar, and A. Jadbabaie, “A distributed Newton method for network utility maximiza-
tion,” in IEEE Intern. Conf. Decision and Control (CDC), pp. 1816–1821, 2010.

[138] E. Wei, A. Ozdaglar, and A. Jadbabaie, “A distributed Newton method for network utility maximiza-
tion, I: Algorithm,” tech. rep., LIDS-2832, 2011.

[139] A. Beck, A. Nedić, A. Ozdaglar, and M. Teboulle, “Optimal distributed gradient methods for network
resource allocation problems.” preprint: http://web.mit.edu/asuman/www/documents/NUM-FGM.pdf,
2013.

[140] L. Zadeh and B. Whalen, “On optimal control and linear programming,” IRE Trans. Autom. Control,
vol. 7, no. 4, pp. 45–46, 1962.

[141] A. Propoi, “Use of LP methods for synthesizing sampled-data automatic systems,” Automn Remote
Control, vol. 24, 1963.

[142] C. Garćıa, D. Prett, and M. Morari, “Model predictive control: Theory and practice – a survey,”
Automatica, vol. 25, no. 3, pp. 335–348, 1989.

[143] L. Acar, “Some examples for the decentralized receding horizon control,” in IEEE Intern. Conf. Deci-
sion and Control (CDC), pp. 1356–1359, 1992.

[144] H. Fawal, D. Georges, and G. Bornard, “Optimal control of complex irrigation systems via
decomposition-coordination and the use of augmented Lagrangian,” in IEEE Conf. on Systems, Man,
and Cybernetics, pp. 3874–3879, 1998.

[145] D. Jia and B. Krogh, “Distributed model predictive control,” in American Control Conf., pp. 2767–
2772, 2001.

[146] T. Keviczky, F. Borrelli, and G. Balas, “Decentralized receding horizon control for large scale dynam-
ically decoupled systems,” Automatica, vol. 42, pp. 2105–2115, 2006.

[147] A. Venkat, J. Rawlings, and S. Wright, “Stability and optimality of distributed model predictive
control,” in IEEE Intern. Conf. Decision and Control (CDC), pp. 6680–6685, 2005.

[148] X. Zhang, M. Burger, X. Bresson, and S. Osher, “Bregmanized nonlocal regularization for deconvolu-
tion and sparse reconstruction,” SIAM J. Imaging Sciences, vol. 3, no. 3, pp. 253–276, 2010.

[149] X. Zhang, M. Burger, and S. Osher, “A unified primal-dual algorithm framework based on Bregman
iteration,” J. Sci. Comput., vol. 46, pp. 20–46, 2011.

[150] Y. Wakasa, M. Arakawa, K. Tanaka, and T. Akashi, “Distributed model predictive control via dual
decomposition,” in IEEE Intern. Conf. Decision and Control (CDC), pp. 381–386, 2008.

[151] E. Camponogara and H. Scherer, “Distributed optimization for model predictive control of linear
dynamic networks with control-input and output constraints,” IEEE Trans. Aut. Sc. Engin., vol. 8,
no. 1, 2011.

[152] T. Summers and J. Lygeros, “Distributed model predictive consensus via the alternating direction
method of multipliers,” in Allerton Conf. Communications, Control, and Computing, pp. 79–84, 2012.

[153] G. Dantzig, Linear Programming and Extensions. Princeton University Press, 1963.

[154] R. Ahuja, T. Magnanti, and J. Orlin, “Some recent advances in network flows,” SIAM Review, vol. 33,
no. 2, pp. 175–219, 1991.

[155] A. Goldberg, E. Tardos, and R. Tarjan, “Network flow algorithms,” tech. rep., CS-TR-216-89, Dept.
Computer Science, Stanford University, CA, 1989.

[156] D. Bertsekas, Network Optimization: Continuous and Discrete Models. Athena Scientific, 1998.

137

[157] D. Bertsekas and D. El Baz, “Distributed asynchronous relaxation methods for convex network flow
problems,” SIAM J. Control and Optimization, vol. 25, no. 1, pp. 74–85, 1987.

[158] L. Xiao, M. Johansson, and S. Boyd, “Simultaneous routing and resource allocation via dual decom-
position,” IEEE Trans. Communications, vol. 52, no. 7, pp. 1136–1144, 2004.

[159] J. Trdlička and Z. Hanzálek, “Distributed multi-commodity network flow algorithm for energy optimal
routing in wireless sensor networks,” Radioengineering, vol. 19, no. 4, pp. 579–588, 2010.

[160] A. Jadbabaie, A. Ozdaglar, and M. Zargham, “A distributed Newton method for network optimiza-
tion,” in IEEE Intern. Conf. Decision and Control (CDC), pp. 2736–2741, 2009.

[161] M. Zargham, A. Ribeiro, A. Jadbabaie, and A. Ozdaglar, “Accelerated dual descent for network
optimization,” in American Control Conf., pp. 2663–2668, 2011.

[162] M. Zargham, A. Ribeiro, A. Ozdaglar, and A. Jadbabaie, “Accelerated dual descent for network flow
optimization.” preprint: http://www.seas.upenn.edu/ z̃argham/ADDextended_PR1.pdf, 2012.

[163] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “D-ADMM: A communication-efficient distributed
algorithm for separable optimization,” IEEE Trans. Signal Processing, vol. 61, no. 10, pp. 2718–2723,
2013.

[164] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “D-ADMM: A distributed algorithm for compressed
sensing and other separable optimization problems,” in IEEE Intern. Conf. Acoustics, Speech, and Sig.
Processing (ICASSP), pp. 2869–2872, 2012.

[165] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “Consensus on colored networks,” in IEEE Intern.
Conf. Decision and Control (CDC), pp. 5116–5121, 2012.

[166] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “Distributed basis pursuit,” IEEE Trans. Signal
Processing, vol. 60, no. 4, pp. 1942–1956, 2012.

[167] M. Garey and D. Johnson, Computers and Intractability. W. H. Freeman and Co., 1979.

[168] F. Kuhn and R. Wattenhofer, “On the complexity of distributed graph coloring,” in in proceed. of
Principles of distributed computing, pp. 7–15, 2006.

[169] D. Leith and P. Clifford, “Convergence of distributed learning algorithms for optimal wireless channel
allocation,” in IEEE Intern. Conf. Decision and Control (CDC), pp. 2980–2985, 2006.

[170] K. Duffy, N. Connell, and A. Sapozhnikov, “Complexity analysis of a decentralised graph colouring
algorithm,” Information Processing Letters, vol. 107, pp. 60–63, 2008.

[171] N. Linial, “Locality in distributed graph algorithms,” SIAM J. Comput., vol. 21, no. 1, pp. 193–201,
1992.

[172] J. Kurose and K. Ross, Computer networking: A top-down approach featuring the internet. Addison
Wesley, 3rd ed., 2005.

[173] J. Choi, M. Jain, K. Srinivasan, P. Levis, and S. Katti, “Achieving single channel, full duplex wireless
communication,” in Conf. Mobile Computing Netw. (Mobicom), pp. 1–12, 2010.

[174] A. Jadbabaie, J. Lin, and S. Morse, “Coordination of groups of mobile autonomous agents using nearest
neighbor rules,” IEEE Trans. Autom. Control, vol. 48, no. 6, pp. 988–1001, 2003.

[175] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms,” IEEE Trans. Info.
Theory, vol. 52, no. 6, pp. 2508–2530, 2006.

[176] R. Olfati-Saber, J. Fax, and R. Murray, “Consensus and cooperation in networked multi-agent sys-
tems,” Proceedings of the IEEE, vol. 95, no. 1, pp. 215–233, 2007.

138 C. BIBLIOGRAPHY

[177] A. Dimakis, S. Kar, J. M. F. Moura, M. Rabbat, and A. Scaglione, “Gossip algorithms for distributed
signal processing,” Proceedings of the IEEE, vol. 98, no. 11, pp. 1847–1864, 2010.

[178] J. Predd, S. Kulkarni, and V. Poor, “A collaborative training algorithm for distributed learning,”
IEEE Trans. Info. Theory, vol. 55, no. 4, pp. 1856–1871, 2009.

[179] E. Candès, “Compressive sampling,” pp. 1–20, European Math. Society, Proc. Inter. Congress of
Mathematicians, Madrid, Spain, 2006.

[180] E. Candès and M. Wakin, “An introduction to compressive sampling,” IEEE Sig. Proc. Mag., vol. 25,
no. 2, pp. 21–30, 2008.

[181] R. Baraniuk, “Compressive sensing,” IEEE Sig. Proc. Mag., vol. 24, no. 4, pp. 118–121, 2007.

[182] K. Bryan and T. Leise, “Making do with less: An introduction to compressed sensing,” SIAM Review,
vol. 55, no. 3, pp. 547–566, 2013.

[183] J. Fuchs, “Recovery of exact sparse representations in the presence of bounded noise,” IEEE Trans.
Info. Theory, vol. 51, no. 10, pp. 3601–3608, 2005.

[184] D. Donoho, M. Elad, and V. Temlyakov, “Stable recovery of sparse overcomplete representations in
the presence of noise,” IEEE Trans. Info. Theory, vol. 52, no. 1, pp. 6–18, 2006.

[185] J. Tropp, “Just relax: Convex programming methods for identifying sparse signals,” IEEE Trans. Info.
Theory, vol. 51, no. 3, pp. 1030–1051, 2006.

[186] B. Natarajan, “Sparse approximate solutions to linear systems,” SIAM J. Comput., vol. 24, no. 2,
pp. 227–234, 1995.

[187] E. Candès and T. Tao, “Decoding by linear programming,” IEEE Trans. Info. Theory, vol. 51, no. 12,
pp. 4203–4215, 2005.

[188] M. Rudelson and R. Vershynin, “On sparse reconstruction from Fourier and Gaussian measurements,”
Communications on Pure and Applied Mathem., vol. 61, no. 8, pp. 1025–1045, 2008.

[189] E. Candès, “The restricted isometry property and its implications for compressed sensing,” Comptes
Rendus de l’Academie des Sciences (Paris), Série I, no. 346, pp. 589–592, 2008.

[190] R. Baraniuk, M. Davenport, R. DeVore, and M. Wakin, “A simple proof of the restricted isometry
property for random matrices,” Constructive Approximation, vol. 28, no. 3, pp. 253–263, 2008.

[191] J. Tropp, J. Laska, M. Duarte, J. Romberg, and R. Baraniuk, “Beyond Nyquist: Efficient sampling of
sparse bandlimited signals,” IEEE Trans. Info. Theory, vol. 56, no. 1, pp. 520–544, 2010.

[192] W. Bajwa, J. Haupt, A. Sayeed, and R. Nowak, “Compressive wireless sensing,” in Intern. Conf.
Information Proc. in Sensor Networks (IPSN), pp. 134–142, 2006.

[193] J. Haupt, W. Bajwa, M. Rabbat, and R. Nowak, “Compressed sensing for networked data,” IEEE Sig.
Proc. Mag., vol. 25, no. 2, pp. 92–101, 2008.

[194] V. Cevher, M. Duarte, and R. Baraniuk, “Distributed target localization via spatial sparsity,” in
European Signal Proc. Conf. (Eusipco), 2008.

[195] A. Schmidt, Scalable Sensor Network Field Reconstruction with Robust Basis Pursuit. PhD thesis,
Carnegie Mellon University, 2013.

[196] J. Romberg, R. Neelamani, C. Krohn, J. Krebs, M. Deffenbaugh, and J. Anderson, “Efficient seismic
forward modeling using simultaneous random sources and sparsity,” in Soc. Expl. Geophysicists Annual
Meeting, pp. 2107–2110, 2008.

[197] M. Friedlander and P. Tseng, “Exact regularization of convex programs,” SIAM J. Optim., vol. 18,
no. 4, pp. 1326–1350, 2007.

139

[198] O. Mangasarian and R. Meyer, “Nonlinear perturbation of linear programs,” SIAM J. Contr. Optim.,
vol. 17, no. 6, pp. 745–752, 1979.

[199] M. Friedlander, “Exact regularization of linear programs,” tech. rep., TR-2005-31, Dept. Computer
Science, Univ. of British Columbia, 2006.

[200] P. Erdős and A. Rényi, “On random graphs,” Publicationes Mathematicae, vol. 6, pp. 290–297, 1959.

[201] D. Watts and S. Strogatz, “Collective dynamics of ’small-world’ networks,” Nature, vol. 393, no. 6684,
pp. 409–10, 1998.

[202] A. Barabasi and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286, pp. 509–512,
1999.

[203] M. Penrose, Random Geometric Graphs. Oxford University Press, 2004.

[204] G. van Rossum et al., “Python programming languange.” http://www.python.org/.

[205] A. Hagberg, D. Schult, and P. Swart, “Exploring network structure, dynamics, and function using
NetworkX,” in Python Science Conference (SciPy), pp. 11–15, 2008.

[206] W. Stein et al., Sage Mathematics Software (Version 5.8). The Sage Development Team, 2013.
http://www.sagemath.org.

[207] A. Nedić, A. Ozdaglar, and P. Parrilo, “Constrained consensus and optimization in multi-agent net-
works,” IEEE Trans. Autom. Control, vol. 55, no. 4, pp. 922–938, 2010.

[208] E. Berg and M. Friedlander, “Probing the Pareto frontier for basis pursuit solutions,” SIAM J. Sci.
Comput., vol. 31, no. 2, pp. 890–912, 2008.

[209] M. Figueiredo, R. Nowak, and S. Wright, “Gradient projection for sparse reconstruction: Application
to compressed sensing and other inverse problems,” IEEE J. Selected Topics in Signal Processing,
vol. 1, no. 4, pp. 586–597, 2007.

[210] E. Berg, M. Friedlander, G. Hennenfent, F. Herrmann, R. Saab, and O. Yilmaz, “Sparco: a test-
ing framework for sparse reconstruction,” tech. rep., Dept. Computer Science, University of British
Columbia, Vancouver, 2007.

[211] M. Raydan, “The Barzilai and Borwein gradient method for the large scale unconstrained minimization
problem,” SIAM J. Optim., vol. 7, no. 1, pp. 26–33, 1997.

[212] The Mathworks Inc., “Optimization toolbox.” http://www.mathworks.com/products/

optimization/, 2012.

[213] A. Frank and A. Asuncion, UCI Machine Learning Repository. University of California, School of
Information and Computer Science, 2010.

[214] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “Distributed optimization with local domains:
Applications in MPC and network flows.” submitted to IEEE Trans. Autom. Control, preprint:
http://arxiv.org/abs/1305.1885, 2013.

[215] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “Distributed ADMM for model predictive control and
congestion control,” in IEEE Intern. Conf. Decision and Control (CDC), pp. 5110–5115, 2012.

[216] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “A unified algorithmic approach to distributed opti-
mization.” accepted at IEEE Global Conference on Signal and Information Processing (GlobalSIP),
2013.

[217] R. Raffard, C. Tomlin, and S. Boyd, “Distributed optimization for cooperative agents: Application to
formation flight,” in IEEE Intern. Conf. Decision and Control (CDC), pp. 2453–2459, 2004.

140 C. BIBLIOGRAPHY

[218] P. Moroşan, R. Bourdais, D. Dumur, and J. Buisson, “Building temperature regulation using a dis-
tributed model predictive control,” Energy and Buildings, vol. 42, pp. 1445–1452, 2010.

[219] A. Abur and A. Expósito, Power System State Estimation. Marcel Dekker, 2004.

[220] G. Giannakis, V. Kekatos, N. Gatsis, S.-J. Kim, H. Zhu, and B. Wollenberg, “Monitoring and op-
timization for power grids: a signal processing perspective,” IEEE Sig. Proc. Mag., vol. 30, no. 5,
pp. 107–128, 2013.

[221] K. Baker, G. Hug, and X. Li, “Optimal integration of intermittent energy sources using distributed
multi-step optimization,” in Power and Energy Soc. Gen. Meeting, pp. 1–8, 2012.

[222] G. Hug, Coodinated Power Flow Control to Enhance Steady-State Security in Power Systems. PhD
thesis, Swiss Federal Institue of Technology Zurich, 2008.

[223] M. Garey, R. Graham, and D. Johnson, “The complexity of computing Steiner minimal trees,” SIAM
J. Appl. Math., vol. 32, no. 4, pp. 835–859, 1997.

[224] D. Williamson, “The primal-dual method for approximating algorithms,” Math. Program., vol. 91,
no. B, pp. 447–478, 2002.

[225] M. Goemans and D. Williamson, Approximation algorithms for NP-hard problems, ch. The primal-dual
method for approximation algorithms and its application to network design problems. PWS Publishing
Company, 1997.

[226] G. Robins and A. Zelikovsky, “Improved Steiner tree approximation in graphs,” in ACM-SIAM Sym-
posium Discrete Algs., pp. 770–779, 2000.

[227] L. Drummond, M. Santos, and E. Uchoa, “A distributed dual ascent algorithm for Steiner problems
in multicast routing,” Networks, Wiley Periodicals, vol. 53, no. 2, pp. 170–183, 2009.

[228] A. Sadeh, “Distributed primal-dual approximation algorithms for network design problems,” Master’s
thesis, Dept. Mathematics and Computer Science, The Open University of Israel, 2008.

[229] L. Vandenberghe, “The proximal mapping,” Spring 2011-12. Lecture Notes, Optimization Methods
for Large-Scale Systems (EE-236C), UCLA.

[230] E. Birgin, J. Martinez, and M. Raydan, “Nonmonotone spectral projected gradient methods on convex
sets,” SIAM J. Optim., vol. 10, no. 4, pp. 1196–1211, 2000.

[231] M. Andersen, J. Dahl, and L. Vandenberghe, “CVXOPT.” http://abel.ee.ucla.edu/cvxopt/

index.html, 2012.

