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Abstract

This thesis deals with the topic of multidimensional companding audio source coding. In this

type of source coding, the vector source is passed by a pre-processing function, which we call the

compressor, by a vector quantizer and finally, as a post-processing step, by the inverse of the pre-

processing function, which we call the expander. Optimal multidimensional companding has the

characteristic that locally quadratic distortion measures get mapped into the Mean Square Error

(MSE) distortion measure in the compressed domain. Multidimensional companding enables thus

the efficient usage of quantization schemes designed for the MSE with locally quadratic distortion

measures, if we use the optimal compressor and expander.

Recently, S. van de Par et al. [59] developed a locally quadratic perceptual distortion measure

for sinusoidal audio coding. In that work, the distortion is computed using a weighted MSE in the

frequency domain, where the weights are given by the inverse of the masking threshold, a measure

of the time-frequency dependent sensitivity of the human ear. This distortion measure has been

successfully employed in several audio coding schemes, such as [58], [34], and [19].

In this thesis, we combine the technique of multidimensional companding with the mentioned

perceptual distortion measure. The main contribution is the development of a multidimensional

compander (compressor and expander), which is asymptotically optimal in the sense that it has

a vanishing rate-loss with increasing vector dimension. The compressor operates in the frequency

domain: in its simplest form, it point-wise multiplies the Discrete Fourier Transform (DFT) of the

windowed input signal by the square-root of the inverse of the masking threshold, and then goes

back into the time domain with the inverse DFT. The expander is based on numerical methods: we

do one iteration in a fixed-point equation, and then fine-tune the result using Broyden’s method.

Additionally, we show simulations which corroborate the approximations and results of the

theoretical derivations.

Keywords: Multidimensional companding, locally quadratic distortion measure, perceptual dis-

tortion measure, sinusoidal audio coding





Resumo

Esta tese lida com o tópico da codificação de fontes áudio usando compansão multidimensio-

nal. Neste tipo de codificação de fonte, a fonte (um vector) é passada por uma função de pré-

processamento, à qual chamamos compressor, por um quantizador vectorial e finalmente, como

passo de pós-processamento, pela função inversa, denominada por expansor. Compansão multi-

dimensional tem a característica de transformar medidas de distorção localmente quadráticas no

erro quadrático médio (MSE), no domínio do sinal comprimido. Consequentemente, a compansão

multidimensional possibilita o uso eficiente de esquemas de quantização desenhados para o MSE

com medidas de distorção localmente quadráticas, se se usar o compressor e expansor óptimos.

Recentemente, S. van de Par et al. [59] desenvolveram uma medida de distorção perceptiva e

localmente quadrática para codificação de áudio sinusoidal. Nesse trabalho, a distorção é calculada

usando um MSE ponderado no domínio da frequência, onde os pesos são dados pelo inverso do

limiar de mascaramento, uma medida da sensibilidade do ouvido humano, dependente do tempo e

da frequência. Esta medida de distorção foi aplicada com sucesso em vários esquemas de codificação

de áudio, como por exemplo em [58], [34], e [19].

Nesta tese combina-se a técnica da compansão multidimensional com a referida medida de

distorção perceptiva. A contribuição principal é o desenvolvimento de um compansor multidimen-

sional (compressor e expansor) assimptoticamente óptimo, no sentido em que o débito adicional

produzido em relação ao débito do esquema óptimo desaparece ao incrementar a dimensão vecto-

rial. O compressor opera no domínio da frequência: na sua forma mais simples, este multiplica

ponto-a-ponto a transformada discreta de Fourier (DFT) do sinal de entrada, por sua vez multipli-

cado ponto-a-ponto por uma janela, pela raiz quadrada do inverso do limiar de mascaramento, e

volta para o domínio do tempo com a DFT inversa. O expansor é baseado em métodos numéricos:

é executada uma iteração numa equação do ponto fixo, e o resultado é ajustado usando o método

de Broyden.

Adicionalmente, são executadas simulações que corroboram as aproximações e resultados da

parte teórica.

Palavras Chave: Compansão multidimensional, medida de distorção localmente quadrática,

medida de distorção perceptiva, codificação de áudio sinusoidal
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Chapter 1

Introduction

1.1 Initial Considerations

In the last decade, we have observed an explosive increase in the usage of audio coding schemes

and coded audio content, which enable the reduction of the information throughput (bit-rate) of

an audio signal on the order of 7 to 15 times with respect to the original Pulse Code Modulation

(PCM) coded signal, with very reduced penalty in perceptual quality [56]. These schemes make

countless applications possible, such as handheld audio decoders with reduced memory capacity,

which nevertheless can carry hours of audio content, streaming through bandwidth constrained

channels, such as the Internet, with low bandwidth usage and high experienced quality, delivery of

audio content interactively through the World Wide Web (WWW), digital radio, digital television,

recorded digital video, and many more. This decrease in bit-rate, yet with surprisingly high

transparency, is achieved through the exploitation of the perceptual irrelevance and statistical

redundancy present in the audio signal [46]. Indeed, certain time-frequency components of the

signal are irrelevant to humans, since the time varying, signal dependent nature of the sensitivity

of the human ear makes it possible for the distortion obtained from not transmitting those signal

components to be masked by strong components of the signal in neighboring frequency bands

or time instants. The statistical redundancy is inherent to the fact that not all signal samples

carry the same amount of information, due to a non-uniform distribution of their probability of

occurrence and to the existence of correlation between neighboring samples.

Contemporary audio coders can be subdivided in transform coders and parametric coders.

Both types do a psycho-acoustical analysis on the input signal, having as output the so-called

masking threshold, a time-frequency function that delivers the maximum amount of quantization

noise, which is insertable in the source signal for each time-frequency interval, such that the

distortion in the coded version is still inaudible. In parallel, either a linear transform is applied

to a block of the signal (transform coders) or perceptually relevant parameters are extracted from
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it (parametric coders). Examples of transform coders are the ISO/IEC MPEG-1 Audio Layer

3 [1] and the ISO/IEC MPEG-4 Advanced Audio Coding (AAC) [2] coders, which are based on

the MDCT transform [40]. As to the parametric coders, we have the Harmonic and Individual

Lines plus Noise (HILN) [3], the SinuSoidal Coder (SSC) [4] and the Sinusoidal Coder of Audio

and Speech (SiCAS) [19], which model the input signal as a sum of sinusoids and noise. Either

way, the result is time-frequency dependent information of the input signal. This information is

then quantized with accuracy compatible with the calculated masking threshold: the higher the

masking threshold in a certain time-frequency bin is, the lower is the sensitivity of the human

ear in that time-frequency region, and thus the higher the quantization step size (i.e., the coarser

the quantization) is allowed to be, and vice-versa. In some coders, a residual signal is built from

the difference of the original and the reconstructed signals and additional parameters extracted.

Finally, the resulting symbols and side information are entropy coded, multiplexed, sent through

the channel and the inverse procedure (demultiplexing, entropy decoding, inverse quantization

and re-synthesis) is done. See [46] and [18,50] for an overview on transform and parametric audio

coding, respectively.

In the quantization block of the encoder described above, it is desirable to quantize the infor-

mation extracted from the signal in a rate-distortion optimal sense, i.e., in a way that minimizes

the perceptual distortion experienced by the user subject to the constraint of a certain available

bit-rate. That optimality is described by the rate-distortion function R(D) [9], which expresses

the minimum theoretically possible bit-rate R that we can achieve when coding at an expected

distortion level not larger than D. This function does only depend on the source (the extracted

information described in the previous paragraph) and on the distortion measure d that we use to

quantify the (perceptual) discrepancy between the source x and the reproduction y (the signal

at the decoder). At a rate R(D), we have thus E d(x,y) ≤ D, where E denotes the expected

value. Although very powerful, this function is only known completely for a reduced number of

combinations of source and distortion measure, and in specific conditions with specific assump-

tions [65], being the most simple example the Gaussian source with the mean square error (MSE),

D = E ‖x−y‖2, as the distortion criterion [14]. Other examples include the Gaussian source with a

weighted mean square error distortion measure [52], an arbitrary source with well-behaved source

density using a generic difference distortion measure (distortion of the form d(x,y) = ρ(y − x)) at

high resolution (D → 0) [36], and an arbitrary source with a locally quadratic distortion measure

(i.e., expressible as a quadratic form when y → x), also assuming regularity conditions and good

behavior of the source [37].

1.2 Motivation

Due to its mathematical tractability, the MSE is the elected choice for the distortion measure

in many coding applications. In audio coding, however, the usage of more complex perceptual
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distortion measures, different from the MSE, exploiting the frequency selectivity and masking

phenomena of the human auditory system, achieves a much higher performance, i.e., a higher per-

ceptual quality for the same bit-rate. Due to the difficult mathematical tractability of these mea-

sures, the complete rate-distortion function is not known, and the direct design of rate-distortion

optimal quantizers, for these measures, is mathematically intractable as well. A way to handle

these measures indirectly is to multiply the input signal by certain perceptual weights related

to the masking threshold before quantizing on the encoder and do the inverse (divide) on the

decoder, so that the perceptual distortion measure gets mapped into an MSE in the normalized

domain. The ease of use of the MSE distortion measure makes this solution attractive, having

been employed in several quantization schemes, both in transform coding [2], [17], [65], and in

sinusoidal coding [58], [34]. However, such an approach has the inconvenient that the weights have

to be transmitted as side information through the channel so that the receiver can do the inverse

normalization, thereby introducing an overhead in the transmission process.

The overhead may be intolerably high in certain contexts. Imagine the scenario of multiple

description coding [22], represented in Figure 1.1. In this scenario, the transmission channel is

modeled by a packet erasure channel with a certain number n of “sub-channels” (n > 1), where

the so called descriptions (representations) of the input signal are transmitted. The information is

coded at the source in n different ways; one stream for each description. In each transmission, for

each description, this channel either lets the information (the “packet”) pass through error-free or

it suppresses (“erases”) the packet completely. The packets which were erased are uncertain at the

source. We have thus m ≤ n received packets, and the function of the receiver is to reconstruct

the source with all the received information, in such a way that the higher the number of received

packets is, the better the quality we achieve. This contrasts with the single description case in

which n = 1 and m ∈ {0, 1}, where we either receive the information at full quality or we do not

receive anything. 48 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 50, NO. 1, JANUARY 2004

Fig. 1. source–channel erasure code: A source is encoded into
descriptions or packets and transmitted over errorless channels which are
equally likely to break down. The decoder would like to reconstruct with the
availability of any descriptions of information.

capacities. This model has been considered in [14], which fur-
ther involves converting this binary-erasure broadcast channel
into a block-erasure broadcast channel using a packetization
procedure. Multiple description coding can be considered
as joint source–channel coding ([15, Ch. 8]) for these two
different channel models. We will not pursue the second model
further in this paper, as it would involve computing the capacity
of the corresponding broadcast channel, and is beyond the
scope of this paper, though it will be considered in our future
work. In general, for these models, approaches based on the
source–channel separation theorem ([15, Ch. 8], [16]) are not
optimal.

We present our approach to this problem in two parts. In Part I
of this two-part work, we consider a special case of the sym-
metric multiple description coding problem. As shown in Fig. 1,
the source is encoded into descriptions or packets, each with a
rate of bits per sample, and transmitted over errorless chan-
nels, each of which is equally likely to break down, with the con-
straint that at least of the channels are working. Thus, the
transmission is over a packet-erasure channel with parameters
and . The decoder would like to reconstruct the source with the
availability of any descriptions of information. One of
the solutions to this problem might be as follows. A transmission
system which invokes the source–channel separation theorem
involves taking a source coded stream of rate ( descriptions
of rate bits per sample), and converting it to a channel-coded
stream of rate using an maximum-distance separable
(MDS)2 erasure channel code. But such a scheme exhibits the
“cliff” effect—the reception of fewer than descriptions is not
sufficient to recover any data,3 while the reception of any de-
scriptions enables the recovery of the original source descrip-
tions, and any further reception does not aid further recovery.
Although the transmitter is entitled to encode source samples in
long blocks throughout the transmission, it is allowed to operate
on only one realization of the channel breakdown process, and

2In a linear erasure channel code [17] with minimum distance ,
symbols are encoded into symbols such that with the reception of any

of the symbols, the original symbols can be recovered. Note that
, which is called the singleton bound. If , then

the channel code is referred to as an MDS code (see [17, p. 33, Ch. 1, Theorem
11]).

3In this work, we consider only the worst case performance on reception of a
given number of descriptions. Note that when the source is encoded in a succes-
sively refinable way, using the conventional systematic MDS erasure codes, it
is possible to salvage some quality on reception of the first descriptions.

does not have the freedom to do averaging over many realiza-
tions of this process.

In this work, we present a novel approach based on random
binning ideas ([15, Ch. 14], [18], [19, Sec. III]) which serves
to soften this “cliff” effect. With the reception of any packets,
a reconstruction quality commensurate with the reception of
packets is obtained, and with the reception of more packets,
strictly better quality is obtained. We refer to this new set of con-
structions as source–channel erasure codes. We want to
emphasize that the rate region provided in Part I is just a subset
of, and not the entire rate region of the -channel symmetric
multiple description coding problem. Thus, in this framework,
the role of conventional “parity bits” takes on an interesting in-
terpretation. When the channel is as bad as advertised, i.e., when
only a fraction of the descriptions arrive intact, the parity
bits play the conventional role of aiding the full recovery of
information descriptions. When the channel is better than adver-
tised, however, while conventional parity information is wasted,
in our framework they help to strictly improve the reconstructed
source quality. In fact, the proposed framework is very general
in the sense that it subsumes the approaches based on standard
MDS codes as a special case.4 In Part II [20] of this two-part
work, we use the results from Part I to derive a more general
achievable rate region for the symmetric multiple description
problem. This involves a concatenation of these source–channel
erasure codes in the framework of multiuser successive refine-
ment [21], [32], [33] using the concept of source coding with
side information [22], [23].

A key consequence of this work implies that using an
source–channel erasure code, it is possible to encode a unit vari-
ance independent and identically distributed (i.i.d.) Gaussian
source into descriptions with each description containing
bits per sample such that the reconstruction fidelity with the re-
ception of any descriptions for is given
by

(1)

Note that when , which exactly attains
the optimal Shannon rate-distortion performance of the desired
Gaussian source. Further, the improvement is nearly linear in
the number of descriptions received, since

(2)

for . Thus, for the specific case of a Gaussian source,
the proposed approach for the special case of symmetric mul-
tiple description coding strictly outperforms the approach based
on the source–channel separation theorem. Proving the converse
in this regard is a part of our ongoing work. The paper is orga-
nized as follows. In Section II, we give the basic concepts and
motivation. Section III introduces the problem, states the main
result, and gives an outline of its proof. Section IV presents the
implication of these results for the Gaussian sources. In Sec-
tion V, we draw conclusions and offer directions for future work.

4The simple modifications required for this are presented in Section III-E.

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 5, 2009 at 21:27 from IEEE Xplore.  Restrictions apply.

Figure 1.1: A Multiple Description Coding Scenario. Source: [49].

In a multiple description audio coding scenario, the side-information (the perceptual weights)

relative to the masking threshold have to be transmitted in all packets, since we do not know



4 1 Introduction

at the transmitter which packets will arrive. In the worst case1, m = 1, and we do not know

which specific channel did not erase the packet. As that information takes a fixed amount of

bits to code, not dependent on the number of descriptions (e.g., 4 kbps in [43]), for a fixed total

rate, the more descriptions there are, the less usable rate there is for the real audio information

(and the higher the percentage of usage is of the side-information). Therefore, from a certain

point on, the performance of such a multiple description scheme degrades for increasing n. This

problem was faced in [65], where the author developed a well-performing multiple description

coding scheme designed for the MSE distortion measure, adapted for audio coding using the

mentioned normalization by perceptual weights.

To solve this increase of overhead with n, we will explore the theory of multidimensional

companding [38] in this thesis. In a multidimensional companding quantization scheme (see Figure

1.2), the source x, a vector (e.g., built from packing together consecutive signal samples), is first

pre-processed by applying a non-linear vector function F , which we call the compressor, then a

vector quantization source coding scheme is applied (quantization, entropy coding, transmission,

entropy decoding and de-quantization), and finally the inverse function F−1, the expander, is

applied to the received signal as a post-processing step. The set of both functions, the compressor

and the expander, is called the compander.

x // F (·) // Q(·) //
entropy encoder

channel
entropy decoder

// Q−1(·) // F−1(·) // y

Figure 1.2: Source coding with multidimensional companding.

In [38], the authors show that general non-difference, locally quadratic distortion measures

(which satisfy some technical conditions) are equivalent to the MSE measure at high resolution

in the compressed domain (between the compressed source signal F (x) and the not-yet-expanded

received signal F (y)) if an “optimal” companding scheme (in the sense the authors define) is

applied. Consequently, all schemes optimal for the MSE measure are also optimal for this type of

non-MSE measures upon application of the optimal companding scheme. It was also shown that

such an optimal compander does only depend on the distortion measure and not on the source

distribution, and that it reaches the rate-distortion function asymptotically. In other words, the

entropy at the output of the quantizer at a given distortion level D gets arbitrarily close to

the R(D) function with increasing vector dimension if an (asymptotically) optimal compander

and quantizer are used. The asymptotical optimality refers to the condition of increasing vector

dimension N .

The advantage of using an optimal companding scheme in audio source coding is then that
1m = 0 is a trivial case where the receiver cannot reconstruct anything and where we can only apply concealing

methods.
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coding with a perceptually relevant (non-MSE) locally quadratic distortion measure can be done

with any MSE-based scheme without the need to pre-normalize the input signal with perceptual

weights. The transmission of this side information is thereby removed, and multiple description

coding can be done with an arbitrary large number of descriptions n without performance loss.

Although the usage of multidimensional companding seems promising, an optimal companding

scheme does, in general, not exist [38]. To work around that problem, a suboptimal companding

scheme must be built, having an additional rate (entropy), the so-called rate loss, at the output of

the quantizer in relation to the rate that would be theoretically achievable with the (non-existent)

optimal companding scheme.

1.3 Problem Formulation

After having gotten the reader acquaintanced with the elements involved in this thesis it is now

time to state the problem. This thesis focuses on developing and simulating a multidimensional

companding scheme for the perceptual distortion measure developed by S. van de Par et al.,

described in [59], which has sinusoidal audio coding as its main target. As no optimal companding

scheme exists for this distortion measure for finite vector dimension (this will be proven in Chapter

3), a suboptimal scheme is developed. Nevertheless, the scheme should have vanishing rate-loss

when the vector dimension goes to infinity, i.e., the scheme should be asymptotically optimal.

The relevance of the assignment of this thesis is that, for high vector dimension, if the perfor-

mance of the companding scheme is close to the optimal performance, any quantization scheme

that was developed to perform well for the MSE distortion measure will also perform well for

the perceptual distortion measure of [59]. This enables applications of sinusoidal audio coding to

take advantage of the most state-of-the-art quantization schemes developed for the MSE, without

the need for transmission of side information. The applications that would profit most from this

scheme are multiple description audio coding applications which were developed for the MSE like

the one in [65], where the replacement of the perceptual normalization step by multidimensional

companding would make possible the usage of an arbitrarily large number of descriptions without

degradation of the performance of the system.

1.4 Proposed Approach

Our proposed approach will follow the same high-level guidelines as the one in [28], which ad-

dresses a similar problem, although with a distinct distortion measure. As it was shown in [38], the

condition that defines an optimal compressor is a partial differential equation system expressed in

terms of a so-called sensitivity matrix, which collects partial derivatives of the distortion measure.

The optimal expander is then the inverse of the optimal compressor.
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We propose thus to start solving the problem of designing a companding scheme by calculating

this sensitivity matrix for the distortion measure in question. Afterwards, we check the possibility

of building an optimal companding scheme. As we will see, the answer is negative, so that a

sub-optimal scheme will have to be built. We propose to build the compressor in the frequency

domain: the input signal is windowed, the Discrete Fourier Transform (DFT) is applied, then the

result is passed through a non-linear function and finally the inverse DFT is applied to deliver

the output of the compressor. The optimality condition in terms of this non-linear function in

the frequency domain is derived, leading also to a partial differential equations system. We show

that a good choice for the suboptimal non-linear function is obtained by integrating some of the

equations on the system. More specifically, the equation system is a matrix equation and we solve

the equations on the diagonal of the matrices on the left and right-hand side of the equation.

After building this compressor, we motivate its approximation by a Taylor expansion. Indeed,

the direct calculation of an integral corresponding to the diagonal elements of the equation system

is computationally expensive. Moreover, the Taylor expansion will reveal the most dominant term

of the compressor, enabling its intuitive interpretation. We thus execute the derivation of the

Taylor expansion and then analyze the compressor and its proximity to the optimality condition,

proving that optimality is achieved asymptotically, i.e., with increasing vector dimension N . By

that time, the development and analysis of the compressor will be finished so that we turn on to

the expander. We show that the compressor function is invertible, at least in its simplest form,

achieving the guarantee that in this case the expander exists. We then develop an algorithm based

on numerical methods to compute its function value upon the insertion of a given argument. The

expander algorithm is further optimized in such a way that its memory usage is reduced.

The described extensive and technical part is complemented by simulations of the companding

scheme, whose results corroborate the theoretically derived asymptotical optimality. Limitations

of the compander are explained and discussed on basis of additional simulations.

1.5 Contributions of this Thesis

The main contribution of this work is a suboptimal companding scheme (compressor and ex-

pander) which reaches optimality asymptotically, i.e., which has a vanishing rate-loss with increas-

ing vector dimension. The compressor consists in a frequency domain application of a non-linear

function. This function multiplies the input signal component-wise by a signal-dependent gain.

In its rawest form, the signal-dependent gain is an indefinite integration of the (signal dependent)

square-root of the inverse of the masking threshold with respect to each component of the fre-

quency domain signal. We derive that the dominating Taylor expansion term of the gain is exactly

the integrand of it, the square-root of the inverse of the masking threshold. The compressor, in

its simplest and most elegant form, thus boils down to the point-wise multiplication of the win-

dowed input signal by the sensitivity the human ear has to it (the inverse of the masking threshold
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in signal dimensions). Although the compressor obtained from this simplest form of the gain

is exactly equivalent to performing normalization of the input signal by perceptual weights, the

proposed approach has the novelty of avoiding the transmission of the perceptual weights through

the channel. Indeed, at the receiver we only have to run the inverse of the compressor (i.e., the

expander) to reconstruct the signal, and the expander does not depend on the perceptual weights.

In addition to the development of a compressor, we also develop the corresponding expander

(the inverse function) on basis of well justified numerical methods: we perform one iteration on a

fixed point equation (a rewritten form of the equation defining the compressor) and fine-tune the

result using Broyden’s method [44].

An additional original contribution of the thesis is the proof that no optimal companding

scheme exists, assuming certain restrictions on the condition of optimality.

Side-contributions are the delivery of the rate-distortion function for the distortion measure

taken into consideration [59] at high-resolution, based on [37], and also of the rate-loss of the

developed scheme, based on [38].

1.6 Thesis Paper Organization

For guiding the reader, the structure of the thesis paper is outlined as follows. We start in

Chapter 2 by technically introducing the topics of locally quadratic distortion measures (Section

2.1), multidimensional companding (Section 2.2) and the (locally quadratic) perceptual distortion

measure of S. van de Par et al. [59] (Section 2.3). The main content of this thesis is exposed

in Chapter 3. In Section 3.1, the sensitivity matrix for this distortion measure is calculated;

in Section 3.2, the rawest form of the compressor is developed; in Section 3.3, the compressor is

worked out in a Taylor expansion; in Section 3.4, it is analyzed in terms of its Jacobian matrix and

its asymptotic optimality is established; finally, in Section 3.5, the expander is developed on basis

of numerical methods. Chapter 4 is devoted to simulations. We first calculate the rate-distortion

function for the distortion measure at high resolution (Section 4.1), then the rate-loss incurred by

the developed suboptimal companding scheme (Section 4.2) and finally we perform simulations

based on the calculated quantities and derived results (Section 4.3). In Chapter 5, conclusions are

drawn and directions for future work regarding the topic of this thesis are discussed.



Chapter 2

Technical Overview

We will start this thesis with a technical overview of the main toolboxes that it will deal with:

locally quadratic distortion measures (in general) [37, 38, 51], multidimensional companding [38]

and the distortion measure developed by S. van de Par et al. [59]. As the current work is developed

in the framework of locally quadratic distortion measures, this type of measures is overviewed in

the first place, and recent results on the rate-distortion function for them are mentioned. Following

that, it will be time to explain multidimensional companding source coding. The condition for the

optimality of a companding scheme is deduced using heuristical arguments (and of course referred

for the detailed formal explanation), and conditions for the existence of optimal schemes are

explored. A benchmark criterion for non-optimal schemes is then delivered and finally a summary

of previous work on multidimensional companding is given. The third and last part of the chapter

is dedicated to a locally quadratic perceptual distortion measure which will be used throughout

this work. The measure is presented, re-arranged in several convenient forms and discussed.

2.1 Locally Quadratic Distortion Measures and Correspon-

dent R(D) function

In this section, we characterize locally quadratic distortion measures and deliver their rate-

distortion function at high resolution on basis of the work of Linder et al. [37,38]. Locally quadratic

distortion measures are measures satisfying smoothness conditions at high resolution (when the

reproduction signal approaches the source signal), and which are positive definite. Their rate-

distortion function at high resolution is similar to the Shannon Lower Bound [9], but with an

excess term dependent on the distortion measure.
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2.1.1 Locally Quadratic Distortion Measures

In [38], multidimensional companding theory was studied assuming that a locally quadratic

distortion measure d(x, y) between the source x and reproduction y was used. A locally quadratic

distortion measure is characterized by being of class C3(RN ) (d is 3 times continuously differen-

tiable) with respect to y, by being strictly positive except in its absolute minimum y = x, where

it should be 0,

d(x, y) ≥ 0 with equality iff y = x, (2.1)

and by having a Taylor expansion with respect to y around x given by

d(x, y) = d(x, x) +∇y[d(x, y)]∣∣
y=x

(y − x) + (y − x)TM(x)(y − x) + O(‖y − x‖3) (2.2)

= (y − x)TM(x)(y − x) + O(‖y − x‖3) (2.3)

=

 N−1∑
m,l=0

[M(x)]m,l (ym − xm)(yl − xl)

+ O(‖y − x‖3), (2.4)

where ∇y is the gradient operator with respect to the vector y, where we use the big O notation

with the symbol O(·), where ‖ · ‖ denotes the l2 norm and where M(x) is defined as

[M(x)]m,l =
1
2

∂2d(x,y)
∂ym∂yl

∣∣∣
y=x

, m,l = 0, 1, . . . , N − 1, (2.5)

i.e., it is half of the Hessian matrix of d with respect to y calculated at y = x, dubbed in [38] as

the sensitivity matrix. Note that in this work, indexing of vectors and matrices is represented by

[V ]·,· and v·, respectively, and will start at 0. An alternative representation for the vector indexing

is v(·). Furthermore, note also that the disappearance of the 0th and 1st order term in (2.3) comes

directly from the condition (2.1). Due to the same condition, M(x) is positive definite.

Equation (2.3) delivers the essence of a locally quadratic distortion measure: at high resolution

(y → x), the distortion between x and y can be approximated by a quadratic form applied to y−x.

2.1.2 R(D) Function of a Locally Quadratic Distortion Measure

For studying the performance of the companding scheme to be developed, it is of theoretical

interest to know what the best ever achievable performance is, independently of using a compand-

ing scheme or not. This best possible is given by the Shannon’s rate-distortion function R(D),

which depends on the used distortion measure d and on the source X. It delivers the theoretical

minimum rate per dimension at which it is possible to code the source X, given that we are coding

at an expected distortion level per dimension E[d(X, Y (X))]/N not greater than D. This function
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is obtained through the minimization problem [9]

R(D) = inf{I(X, Y ) : E[d(X, Y )]/N ≤ D}, (2.6)

where the infimum is taken over all possible conditional distributions of Y given X and I(X, Y )

denotes the mutual information between source and reproduction per dimension, i.e., being p the

(joint/marginal-)pdf of its uppercased argument(s),

I(X, Y ) =
1
N

∫
RN

∫
RN

p(x, y) log2

(
p(x, y)

p(x) p(y)

)
dxdy. (2.7)

Due to its variational nature, the optimization problem (2.6) is in general difficult to solve,

and to date its solution is only known for some special cases of sources and/or special distortion

measures. Nevertheless, Linder et al. found an expression for the rate-distortion function at high

resolution for an arbitrary source and a locally quadratic distortion measure (Subsection 2.1.1),

provided that they fulfill certain regularity conditions [37], namely

lim
D→0

[
R(D) +

1
2

log2(2πeD)
]

= h(X) +
1

2N
E[log2 detM(X)], (2.8)

where h(X) denotes the differential entropy of the source per dimension,

h(X) = − 1
N

∫
RN

p(x) log2 p(x) dx. (2.9)

In approximate terms we have thus, at high resolution,

R(D) ≈ h(X)− 1
2

log2(2πeD) +
1

2N
E[log2 det M(X)], (2.10)

This function parallels the usual Shannon lower bound [9], where an additional term is added to

take into account the fact that we are using a distortion measure different from the MSE; although

quadratic, this distortion measure gives (in general) different importance to the contribution of

each component (y−x)m(y−x)l, m,l = 0, 1, . . . , N−1 to the overall distortion (cf. Equation (2.4)).

An alternative way to express the theoretical limit (2.10) is to use its inverse, the distortion-rate

function

D(R) ≈ 1
2πe

22(h(X)−R+ 1
2N E[log2 det M(X)]). (2.11)

From Equation (2.10), we see that (at high resolution) the rate-distortion function is only

dependent on the differential entropy of the source h(X) and on the average behavior of the

sensitivity matrix M(X), which in turn depends on the distortion measure.
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2.2 Multidimensional Companding

We will now explain the basic concepts present in a multidimensional companding source coding

scheme in this section, namely its basic structure and the type of quantization it uses. We then

proceed explaining how a scheme is defined to be optimal, and we deliver a necessary and sufficient

condition for the existence of an optimal scheme, given a constraint on the exposed condition for

optimality. A benchmark criterion for sub-optimal schemes is exposed using results of [38], and

finally the work done in the scientific community on multidimensional companding is overviewed.

2.2.1 Overview of Multidimensional Companding

Multidimensional companding is the simple operation that can be seen in Figure 1.2. In a

multidimensional (say dimension N > 1) source coding scheme, instead of quantizing the source

x directly, transmitting through the channel in an entropically efficient way and consulting a

codebook (inverse quantization) to obtain the reconstruction y, we apply a pre-processing vector

function F , the compressor, before quantizing and its inverse F−1 as a post-processing step, the

expander, after inverse quantization. Obviously, this places the restriction on F that it must be

invertible, at least locally (in a neighborhood of all function values F (x)). Indeed, if this local

invertibility exists and the resolution is sufficiently high (y → x), then we fall in the region of

local invertibility of the function and we are sure that there is one and only one value of y which

generates F (y) (the inverse F−1{Q−1[Q(x)]}). In this thesis, we will deal with real-valued sources

x ∈ RN , so that all signals on the arrows of Figure 1.2 are real (multidimensional) signals and all

functions are real-valued and have real arguments.

2.2.2 Quantization

The type of quantization that we use in multidimensional companding is Lattice Vector Quan-

tization (LVQ). In this type of quantization, the quantizer consists of a grid of points, the lattice

Λ, which is generated by a linear combination of N -dimensional basis vectors with all possible

integer coefficients,

Λ =

{
v ∈ RN : v =

N−1∑
i=0

nivi, ∀ni ∈ Z

}
, (2.12)

being thus the lattice defined by the linear independent vectors v0, v1, . . . , vN−1 ∈ RN . To make

quantization with different step sizes possible (i.e., with different entropy at the output of the

quantizer), we introduce the scaled lattice sΛ, defined by

sΛ =
{
sv : v ∈ Λ, s ∈ R+

}
. (2.13)
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s is thus a generalization of the quantizer step size in LVQ. The quantizer which corresponds to

the lattice sΛ, which we will denote by QsΛ(·), then works by approximating a certain vector input

z by the nearest element of the lattice sΛ, i.e.,

QsΛ(z) = {v ∈ sΛ : ‖v − z‖ ≤ ‖v′ − z‖, ∀v′ ∈ sΛ} . (2.14)

We call the region of all points z mapped into a certain quantized vector v = QsΛ(z) a Voronoi

cell. For v = 0, this cell is called the basic cell of the lattice. In addition, a relevant quantity

associated to a lattice is its normalized moment of inertia or normalized second moment, given by

GΛ =
1

NVol(Λ)1+2/N

∫
basic
cell

‖x‖2 dx, (2.15)

where Vol(·) denotes the volume of a Voronoi cell of Λ. This quantity is scale independent (GsΛ =

GΛ) and is a benchmark value of the lattice vector quantizer, since the average MSE distortion

is proportional to it. The lowest possible value of GΛ is 1/(2πe), the normalized moment of an

infinite-dimensional sphere. The sphere-packing loss for a certain lattice vector quantizer with

lattice Λ is then defined as the additional rate derived from not using the infinite-dimensional

sphere,

SLR =
1
2

log2(2πeGΛ) (2.16)

or as the additional distortion (in dB)

SLD = 10 log10(2πeGΛ). (2.17)

For each possible output of the quantizer, a symbol is assigned, being the resultant symbols

coded by the succeeding entropy coder. At the receiver, the entropy decoded symbols are converted

back to the reproduction points (2.14) through consultation of a table with such a mapping,

which we call the codebook. Note that in Figure 1.2, we denoted the chain of the quantizer

and symbol assigner by Q(·) and the codebook by Q−1(·). From this section on, we will merge

both steps into QsΛ(·) for notational simplicity. Lattice vector quantization has the advantage

of being conceptually simple, and that a wide range of literature in high resolution quantization

theory is based on it, since quantization of this type (at high resolution) when using the MSE

as distortion criterion is thought to be optimal at high resolution, independently of the source

distribution [20,39]. We refer the reader to [21,23,24] for an overview on vector and high resolution

quantization. We will not dive deeply into the entropy coding / channel transmission block of

Figure 1.2 in this work, assuming simply that there are high-efficiency entropy coders that can

produce an average code length very close to (but greater than or equal to) the entropy of the

quantizer Q, that the channel has a capacity greater or equal than that entropy, and that there

are high-efficiency channel coders as well, which can code at a rate arbitrarily close to the channel
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capacity with an arbitrarily low error rate. In other words, we assume that there are entropy and

channel coders that can approach very well the theoretical limits of Shannon’s source and channel

coding theorems [14].

2.2.3 Optimality

It was derived in [38] that a multidimensional companding scheme is optimal when the Jacobian

matrix

[F ′(x)]m,l =
∂Fm

∂xl
(x), m,l = 0, 1, . . . , N − 1 (2.18)

of the compressor satisfies1

M(X) = F ′(X)TF ′(X) (2.19)

almost everywhere, where M(X) is the sensitivity matrix of Equation (2.5) and where we denote

random variables by uppercase letters and their realizations by the lowercase correspondents. It

was also shown that for an optimal scheme, at high resolution, the distortion measure d(x, y) gets

transformed into the squared distortion measure between F (x) and F (y). To get an intuition

on the optimality condition (2.19), we will show this property here using heuristical arguments.

Consider the case of high resolution, y → x. In that case, we can state that the 2nd order term of

the Taylor expansion (2.3) is dominant, so that we have approximately

d(x, y) ≈ (y − x)TM(x)(y − x). (2.20)

On the other hand, for a differentiable compressor F , also for y → x, we can approximate the

finite difference F (y)− F (x) by

F (y)− F (x) ≈ F ′(x)(y − x). (2.21)

This is known as the secant equation, obtained by a simple 1st order Taylor expansion of F on y

around x. The squared norm of this difference is then approximately

‖F (y)− F (x)‖2 ≈ ‖F ′(x)(y − x)‖2 = (y − x)TF ′(x)TF ′(x)(y − x), (2.22)

so that when (2.19) is valid, (2.20) results, and consequently

d(x, y) ≈ ‖F (y)− F (x)‖2. (2.23)

As LVQ achieves the rate-distortion bound at high resolution asymptotically for the MSE distortion

measure for any source distribution, it is then intuitive that the rate-distortion bound is achieved

1In the original paper there was a multiplying constant c which we set here to 1 for simplicity. No loss of
generality occurs.
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with the optimal compander (compressor and expander) satisfying (2.19) for the locally quadratic

distortion measure d. Indeed, denoting by H(QD,F ) the entropy per dimension at the output of

the lattice vector quantizer Q upon the usage of a companding scheme with compressor F and by

R(D) the Shannon’s rate-distortion function (with a dimension-normalized rate), in [38] it is also

proven that

lim
D→0

[H(QD,F )−R(D)] =
1
2

log2(2πeGΛ), (2.24)

where GΛ is the normalized moment of inertia of the lattice. As the normalized moment of inertia

of the optimal Lattice Vector Quantizer converges to 1/(2πe) when N → ∞ (the normalized

moment of an infinite-dimensional sphere) [63], the performance of an optimal companding scheme

approaches the best possible performance when N →∞, given by the R(D) function. For a more

detailed discussion, see [38].

2.2.4 Existence

Although rate-distortion optimality can be achieved at high resolution when an optimal mul-

tidimensional companding scheme is used, such a scheme does not always exist [20]. An intuitive

argumentation for this fact is that there are more equations in (2.19) (N2 equations, corresponding

to the components of the matrices) than unknowns (N unknowns, corresponding to the N coor-

dinate functions). To see this in more detail, note that due to the property (2.1), the sensitivity

matrix (2.5) is positive definite, so that there exists a matrix F ′ satisfying (2.19) [29]. We call

any matrix satisfying Equation (2.19) a square-root of M , denoted here by
√

M . An equivalent

condition to (2.19) is then

F ′(x) =
√

M(x), (2.25)

for some square-root of M . Assuming that the second partial derivatives of F exist and are

continuous, Schwarz’ theorem has to hold, i.e.,

∂2Fm

∂xk∂xl
(x) =

∂2Fm

∂xl∂xk
(x), ∀m,l,k = 0, 1, . . . , N − 1. (2.26)

In terms of Equation (2.25), we must have

∂[
√

M(x)]m,l

∂xk
=

∂[
√

M(x)]m,k

∂xl
, ∀m,l,k = 0, 1, . . . , N − 1. (2.27)

This equation poses a restriction on the square-root of the sensitivity matrix (dependent on the

distortion measure), so that in general, for a given square-root of the sensitivity matrix, an optimal

companding scheme does not exist. Reciprocally, it is easy so see that if (2.27) is fulfilled, then

the optimal compressor exists and that it is given by the anti-derivative

Fm(x) =
∫

[
√

M(x)]m,k dxk, m = 0, 1, . . . , N − 1, (2.28)
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where k ∈ {0, 1, . . . , N − 1} can be chosen arbitrarily. Indeed if we choose such a compressor we

get
∂Fm

∂xl
(x) =

∫
∂[
√

M(x)]m,k

∂xl
dxk =

∫
∂[
√

M(x)]m,l

∂xk
dxk = [

√
M(x)]m,l. (2.29)

Note that the square-root of a matrix is not unique, and that this analysis was made for a

given square-root of the sensitivity matrix. It is possible that for a given square-root no solution

of (2.25) exists (equivalent to (2.27) being satisfied, upon assumption of regularity conditions for

F ) but for another square-root a solution does exist. As an example, you can take N = 2 with

x = [x0, x1]T ∈ R2 and the magnitude normalized distortion measure

dMN(x, y) =
1∑

n=0

(yn − xn)2

x2
n

, (2.30)

where the sensitivity matrix (2.5) is [28]

MMN(x) =

 1
x2
0

0

0 1
x2
1

 (2.31)

and two possible square-roots are

F ′
MN(x) =

 1
x0

0

0 1
x1

 , F ′
MN,2(x) =

 sin x0
x0

− cos x0
x1

cos x0
x0

sin x0
x1

 . (2.32)

It is easy to see through (2.27) that [FMN(x)]n = ln |xn|, n = 0, 1 exists whereas FMN,2 does not.

Under which conditions may then such a thing happen?

To analyze this situation we need to know the form of all square-roots of the sensitivity matrix.

Through simple calculations, we see that any other solution F ′
2(x) of (2.19) satisfies

F ′
2(x) = F ′

2(x)−TM(x) = F ′
2(x)−TF ′(x)TF ′(x) = U(x)F ′(x), (2.33)

where we define

U(x) def= F ′
2(x)−TF ′(x)T, (2.34)

a matrix which satisfies (I is the identity matrix)

U(x)TU(x) =
(
F ′

2(x)−TF ′(x)T
)T (

F ′
2(x)−TF ′(x)T

)
= F ′(x)F ′

2(x)−1F ′
2(x)−TF ′(x)T (2.35)

= F ′(x)M(x)−1F ′(x)T = F ′(x)F ′(x)−1F ′(x)−TF ′(x)T = I, (2.36)

i.e., which is orthogonal (you can do the same calculations for U(x)U(x)T = I). Note that both

F ′(x) and F ′
2(x) must be invertible due to the fact that M(x) is strictly positive definite. We have

thus shown that all possible solutions are given in terms of a certain square-root F ′(x) =
√

M(x)
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by the left multiplication by an orthogonal matrix U(x).

Imagine now that U is independent of x. We state that F ′(x) =
√

M(x) has a solution

F (x) if and only if F ′
2(x) = U

√
M(x) has a solution F2(x) as well, for any orthogonal matrix

U independent of x. The proof is as follows. If F exists, then we define F2(x) def= UF (x), and

using simple differentiation rules [5], F2 has a derivative F ′
2(x) = UF ′(x). Equation (2.19) is thus

satisfied for F2 due to the orthogonality of U , and we have thus proven that an F2 exists. The

reciprocal relation is obtained following a similar procedure for F (x) def= U−1F2(x). Note that U

is invertible due to being orthogonal.

Summing up the results of the previous paragraph, all square-roots of the sensitivity matrix

are equal up to the left multiplication by an orthogonal matrix U(x) and for U not dependent

on x, an optimal companding scheme with compander {F, F−1} exists if and only if an optimal

scheme does also exist for any square-root of the form U
√

M(x), with U orthogonal. Although an

orthogonal freedom of F ′(x) exists, in this thesis we will only deal with the case U(x) = I. We are

thus assured that if for the calculated square-root
√

M(x) an optimal companding scheme does

not exist, then for all other square-roots U
√

M(x), such a scheme does not exist as well. The case

U(x) dependent on x will not be studied in this thesis.

2.2.5 Rate-loss

When an optimal companding scheme does not exist, it is convenient to quantify the penalty

in performance when a sub-optimal (non-optimal) scheme is used, with respect to the optimal one.

Linder et al. found an expression for the rate-distortion performance of an arbitrary companding

scheme {F̃ , F̃−1} at high resolution, assuming weak conditions on the distribution of the source

x and the usage of a locally quadratic distortion measure [38]. Their result was

lim
D→0

[
H(QD,F̃ ) +

1
2

log2(D)
]

= h(X)+
1
N

E log2 |det F̃ ′(X)|+1
2

log2

{
GΛ E tr

[
M̃(X)−1M(X)

]}
,

(2.37)

where H(QD,F̃ ) denotes the entropy per dimension at the output of the quantizing block when

coding with a multidimensional companding scheme with a compressor F̃ and at an average

distortion per dimension D, where h(X) denotes the differential entropy of the source X per

dimension, where tr denotes the trace operator and where

M̃(X) = F̃ ′(X)TF̃ ′(X). (2.38)

Equation (2.37) can be used to create a benchmark criterion for a sub-optimal compressor

F̃ . If we denote the optimal compressor by F , then the additional rate at the quantizer block of

Figure 1.2 when using F̃ with respect to the minimum possible rate, which is achieved when we

use the optimal compressor F , when coding at the same distortion level D (at high resolution) is
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given by

H(QD,F̃ )−H(QD,F ) ≈ 1
2N

E log2

(
det M̃(X)
det M(X)

)
+

1
2

log2

[
E tr

(
M̃(X)−1M(X)

N

)]
. (2.39)

This quantity is baptized as the rate-loss when using a suboptimal compander {F̃ , F̃−1}. Of

course we can do the same in terms of the distortions D(QH,F̃ ) and D(QH,F ) when coding at the

same rate H, obtaining
D(QH,F̃ )
D(QH,F )

≈ 22(H(QD,F̃ )−H(QD,F )), (2.40)

or in dB, (
D(QH,F̃ )
D(QH,F )

)
dB

≈ 20 log10(2)
[
H(QD,F̃ )−H(QD,F )

]
. (2.41)

Equation (2.41) should be understood as the perceptual distortion power increase that we get

in dB when coding with the sub-optimal compressor F̃ , where D = E[d(X, Y )] comes from a

perceptual distortion measure (different from the MSE).

The lower the equations (2.39), (2.40) and (2.41) are, the closer we are to the optimal compres-

sor F , so that these equations are a way of analyzing the performance of a sub-optimal compressor.

A nice property for a sub-optimal compressor is, for example, that these quantified losses disappear

with increasing vector dimension (N → ∞). If that happens, we say that the sub-optimal com-

pressor is asymptotically optimal, and, if we use a sufficiently large N in practice, we will operate

closely to the optimum. This asymptotical optimality is the design objective for the companding

scheme to be developed in this thesis.

2.2.6 Previous Work

A companding quantization scheme was first considered by Bennett [7] for the scalar case (N =

1), where the source was passed through a function, quantized with a uniform scalar quantizer and

then passed through the inverse function. Bennett proved that any non-uniform scalar quantization

scheme could be implemented in such a way. Also for N = 1, Panter and Dite derived an expression

for the MSE of an MSE-optimal non-uniform quantization scheme at high resolution [47]. Zador

[63] generalized [47] to the multidimensional case (N > 1) and for an rth power distortion measure

d(x, y) = d(x, y) = ‖y − x‖r (where the norm is l2).

Gersho [20] unified the work that had been done so far in non-uniform quantization. Using

heuristical arguments, he derived an expression for the rth power distortion of a quantizer at

high resolution with a certain quantizer point density, which ended up in being given in terms

of an integral involving the probability density function of the source and the quantizer point

density. This expression was a generalization of Bennett’s work for multiple dimensions and for

the rth power distortion: the latter work was done for the scalar case and for the MSE. Gersho

also re-derived expressions for the average rth power distortion of the optimal vector quantizer of
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Zador’s work, given in terms of the normalized rth moment of inertia GΛ,r, and delivered lower

and upper bounds for G. Finally, Gersho introduced the concept of multidimensional companding,

and he noted that in general an optimal compander does not exist. In the case of the rth power

distortion measure, an optimal compressor would have to be conformal [20].

After the breakthrough of Gersho, Yamada [62] generalized Gersho’s results to a more general

difference distortion measure, namely an arbitrary semi-norm of the difference of reproduction and

source. Bucklew [10] analyzed the performance of a multidimensional companding scheme in terms

of its MSE and proved formally that an optimal compressor must be conformal. Nevertheless,

he showed with an example that even with a suboptimal companding scheme, we can achieve

optimality asymptotically (with increasing vector dimension N). In [11], he explored which types

of probability density functions of the source enable an optimal compander.

More recently, Moo [42] developed an asymptotically optimal compressor function for the case

of memoryless stationary sources. The function consisted in the independent application of a

compressor to each component, dubbed in literature as the Cartesian compressor. Simon [55]

quantified the loss introduced by a sub-optimal compander as the quotient of normalized second

moments before and after the expansion operation, applying his definition to the example of

a spherically symmetric (radial) compander. Linder et al. [38] developed a rigorous theory on

multidimensional companding for locally quadratic distortion measures at high resolution. Also

in this case, a multidimensional companding scheme does in general not exist, but if it does exist,

it does not depend on the distribution of the source and it can approach the rate-distortion bound

arbitrarily close. Samuelsson [53] studied the Cartesian and radial multidimensional companding

schemes of [42, 55] for quantizing independent and identically distributed Gaussian sources using

shaped lattice quantization (Q(shape)(v) = RQ(R−1v), where R is a signal independent matrix) to

correct for linear sub-optimalities of the compressor. The problem of finding the best companding

scheme through all the existent ones remains unsolved [53].

Regarding applications of multidimensional companding, piecewise linear [30], Cartesian [57]

and logarithmic [28] companders were applied in image, speech and audio coding, respectively.

2.3 A Perceptually Relevant Distortion Measure

In this section the distortion measure that will be used throughout this work [59] is presented.

It is a locally quadratic distortion measure used in sinusoidal audio coding with a simple closed-

form mathematical expression. The distortion measure is displayed in different formulations, each

one characterizing the same measure from a different point of view. Its behavior with increasing

vector size N is then studied. In the end of the section, some considerations are done regarding

the related work of third parties, regarding the choice of this distortion measure and regarding its

advantage with respect to other measures. Finally, the aspect of perceptual weighting, explained
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in the introduction, is revisited on hand of the particular example of this distortion measure.

2.3.1 Distortion Measure

In [59], S. van de Par et al. defined an auditory, perceptually relevant distortion measure to

be used in the context of sinusoidal audio coding, which delivers the distortion detectability of an

N -dimensional signal x and its reproduction y as a weighted mean square error of the windowed

signals in the frequency domain. More precisely, the distortion measure between x and y is defined

as

d(x, y) =
L−1∑
f=0

â2(x, f) |ŷw(f)− x̂w(f)|2, (2.42)

where the juxtaposition of two vectors denotes the point-wise product between them, the ˆ op-

erator denotes the L-point unnormalized Discrete Fourier Transform (DFT) in which the input

signal is zero-padded up to size L, i.e., for any N -dimensional signal v

v̂(f) =
N−1∑
n=0

v(n) e−j 2π
L fn, f = 0, 1, . . . , L− 1 (2.43)

with L ≥ N , where w is an N -size frequency selective window with w(n) > 0, ∀n and where

â2(x, f) is selected to be the (signal dependent) inverse of the masking threshold at frequency

f/L · fs (fs denotes the working sample rate), given by

â2(x, f) = Nc1

P−1∑
i=0

|ĥi(f)|2∑L−1
f ′=0 |ĥi(f ′)|2 |x̂w(f ′)|2 + c2

, f = 0, 1, . . . , L− 1. (2.44)

In this last equation, c1 > 0 and c2 > 0 are calibration constants, being c1 independent2 of N and

hi(n) is the (L-point) impulse response of the cascade of the filter simulating the behavior of the

outer- and middle ear with the ith gamma-tone filter of the filter-bank of size P , simulating the

band-pass characteristic of the basilar membrane of the cochlea [59]. These filters hi are assumed

to be absolutely summable.

Equation (2.42) can be rewritten using matrix notation in terms of norms of vectors, and that

notation will simplify the work done in this thesis. We first note that the Parseval’s relation states

that for any v ∈ RN we can convert its norm in the frequency domain to the respective one in the

time domain by

‖v̂‖2 =
L−1∑
f=0

|v̂(f)|2 = L‖v‖2 = L
N−1∑
n=0

v2(n). (2.45)

2The case N/fs > 300 ms, where the distortion measure ceases to be proportional to N , is not considered here
due to the lack of stationarity of typical audio signals in that time-range.
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Furthermore, let v0 denote the zero-padded signal v, i.e.,

v0(n) =

v(n), n = 0, 1, . . . , N − 1

0, n = N,N + 1, . . . , L− 1.
(2.46)

Define also Λv0 as the (L-by-L) diagonal matrix with its elements equal to the signal v0. Finally,

denote by Hi the L-by-L circulant convolution matrix of the filter hi, obtained by placing hi in

the first column of Hi and building the next column by circularly shifting the previous one by one

unit downwards, i.e.,

Hi =



h(0) h(L− 1) h(L− 2) · · · h(2) h(1)

h(1) h(0) h(L− 1) · · · h(3) h(2)

h(2) h(1) h(0) · · · h(4) h(3)
...

...
...

. . .
...

...

h(L− 2) h(L− 3) h(L− 4) · · · h(0) h(L− 1)

h(L− 1) h(L− 2) h(L− 3) · · · h(1) h(0)


. (2.47)

Using the Parseval’s relation and these conventions, the distortion measure d can be written as

d(x, y) = Nc1

P−1∑
i=0

∑L−1
f=0 |ĥi(f)|2 |ŷw(f)− x̂w(f)|2∑L−1

f=0 |ĥi(f)|2 |x̂w(f)|2 + c2

(2.48)

= Nc1

P−1∑
i=0

‖HiΛw0(y0 − x0)‖2

‖HiΛw0x0‖2 + c2/L
(2.49)

In the form (2.49), the distortion measure can be interpreted as the accumulation of the filtered

windowed distortions y − x normalized by the filtered windowed excitation signal x, for all band-

pass filters hi (up to calibration constants). Indeed, denoting by ~ the circulant convolution

operator, we can rewrite Equation (2.49) as

d(x, y) = Nc1

P−1∑
i=0

‖hi ~ [(y − x)w]‖2

‖hi ~ [xw]‖2 + c2/L
, (2.50)

where again juxtaposition is used for point-wise multiplication.

2.3.2 Asymptotic Expression (N →∞) and Behavior

To enable the analysis of the distortion measure of Subsection 2.3.1 with increasing vector

dimension N , it is convenient to reformulate it. Rewrite the distortion measure so that it uses
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squared magnitudes normalized by NL and a new calibration constant c′2, i.e., set

d(x, y) =
L−1∑
f=0

|ŷw(f)− x̂w(f)|2

NL

(
Nc1

P−1∑
i=0

|ĥi(f)|2∑L−1
f ′=0 |ĥi(f ′)|2 |cxw(f ′)|2

NL + c′2

)
(2.51)

= Nc1

P−1∑
i=0

∑L−1
f=0 |ĥi(f)|2 |ŷw(f)− x̂w(f)|2∑L−1
f=0 |ĥi(f)|2 |x̂w(f)|2 + NLc′2

. (2.52)

The new calibration constant was introduced to make this redefinition consistent with the old

definition of equations (2.42) and (2.44). Indeed, by comparison with (2.48), we get the equivalence

c2 = NL c′2. (2.53)

Introduce also a new version of the inverse of the masking threshold â′2(f) using the same nor-

malization:

â′2(x, f) = Nc1

P−1∑
i=0

|ĥi(f)|2∑L−1
f ′=0 |ĥi(f ′)|2 |cxw(f ′)|2

NL + c′2
(2.54)

= NL

(
Nc1

P−1∑
i=0

|ĥi(f)|2∑L−1
f ′=0 |ĥi(f ′)|2 |x̂w(f ′)|2 + NL c′2

)
. (2.55)

Again by comparison, this new function is given in terms of the old one by

â′2(x, f) = NL â2(x, f). (2.56)

Using the Parseval’s relation again, the distortion measure d and the new variant of the inverse

of the masking threshold â′2 can be rewritten in terms of norms of vectors:

d(x, y) = Nc1

P−1∑
i=0

1
N ‖HiΛw0(y0 − x0)‖2

1
N ‖HiΛw0x0‖2 + c′2

; (2.57)

â′2(x, f) = Nc1

P−1∑
i=0

|ĥi(f)|2
1
N ‖HiΛw0x0‖2 + c′2

. (2.58)

With these new expressions for d and â′2, the asymptotic analysis of these two quantities becomes

more simple. Indeed, assuming x wide-sense stationary3 and ergodic, for large N , the quantities

‖HiΛw0x0‖2/N and ‖HiΛw0(y0 − x0)‖2/N can be seen as estimates for the (time-independent)

power of the filtered input and error signals, respectively. Note that for N →∞ the effect of the

window disappears, so that for large N we have indeed a good power estimate. The correspondent

estimators are given by the statistical average of the squared signals HiΛw0x0 and HiΛw0(y0−x0),

respectively, so that they are consistent (i.e., their variance decreases with N).

3For the values of N we typically deal with, e.g., N = 1024 at a sample frequency of 48 kHz (21,3 milliseconds),
x can be assumed to be both wide-sense stationary and large enough so that the asymptotic results which are going
to be presented are good approximations.
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We assume additionally that c1 and c′2 are independent of N . As in [59], the contribution

of the temporal integration time of the human auditory system is considered entirely on the

proportionality constant N on the left of c1 (we do not treat the case N/fs > 300 ms). As to

c′2, it can be considered independent of N due to the fact that it is summed side-by-side with the

estimated power of the input signal. It can be thus interpreted as the internal noise [59] power in

the human hearing system, which independent of N .

As a result of the previous considerations, the distortion d and the inverse of the masking

threshold â′2 can be approximated, for large N (but not so large that N/fs exceeds 300 ms), by

d(x, y) ≈ Nc1

P−1∑
i=0

P[(Y−X)∗hi]

P[X∗hi] + c′2
and (2.59)

â′2(x, f) ≈ Nc1

P−1∑
i=0

|ĥi(f)|2

P[X∗hi] + c′2
, (2.60)

respectively. In these expressions, P[V ] = E[V 2
n ] denotes the power of the random variable V , and

∗ denotes the linear convolution. Note that asymptotically, the linear and circulant convolutions

produce the same results. Furthermore, note that both quantities (2.59) and (2.60) are propor-

tional to N , since the expressions on the right of N are independent of it. Accordingly, d/N and

â′2/N converge for N →∞.

2.3.3 Considerations about the Distortion Measure

It is of interest to note that the distortion measure (2.42), (2.50) can be rewritten in the form

of the measure studied in [28],

d(x, y) =
P−1∑
i=0

‖yi − xi‖2

‖xi‖2
(2.61)

doing the substitutions xi = hi ~ [xw] and yi = hi ~ [yw] if we neglect the constants Nc1 and

c2. Nevertheless, in that work, xi (and yi) were considered to be separate signal inputs (and

reproductions) for each i, which are to be treated separately. If we were to apply the work of [28]

directly to this distortion measure, the signals that we would have to transmit would thus have

a dimension NP instead of N , which would be an unnecessary waste of bit-rate, since all xi

depend on the same x through hi. Of course, due to the band-pass filtering, each xi represents

less information than the original signal x, and the application of multi-rate signal processing

techniques [60] could eventually be possible to decimate the signals xi so that in the end, we again

have a signal x1, x2, . . . , xP of total size N . Such techniques were not researched in this thesis.

Furthermore, it is important to mention that several other distortion criteria have been devel-

oped for audio coding, such as the noise-to-mask ratio obtained from a masking threshold based

on spreading functions [2, 31], a modified version of it [41], the mean-square error of Dau’s inter-

nal representation [15, 48], or a generalization of S. van de Par’s measure [61], which upon the
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substitution of a parameter degenerated into that measure, into a measure modeling the overall

loudness [64] of the distortion signal, or into a frequency-weighted MSE with constant weights,

not taking masking effects into account. Although these distortion measures can, in certain cases,

outperform the distortion measure developed by S. van de Par, they are either defined algorith-

mically, or, although mathematically defined, they are more complex in nature. The choice of S.

van de Par’s distortion measure for this work is thus motivated by the fact that it is a measure

which lies on the realm of the mathematically tractable locally quadratic distortion measures (it

is easy to see that indeed the measure is locally quadratic) and that it delivers proven results in

sinusoidal audio coding.

Finally, in accordance to what was explained in the introduction (Chapter 1), we would like

to point out that this distortion measure can be transformed into a mean-square-error (MSE) by

normalization of the input signal. Indeed, looking at the form (2.42) of the distortion measure,

we can define

x̂′(f) = â(x, f) x̂w(f) ŷ′(f) = â(x, f) ŷw(f) (2.62)

and work on the normalized domain x′, y′, i.e., source-code and transmit x′ and recover y from y′.

Nevertheless, if we use the normalization directly, the square-root of the inverse of the masking

threshold â has to be transmitted to the receiver to perform the inverse normalization

ŷw(f) =
ŷ′(f)

â(x, f)
, (2.63)

with the consequence of an intolerable overhead in certain conditions, as explained in the intro-

duction.



Chapter 3

A Suboptimal Companding Scheme

As explained in the introduction (Chapter 1), this thesis paper will concentrate on developing

a suboptimal multidimensional companding scheme (cf. Section 2.2) for the distortion measure

presented in [59], developed for sinusoidal audio coding (Section 2.3). In this chapter, we start de-

riving the sensitivity matrix (2.5) for the desired distortion measure, Equation (2.42). Afterwards,

the optimality condition (2.19) is worked out more deeply, and we prove from it that no optimal

companding scheme exists for finite vector dimension, at least in the scope studied in this work.

We then derive a non-optimal compressor based on the same condition, simplify it for numerical

speed-up, and then analyze it. In this step we calculate its actual (non-ideal) Jacobian Matrix

(Equation (2.18) for the non-optimal compressor), and using that result we analyze the compressor

in terms of its behavior with respect to the optimal one with increasing vector dimension. We

show that, asymptotically, the compressor is optimal, making the rate-loss (2.39) vanish. Finally,

we end this chapter building the correspondent expander based on numerical methods.

3.1 Sensitivity Matrix

In this section, the sensitivity matrix (2.5), function of the distortion measure, is derived and

two different cases of the relation between matrix size and DFT-size are studied. In the first case,

the sensitivity matrix is decomposed in terms of its eigenvalue decomposition and in the second

case it is approximated by a matrix easily decomposable in terms of that decomposition. The

importance of this derivation of the sensitivity matrix comes from the fact that it defines the

conditions for the optimality of a companding scheme (cf. subsections 2.2.3 and 2.2.4).

As explained in Subsection 2.2.3, if an optimal compressor F (x) exists, its derivative (Jacobian

matrix) F ′(x) is given in terms of the sensitivity matrix M(x) (2.5), which in turn depends on the

distortion measure (2.42). In the first place, we note that (2.42) is a locally quadratic measure; it

is easy to see that d(x, y) ≥ 0 with equality iff y = x, and that it is a composition of analytical
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functions in y (in RN ), thus also functions of class C3 in y. Having justified the existence of M(x),

we now wish to calculate it explicitly. The expansion of d in the form (2.49) using elementary

algebra (T denotes transposition) yields

d(x, y) = Nc1

P−1∑
i=0

yT
0 Λw0H

T
i HiΛw0y0 − 2xT

0 Λw0H
T
i HiΛw0y0 + xT

0 Λw0H
T
i HiΛw0x0

‖HiΛw0x0‖2 + c2/L
. (3.1)

Differentiating with respect to yl and ym, we obtain1

∂ d(x, y)
∂ym

= Nc1

P−1∑
i=0

2[Λw0H
T
i HiΛw0(y0 − x0)]m

‖HiΛw0x0‖2 + c2/L
, (3.2)

∂2d(x, y)
∂yl∂ym

= Nc1

P−1∑
i=0

2[Λw0H
T
i HiΛw0 ]m,l

‖HiΛw0x0‖2 + c2/L
(3.3)

[M(x)]m,l =
1
2

∂2d(x, y)
∂ym∂yl

∣∣∣
y=x

= Nc1

P−1∑
i=0

[Λw0H
T
i HiΛw0 ]m,l

‖HiΛw0x0‖2 + c2/L
(3.4)

=

[
Λw0

(
Nc1

P−1∑
i=0

HT
i Hi

‖HiΛw0x0‖2 + c2/L

)
Λw0

]
m,l

, (3.5)

m,l = 0, 1, . . . , N − 1. (3.6)

It is worth noticing that the sensitivity matrix M is a cropped version (first N lines and N

columns) of a larger, L-by-L matrix, which in turn is a sum of circulant matrices multiplied

by Λw0 on the left and on the right. That multiplication on both sides produces a windowing (a

point-wise multiplication) of the inner matrix (sum of circulant matrices) by the separable window

w0(m, l) = w0(m) w0(l), m,l = 0, 1, . . . , L− 1.

3.1.1 Case L = N

We will now treat the case where the DFT size matches the signal size, L = N . As we shall

see, the case L 6= N reduces to this first one, if N is sufficiently large. With this condition, the

sensitivity matrix becomes (note that now the diagonal and the circulant matrices are N -by-N)

M(x) = Λw

(
Nc1

P−1∑
i=0

HT
i Hi

‖HiΛwx‖2 + c2/N

)
Λw, (3.7)

which, when defining the unwindowed sensitivity matrix Mc(x) by

Mc(x) = Nc1

P−1∑
i=0

HT
i Hi

‖HiΛwx‖2 + c2/N
, (3.8)

1The order of differentiation does not matter as d(x, y) ∈ C2(RN ) with respect to y.
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produces

M(x) = ΛwMc(x)Λw. (3.9)

As Hi is a circulant matrix, HT
i Hi is circulant as well (it is the auto-correlation matrix of hi) and

Mc(x) ends up belonging also to that class (note that the sum or product of circulant matrices is

circulant as well).

It is known from the theory of circulant matrices that these are diagonalized by the DFT

matrix [25], given by2

[DN ]m,l =
1√
N

e−j 2π
N ml, m,l = 0, 1, . . . , N − 1. (3.10)

A circulant matrix V is then similar to a diagonal matrix Λv̂ and is expressed as (H denotes

conjugate transposition)

V = DH
NΛv̂DN , (3.11)

where the diagonal matrix is obtained by taking the unnormalized DFT of the first column of V ,

as in Equation (2.43) (with L = N). This knowledge enables us to diagonalize Hi and HT
i Hi as

Hi = DH
NΛĥi

DN and (3.12)

HT
i Hi = HH

i Hi = DH
NΛĥ∗i

DNDH
NΛĥi

DN = DH
NΛ|ĥi|2DN , (3.13)

respectively, where we used the fact that DN is a unitary matrix (defining I as the identity matrix,

we have DNDH
N = DH

NDN = I). Note that we denoted the component-wise absolute value of a

vector v by |v|, the component-wise conjugation by v∗ and the component-wise exponentiation to

a power n ∈ Z by vn. We can thus finally diagonalize Mc with simple algebraic manipulations,

namely

Mc(x) = Nc1

P−1∑
i=0

DH
NΛ|ĥi|2DN

‖HiΛwx‖2 + c2/N
(3.14)

= DH
N

(
Nc1

P−1∑
i=0

Λ|ĥi|2

‖HiΛwx‖2 + c2/N

)
DN (3.15)

= DH
N

(
Nc1

P−1∑
i=0

Λ|ĥi|2

1
N

∑N−1
f=0 |ĥi(f)|2 |x̂w(f)|2 + 1

N c2

)
DN (3.16)

= DH
NΛNâ(x)2DN , (3.17)

meaning that the eigenvalues of Mc(x) are simply found to be, up to a scaling factor of N , the

inverse of the masking threshold â2 at the frequency grid f/N ·fs, f = 0, 1, . . . , N−1. Furthermore,

being the unnormalized DFT of the first column of Mc(x) at point f given by Nâ2(x, f), the first

2For convenience, the normalized DFT matrix is used here.
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column itself is given by the inverse DFT

[Mc(x)]m,0 =
1
N

N−1∑
f=0

Nâ2(x, f) ej 2π
N fm =

N−1∑
f=0

â2(x, f) ej 2π
N fm, m,l = 0, 1, . . . , N − 1 (3.18)

and, for any column, the unwidowed sensitivity matrix results in

[Mc(x)]m,l = [Mc(x)](m−l mod N),0 =
N−1∑
f=0

â2(x, f) ej 2π
N f(m−l), m,l = 0, 1, . . . , N − 1. (3.19)

The sensitivity matrix (3.9), (3.17) can be best interpreted in terms of a variable transformation

in the distortion measure (2.49). If we make the substitution

z(x) =
√

NDNΛwx, (3.20)

then, as proved in [48], the distortion measure (2.20), (2.42) can be expressed as a quadratic form

in z,

d(x, y) ≈ (z(y)− z(x))HMz(z(x))(z(y)− z(x)), (3.21)

with a sensitivity matrix

Mz(z) = (
√

NDNΛw)−HM(x(z))(
√

NDNΛw)−1 = Λâ(x(z))2 , (3.22)

where3

x(z) = Λ−1
w

DH
N√
N

z (3.23)

is equal to the inverse function of z(x) of Equation (3.20). This variable transformation has the

intuitive meaning that, in the windowed frequency domain z(x), the sensitivity of the distortion

measure to each frequency bin is the inverse of the masking threshold â(x(z))2 at that bin, i.e.,

the weighting of Equation (2.42). Furthermore, there is no mutual interaction between different

frequency components, as the sum (2.42) treats each term independently.

3.1.2 Case L 6= N , L/N integer

In the case L 6= N with L/N integer4, the sensitivity matrix is not circulant up to a windowing,

as in the case L = N . Nevertheless, we can define Me(x) as the L-by-L uncropped version of the

it,

Me(x) = Λw0

(
Nc1

P−1∑
i=0

HT
i Hi

‖HiΛw0x0‖2 + c2/L

)
Λw0 , (3.24)

3We admit w(n) 6= 0, ∀n so that Λw is invertible.
4We will not treat the non-integer case due to its lack of interest: as N and L are usually powers of two due to

the increased computational efficiency when performing Fast Fourier Transforms (FFTs), L/N is usually integer.
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and again Mc(x) as the unwindowed version of this last matrix,

Mc(x) = Nc1

P−1∑
i=0

HT
i Hi

‖HiΛw0x0‖2 + c2/L
, (3.25)

which is circulant. To calculate the N -by-N snippet of interest of Me(x) explicitly, we tile Mc(x)

in four sub-matrices, making the size of the first one N -by-N . More formally, we use the repre-

sentation

Mc(x) =

 Mt Mt2

Mt3 Mt4

 , (3.26)

where the dimensions of M{t,t2,t3,t4} are N -by-N , N -by-(L−N), (L−N)-by-N and (L−N)-by-

(L−N), respectively. Notice that the sub-matrices are Toeplitz (but not circulant). We can now

proceed to the calculation of Me in terms of Mt by performing multiplication of block matrices.

If we consider 0m,l to be an m-by-l zero matrix, we get

Me(x) =

 Λw 0N,L−N

0L−N,N 0L−N,L−N

 Mt Mt2

Mt3 Mt4

 Λw 0N,L−N

0L−N,N 0L−N,L−N

 (3.27)

=

 ΛwMt ΛwMt2

0L−N,N 0L−N,L−N

 Λw 0N,L−N

0L−N,N 0L−N,L−N

 (3.28)

=

 ΛwMtΛw 0N,L−N

0L−N,N 0L−N,L−N

 . (3.29)

From these calculations, it follows that M(x) can be seen as a Toeplitz matrix Mt(x) which has

been windowed by the separable window w(m, l) = w(m)w(l). That Toeplitz matrix is itself an

N -by-N snippet of the larger circulant matrix Mc(x). Mathematically

M(x) = ΛwMt(x)Λw, (3.30)

where

[Mt(x)]m,l = [Mc(x)]m,l, m,l = 0, 1, . . . , N − 1. (3.31)

Calculating the determinant, inverse and other functions of a Toeplitz matrix is, in general,

a mathematically intractable task. Nevertheless, there are results on the asymptotic (N → ∞)

behavior of this class of matrices, which approximate a Toeplitz matrix by a carefully chosen

circulant one with the same asymptotic characteristics. Indeed, it was shown in [25] that, if we

admit that the sequence built from Mt with N →∞ given by

t(m) =

[Mt(x)]0,−m, m = . . . ,−3,−2,−1

[Mt(x)]m,0, m = 0, 1, 2, . . .
(3.32)
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is absolutely summable, then we can build a circulant matrix M̄c(x),

M̄c(x) = DH
NΛecDN , (3.33)

with eigenvalues given by

ec(f) =
N−1∑

m=−N+1

t(m) e−j 2π
N fm, f = 0, 1, . . . , N − 1 (3.34)

that is asymptotically equivalent to Mt(x) in the sense that the Hilbert-Schmidt norm (also called

the weak norm) of the difference

‖M̄c(x)−Mt(x)‖HS =

√√√√ 1
N

N−1∑
m=0

N−1∑
l=0

(
[M̄c(x)]m,l − [Mt(x)]m,l

)2 (3.35)

vanishes with increasing N . To make the approximation M̄c(x) compatible with the calculations

for L = N (we want to transform the case L 6= N in a slightly modified version of the case L = N),

we define an “equivalent” inverse of the masking threshold ˆ̄a2(x, f) in terms of the eigenvalues ec(·)
as (cf. Equations (3.17), (3.33))

N ˆ̄a2(x, f) def= ec(f). (3.36)

We can thus express the approximation for the unwindowed sensitivity matrix as

M̄c(x) = DH
NΛNā2(x)DN (3.37)

and, following the same steps of (3.18), (3.19) and of the corresponding discussion, also as

[M̄c(x)]m,l =
N−1∑
f=0

ˆ̄a2(x, f) ej 2π
N f(m−l), m,l = 0, 1, . . . , N − 1. (3.38)

We can particularize the expression for the eigenvalues of M̄c(x) by mapping the values of t(m)

in (3.32) to the corresponding ones in [Mc(x)]·,0:

ec(f) =
−1∑

m=−N+1

[Mc(x)]m+L,0 e−j 2π
N fm +

N−1∑
m=0

[Mc(x)]m,0 e−j 2π
N fm (3.39)

=
L−1∑

m=L−N+1

[Mc(x)]m,0 e−j 2π
N f(m−L) +

N−1∑
m=0

[Mc(x)]m,0 e−j 2π
N fm (3.40)

= ej2π L
N f

(
L−1∑

m=L−N+1

[Mc(x)]m,0 e−j 2π
N fm

)
+

N−1∑
m=0

[Mc(x)]m,0 e−j 2π
N fm (3.41)

=
L−1∑

m=L−N+1

[Mc(x)]m,0 e−j 2π
N fm +

N−1∑
m=0

[Mc(x)]m,0 e−j 2π
N fm (3.42)
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ec(f) =
L−1∑
m=0

[Mc(x)]m,0 e−j 2π
N fm −

L−N∑
m=N

[Mc(x)]m,0 e−j 2π
N fm, (3.43)

where in (3.42) we used the fact that L/N is integer. To interpret the last equation better, it is

useful to calculate what the values of [Mc(x)]·,0 are. Following the same procedure as the one in

equations (3.12) to (3.17) of the case L = N , we now have for L 6= N the unwindowed extension

of the sensitivity matrix given by

Mc(x) = DH
L

(
Nc1

P−1∑
i=0

Λ|ĥi|2

‖HiΛw0x0‖2 + c2/L

)
DL (3.44)

= DH
LΛLâ(x)2DL, (3.45)

and its first column by

[Mc(x)]m,0 =
1
L

L−1∑
f=0

Lâ2(x, f) ej 2π
L fm =

L−1∑
f=0

â2(x, f) ej 2π
L fm, f = 0, 1, . . . , L− 1. (3.46)

Equation (3.46) tells us that [Mc(x)]·,0 are the (circulant) autocorrelation samples of the inverse

of the masking threshold in the time domain a(x, ·), up to a scaling factor. For sufficiently large N ,

(empirically values starting from N ∼ 1000 at fs = 48 kHz are acceptable), the masking threshold

will be practically uncorrelated with itself at lags greater than N (and smaller than L − N , as

the problem is defined modulo L), being as consequence the second term in (3.43) negligible with

respect to the first one. The “equivalent” inverse of the masking threshold associated with the

Toeplitz matrix Mt(x) is then

ˆ̄a2(x, f) ≈ 1
N

L−1∑
m=0

[Mc(x)]m,0 e−j 2π
N fm (3.47)

=
L

N

(
1
L

L−1∑
m=0

[Mc(x)]m,0 e−j 2π
L ( L

N f)m

)
(3.48)

=
L

N
â2

(
x,

L

N
f

)
, f = 0, 1, . . . , N − 1, (3.49)

where in (3.49) we performed the DFT of (3.46) and used again the fact that L/N is integer.

As a final step we can also approximate the squared magnitudes of the band-pass filters ĥi in

â2(x, Lf/N) by its decimated versions when their impulse response is essentially limited to N

samples (as above, N starting from around 1000 samples at 48 kHz gives a good approximation).

The equivalent inverse of the masking threshold becomes

ˆ̄a2(x, f) =
L

N
â2

(
x,

L

N
f

)
= Nc1

P−1∑
i=0

L
N |ĥi( L

N f)|2∑L−1
f ′=0 |ĥi(f ′)|2 |x̂w(f ′)|2 + c2

(3.50)
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ˆ̄a2(x, f) ≈ Nc1

P−1∑
i=0

L
N |ĥi( L

N f)|2
L
N

∑N−1
f ′=0 |ĥi( L

N f ′)|2 |x̂wN (f ′)|2 + c2

(3.51)

= Nc1

P−1∑
i=0

|ˆ̄hi(f)|2∑N−1
f ′=0 |

ˆ̄hi(f ′)|2 |x̂wN (f ′)|2 + c2

,

f = 0, 1, . . . , N − 1, (3.52)

where the subscript N denotes the execution of an N -point DFT instead of an L-point one (Equa-

tion (2.43) with L = N) and

ˆ̄hi(f) def=

√
L

N
ĥi

(
L

N
f

)
, f = 0, 1, . . . , N − 1. (3.53)

In the remaining of this paper, we will always use the circulant approximation M̄c(x), the

equivalent inverse of the masking threshold ˆ̄a2 and the eigenvalues N ˆ̄a2(x, ·) of the equivalent

matrix when we deal with the case L 6= N , i.e., we will be using

M̄(x) = ΛwM̄c(x)Λw (3.54)

and equations (3.37), (3.52) and (3.53) instead of the exact M(x) for L 6= N of Equation (3.30),

so that this case degenerates in the case L = N by using M̄c(x) as the circulant matrix in (3.9).

Although the theory related to this approximation does not state anything on the individual values

of the matrices M̄c(x) and Mt(x) or on individual eigenvalues [25], it guarantees two asymptotic

matches. In the first place, as discussed previously, the “distance” between the matrices, measured

in the Hilbert-Schmidt norm, disappears asymptotically. In the second place, if we define the

Fourier Series5 as the limit of (3.34) when N →∞,

tFS(λ) =
∞∑

m=−∞
t(m) e−jmλ, (3.55)

and an arbitrary continuous real function Ψ on [infλ tFS(λ); supλ tFS(λ)], we know that the eigen-

values et(f), f = 0, 1, . . . , N − 1 of Mt(x) are bounded by the limits of the mentioned interval

(being the bound asymptotically tight), and that the average of the function Ψ of the eigenvalues

is asymptotically the same on both matrices Mt(x) and M̄c(x), i.e.,

lim
N→∞

1
N

N−1∑
f=0

Ψ(et(f)) = lim
N→∞

1
N

N−1∑
f=0

Ψ(ec(f)). (3.56)

We say in this case that the eigenvalues et(·) and ec(·) are asymptotically equally distributed.

5Remember that we admitted that t(m) is absolutely summable, so that tFS exists.
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3.2 A Suboptimal Compressor

Having discovered the form of the sensitivity matrix in Section 3.1, it is now natural to work

out more deeply what condition the optimal compressor should satisfy, check whether optimality

can be achieved or not and, finally, develop a compressor using the derived condition. In this

section we do precisely that work, showing that no optimal companding scheme exists upon the

imposition of certain conditions and deriving an expression for a suboptimal compressor using

some of the equations regarding the optimality condition.

As explained intuitively in Section 2.2 and extensively in [38], a compander {F, F−1} is optimal

if and only if its Jacobian matrix F ′(x) satisfies (2.19) up to a positive real scaling factor, where

the equation has to be satisfied with probability one (i.e., it can be left unsatisfied for certain

values of x if they never occur) and M(x) is the sensitivity matrix of Equation (2.5). Without

loss of generality, we set that scaling factor to one here. In addition, as explained extensively in

Section 3.1, the sensitivity matrix is given, as an approximation, by

M(x) = ΛwDH
NΛN ˆ̄a2(x)DNΛw, (3.57)

where ˆ̄a2(x), Equation (3.52), is an N -point approximation for the decimated L-point inverse of

the masking threshold. When L = N these results are exact.

As stated in Subsection 2.2.4, we call any matrix F ′(x) satisfying (2.19) a square-root of the

matrix M(x), and denote a particular square-root by
√

M(x). Due to M(x) degenerating in a

very simple windowed circulant matrix, which in turn is diagonalized by the DFT matrix, one

possible square-root is very easy to calculate. Indeed try this square-root:

F ′(x) =
√

M(x) = DH
NΛ√

N ˆ̄a(x)DNΛw. (3.58)

To check this solution, we must prove in the first place that this
√

M(x) is real, because F is a

real-valued function of real argument. This happens when the matrix conjugate of
√

M(x) equals

to the matrix itself. Knowing that a triple (normalized) DFT is equivalent to an inverse DFT and

vice-versa [45], that the DFT matrix is symmetric, using simple properties of matrix conjugation

(which we denote by ∗) and using the fact that w and ˆ̄a are real, we get

(√
M(x)

)∗
= DT

NΛ∗√
N ˆ̄a(x)

D∗
NΛ∗

w = DH
N

(
D2

N
H
Λ√

N ˆ̄a(x)D
2
N

)
DNΛw. (3.59)
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It is easy to see through the duality property of the DFT (e.g., [45]) that

D2
N = D2

N
H

=



1 0 0 . . . 0 0

0 0 0 . . . 0 1

0 0 0 . . . 1 0
...

...
... . ..

...
...

0 0 1 . . . 0 0

0 1 0 . . . 0 0


(3.60)

is the reverse operator, i.e., [D2
Nv]n = v((N − n) mod N), n = 0, 1, . . . , N − 1 for any vector

v = [v0, v1, . . . , vN−1]T. Furthermore, if you left and right multiply a diagonal matrix Λv by two

reverse operators, you get again a diagonal matrix, but with the reversed vector:

D2
NΛvD2

N = ΛD2
N v. (3.61)

Applying Equation (3.61) to (3.59) produces

(√
M(x)

)∗
= DH

NΛ√
ND2

N
ˆ̄a(x)DNΛw = DH

NΛ√
N ˆ̄a(x)DNΛw =

√
M(x), (3.62)

where we took into account that, due to the dependence of ˆ̄a solely on magnitudes of DFT’s of real

signals or decimated versions of them (cf. Equations (3.52) and (3.53)), ˆ̄a(x) has even symmetry.

As wanted, we have thus proven that
√

M(x) is real.

We will now finally check that this choice of
√

M(x) fulfills Equation (3.58). Using the fact

that F ′(x) =
√

M(x) is real, we get

F ′(x)TF ′(x) = F ′(x)HF ′(x) = ΛH
wDH

NΛH√
N ˆ̄a(x)

DNDH
NΛ√

N ˆ̄a(x)DNΛw = M(x), (3.63)

where we used the unitary property of DN and the fact that w and ˆ̄a are real. As was previously

noted in Subsection (2.2.4), this solution is not unique. All matrices of the form U(x)F ′(x) with

an orthogonal U(x) are solution of Equation (2.19), and all solutions are separated by the left

multiplication by an orthogonal matrix U(x). Although this orthogonal freedom of F ′(x) exists,

in this thesis we will only deal with the case U(x) = I. Note anyway that, for U independent of x,

a sub-optimal companding scheme exists for the square-root of the sensitivity matrix
√

M(x) of

Equation (3.58) if and only if it exists for U
√

M(x). The existence of an optimal scheme is thus

covered for all cases where U is independent of x, even setting U = I.

Also for U independent of x, note that when no optimal companding scheme exists and when

we build a sub-optimal compander {F̃ , F̃−1} for the square-root of the sensitivity matrix
√

M(x)

of Equation (3.58), we can also build a sub-optimal compander {F̃2, F̃
−1
2 } for the square-root

U
√

M(x) by doing F̃2(x) = UF̃ (x) and F̃−1
2 (ξ) = F̃−1(U−1ξ). Nevertheless, we can see through
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equations (2.38) and (2.39) that no performance is gained (or lost) by doing this. More clever

solutions have to be employed to get a performance difference for the square-root U
√

M(x).

We now have a condition for the optimality of the scheme in terms of the Jacobian matrix of F

(Equation (3.58)). Motivated by the variable substitution formulation of [48] and by the specific

one of Section 3.1, we introduce a new function G, written in terms of F as

F (x) =
DH

N√
N

G(
√

NDNΛwx). (3.64)

This expression can be best seen as block diagram, as depicted in Figure 3.1. First we point-

wise multiply the input signal x by the window w (× denotes point-wise multiplication), we

take an unnormalized DFT, we then apply a function G (to be developed), and finally emit the

inverse DFT as our compressed signal, F (x). In other words, we process the windowed signal in

the frequency domain instead of the original signal directly in the time domain, using thus the

variable substitution of Equation (3.20).

x // × window // DFT // G(·) // iDFT // F (x)

Figure 3.1: Block Diagram of the compressor F (x).

As G operates on complex vectors and emits complex vectors (DFTs of real signals), it is a

complex-valued complex function. If we assume it to be complex differentiable on all its variables

in an open set, we can use the chain rule [5] to get the Jacobian matrix of F in terms of the one

of G:

F ′(x) = DH
N G′(

√
NDNΛwx) DNΛw. (3.65)

By simple comparison with (3.58), and using the variable substitution (3.20), we get the optimality

condition in terms of G′ as

G′(z) = Λ√
N ˆ̄a(x(z)) ≡ Λ√

N ˆ̄a(z), (3.66)

where x(z) is the inverse function of z(x), Equation (3.23), and we do a slight abuse of notation,

saying that now ˆ̄a is a function of z directly.

If we write down Equation (3.66) explicitly, making use of (3.52), we get as a result this

equation in branches:

∂Gm

∂zl
(z) =


√

N

√
Nc1

∑P−1
i=0

|ˆ̄hi(m)|2PN−1
f=0 |ˆ̄hi(f)|2 |z(f)|2+c2

for l = m

0 for l 6= m

, m,l = 0, 1, . . . , N − 1. (3.67)

Equation (3.67) makes a severe constraint visible, which appears when we want to satisfy the

optimality conditions with the assumptions that we have made. Remember that we assumed G
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to be complex differentiable (on all variables) and that, from complex analysis, we know that any

complex differentiable function defined on an open set has all its derivatives and antiderivatives

(e.g., [13]), due to being an analytic function (this relation is actually an equivalence). A con-

sequence of this sentence, of our assumption and of condition (3.67) is that all elements of
√

M

(right hand side of Equation (3.67)) have to be differentiable with respect to all variables. It is

easy to see, due to the dependence of ˆ̄a(z) on |z(n)|2, ∀n (use the Cauchy-Riemann equations),

that this function is not differentiable in any open set on any of its coordinates, implying that no

differentiable G (in an open set) exists which satisfies Equation (3.67) directly.

There are two ways out of this impasse: either we do not assume G to be analytic and use

the theory of the complex differential forms ∂/(∂z) and ∂/(∂z∗) [8], associated with possibly non-

analytic complex functions which are differentiable when seen as real functions with the double

number of arguments, or we perform a very simple substitution. As z, the argument of G, is the

DFT of a real signal, the hermitian symmetry property applies [45]:

z∗(f) = z(N − f), f = 0, 1, . . . , N − 1; z(N) ≡ z(0). (3.68)

If we substitute z∗(f) in Equation (3.67) (remember that |z(f)|2 = z(f)z∗(f)), we end up with

analytic functions on the right-hand side, namely

∂Gm

∂zl
(z) =


√

N

√
Nc1

∑P−1
i=0

|ˆ̄hi(m)|2PN−1
f=0 |ˆ̄hi(f)|2 z(f)z(N−f)+c2

for l = m

0 for l 6= m

, m,l = 0, 1, . . . , N − 1.

(3.69)

These functions are analytic due to being compositions, sums, quotients and products of functions

which are analytic themselves. It should be noted that, in the domain of interest, corresponding to

Equation (3.68), the argument · of the functions 1/· and
√
· in Equation (3.69) is real and strictly

positive (the strictness comes from the positive real constant c2), so that indeed we are on the

domain of analyticity of those functions. We use the conventional definition of the argument of a

complex number in the interval ]− π,π], so that the domain of analyticity is C\{x : x ∈ R−
0 }.

It is possible to derive a function G making use of the mentioned theory of the complex

differential forms and, if we would make such a derivation, due to restrictions made on that

function on the kind of vectors it gets and it receives (vectors with hermitian symmetry, due to

the fact that their time-domain counterpart is real-valued), we would arrive at the same final result

as with this simple substitution. Due to the lack of space in this thesis paper, this derivation will

not be in the scope of the it, although it was made during the working period of the thesis. We

will thus make all derivations in this section taking the substitution into account.

As expected (see Subsection 2.2.4), the problem of equations (3.66), (3.69) is over-determined

and to have a solution (assuming now G analytic and using the substitution related to the hermitian
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symmetry of z) it is required that

∂[Λ√
N ˆ̄a(z)]m,l

∂zk
=

∂[Λ√
N ˆ̄a(z)]m,k

∂zl
, m,l,k = 0, 1, . . . , N − 1. (3.70)

It can be seen easily that, as Λ√
N ˆ̄a is a diagonal matrix, this constriction is not satisfied when

l = m and k 6= m. Indeed, [Λ√
N ˆ̄a]m,k is 0, so that its derivative with respect to zm is also 0, but

[Λ√
N ˆ̄a]m,m depends on all variables, being its derivative with respect to zk not 0. Even if we do

not assume G to be analytic (but at least of class C1(R2N ), i.e., continuously differentiable when

seen as real function), it is possible to prove, using the theory of the complex differential forms,

that this problem does not have a solution when making natural restrictions on G relative to the

hermitian symmetry of its input and output. As a consequence, no optimal compressor exists for

finite N for any signal independent orthogonal matrix U in (2.33). The case of signal dependent

orthogonal matrices U(x) is left open for future work.

We will thus proceed building a suboptimal compressor (and its correspondent expander),

which only satisfies some of the equations (3.69). Obviously we do not want a constant, signal

independent compressor, so that we choose to satisfy the equations on the diagonal of the matrices

in Equation (3.66). As the functions on the right-hand side are analytic (cf. Equation (3.69)), we

can employ the Fundamental Theorem of Calculus [13] to solve them. Furthermore, we admit that

N is even, since the most interesting values of N for the execution of the Fast Fourier Transform

(FFT), a dominantly used algorithm for the execution of the DFT, are powers of two. Using this

assumption, we define the suboptimal compressor as

G̃m(z) =
√

N

∫ z(m)

0

√√√√√Nc1

P−1∑
i=0

|ˆ̄hi(m)|2PN−1
f=0

f 6=m,N−m
|ˆ̄hi(f)|2 z(f)z(N − f) + 2|ˆ̄hi(m)|2 z(N −m)v + c2

dv

(3.71)

=
√

N

∫ z(m)

0

√√√√Nc1

P−1∑
i=0

|ˆ̄hi(m)|2∑N−1
f=0 |

ˆ̄hi(f)|2 |z(f)|2 + 2|ˆ̄hi(m)|2 z∗(m) [v − z(m)] + c2

dv

(3.72)

for m 6= 0 and m 6= N/2, and as

G̃m(z) =
√

N

∫ z(m)

0

√√√√√Nc1

P−1∑
i=0

|ˆ̄hi(m)|2PN−1
f=0

f 6=m
|ˆ̄hi(f)|2 z(f)z(N − f) + |ˆ̄hi(m)|2 v2 + c2

dv (3.73)

=
√

N

∫ z(m)

0

√√√√Nc1

P−1∑
i=0

|ˆ̄hi(m)|2∑N−1
f=0 |

ˆ̄hi(f)|2 |z(f)|2 + |ˆ̄hi(m)|2 [v2 − z2(m)] + c2

dv (3.74)

for m = 0 or m = N/2 (notice that z(m) is real in this case), where the integral is a complex

path integral and the integration path is arbitrary, provided that it remains within the domain
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of analyticity of ˆ̄a. For fulfilling the upper equations of (3.69), the lower limit of the integral can

also be arbitrary, but here we choose it to be 0. This choice has the following explanation. As the

input signal z is a DFT vector, it is reasonable to assume that its components are on average 0

(except eventually for the DC component, but that component is perceptually irrelevant so that it

can be filtered out before the whole source-coding chain). When calculating the Jacobian matrix

of this suboptimal compressor, the out-diagonal elements of it are also given in terms of a complex

integral with the same limits (with a partial derivative as the integrand). As we would want those

components ideally to be 0 (lower equations of (3.69)), a natural approach is to make the actual

components to be, on average, as close as 0 (in terms of their magnitude) as possible. Choosing

then the lower limit of the integral to be equal to the expected value of its upper limit (0, in this

case), we minimize the length run by the path integral (on average), so that the magnitude of the

integrals corresponding to the out-diagonal derivatives is also, on average, minimized.

For the practical implementation, the path choice v = t z(m), t ∈ [0; 1] is convenient (as before,

the argument of 1/· and
√
· never becomes real non-positive for any t, so that this path choice is

valid), because this choice leads to the calculation of a real integral of a real function:

G̃m(z) =
√

Nz(m)
∫ 1

0

√√√√Nc1

P−1∑
i=0

|ˆ̄hi(m)|2∑N−1
f=0 |

ˆ̄hi(f)|2 |z(f)|2 + 2|ˆ̄hi(m)|2 |z(m)|2 (t− 1) + c2

dt

(3.75)

for m 6= 0 and m 6= N/2, and

G̃m(z) =
√

Nz(m)
∫ 1

0

√√√√Nc1

P−1∑
i=0

|ˆ̄hi(m)|2∑N−1
f=0 |

ˆ̄hi(f)|2 |z(f)|2 + |ˆ̄hi(m)|2z2(m) (t2 − 1) + c2

dt (3.76)

for m = 0 or m = N/2. The expression (3.75)/(3.76) is also convenient to analyze a key require-

ment of the compressor: its output must be hermitian symmetric as we want a real compressed

signal in the time-domain. In this form, we can see that the dependence of the integral on m is

only on the magnitude of hermitian symmetric signals. For that reason, the result of the integra-

tion is the same for G̃m and G̃N−m. Obviously, as the integrand is real and positive, the integral

itself is also real and positive, so that we can see the compression operation as the point-wise

multiplication of z by a certain real positive gain (the integral), that we will label as Γm(z), i.e.,

we can see the compressor as

G̃m(z) =
√

N Γm(z) z(m), m = 0, 1, . . . , N − 1 (3.77)
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with

Γm(z) =


∫ 1

0

√
Nc1

∑P−1
i=0

|ˆ̄hi(m)|2PN−1
f=0 |ˆ̄hi(f)|2 |z(f)|2+2|ˆ̄hi(m)|2 |z(m)|2(t−1)+c2

dt for m 6= 0, N/2∫ 1

0

√
Nc1

∑P−1
i=0

|ˆ̄hi(m)|2PN−1
f=0 |ˆ̄hi(f)|2 |z(f)|2+|ˆ̄hi(m)|2z2(m)(t2−1)+c2

dt for m = 0, N/2.

(3.78)

As we are point-wise multiplying two signals with hermitian symmetry (one of them is even real),

the result has hermitian symmetry as well, as desired.

3.3 Taylor Expansion of the Suboptimal Compressor

Although the developed compressor of Section 3.2 is well defined by equations (3.77) and (3.78),

its practical computation with a numerical method is quite expensive. If, for example, we use the

adaptive Simpson’s method [33], the integration interval has to be split recursively and adaptively

until the error between the integral of the quadratic interpolation of an interval directly and the

sum of the integrals of the quadratic interpolations of two sub-intervals is small enough. This

process can deploy unnecessary function evaluations, specially when the function is itself very well

approximable by a quadratic, linear or a constant polynomial in the whole region of integration.

In that case, it is preferable to do the approximation analytically and compute directly the value

of the integral with the approximation.

In this section, we motivate the approximation of the integrands of (3.78) by their Taylor

expansions up to some order M and do the necessary calculations to obtain an expression for

the compressor (3.77) in terms of those expansions. As we will see in the simulations (Section

4.3), the needed value of M is very low (even M = 0 delivers a good approximation), so that the

application of a numerical method with several function evaluations becomes unnecessary.

Indeed, look at Equation (3.78). The only dependence on the integration variable (use the case

m 6= 0, N/2 as an example) is on the term 2|ˆ̄hi(m)|2 |z(m)|2(t− 1), being that term summed side

by side with ‖Λˆ̄hi
z‖2. The factor on the left of t− 1 corresponds to only two terms of the squared

norm of the filtered z, so that when N grows, the dependence on t becomes weaker and weaker,

i.e.,

2|ˆ̄hi(m)|2 |z(m)|2(t− 1) �
N−1∑
f=0

|ˆ̄hi(f)|2 |z(f)|2 ∀t∈[0;1], for N � . (3.79)

More formally, the average behavior of the quotient of the two terms is characterized statistically
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by

E

2|ˆ̄hi(m)|2 |Z(m)|2(t− 1)∑N−1
f=0 |

ˆ̄hi(f)|2 |Z(f)|2

 = 2(t− 1)E

 |ˆ̄hi(m)|2 |Z(m)|2
N

1
N

∑N−1
f=0 |

ˆ̄hi(f)|2 |Z(f)|2

 (3.80)

= 2(t− 1)
1
N

E

{
|ˆ̄hi(m)|2 |Z(m)|2

N
1
N ‖(Xw) ~ h̄i‖2

}
, (3.81)

where ~ denotes circulant convolution and where juxtaposition denotes the point-wise multipli-

cation. The argument of the expectation of Equation (3.81) is exactly one component of the

(windowed) periodogram of the filtered signal over the total estimated power of the same signal.

As in Subsection 2.3.2, we assume that X is wide-sense stationary and ergodic here as well. The

denominator of the expected value converges thus to the power of the filtered input signal, P[X∗h̄i],

when N → ∞. Furthermore, it is well known (e.g., [45]) that the numerator (the periodogram

of the input signal) is an inconsistent estimator (its variance does not depend on N), so that,

asymptotically, the variance of the denominator becomes negligible with respect to the variance

of the numerator. Consequently, we have

E

2|ˆ̄hi(m)|2 |Z(m)|2(t− 1)∑N−1
f=0 |

ˆ̄hi(f)|2 |Z(f)|2

 ≈ 2(t− 1)
1
N E

{
|ˆ̄hi(m)|2 |Z(m)|2

N

}
P[X∗h̄i]

, (3.82)

with P[v] = E[V 2
n ] equal to the power of a signal. It is also known [45] that the periodogram is an

asymptotically unbiased estimator for the power spectral density of the input signal X (although

not consistent), so that in Equation (3.82), for large N , we are approximately dividing the power

of one band (of size 1/N) of the filtered input signal by the total power of that signal (up to a

constant 2(t − 1)). The size of the band decreases with a rate O(1/N) but the power spectrum

and signal power remain constant with varying N , so that we achieve

lim
N→∞

E

2|ˆ̄hi(m)|2 |Z(m)|2(t− 1)∑N−1
f=0 |

ˆ̄hi(f)|2 |Z(f)|2

 = 0 (3.83)

at a rate O(1/N). Furthermore, due to the independence of the variance of the periodogram of

Equation (3.82) on N , the variance of the quotient satisfies (note the pre-multiplying factor 1/N

of Equation (3.81))

lim
N→∞

Var

2|ˆ̄hi(m)|2 |Z(m)|2(t− 1)∑N−1
f=0 |

ˆ̄hi(f)|2 |Z(f)|2

 = 0, (3.84)

at a rate O(1/N2). We can thus finally conclude that we have the convergence in probability [16]

lim
N→∞

2|ˆ̄hi(m)|2 |Z(m)|2(t− 1)∑N−1
f=0 |

ˆ̄hi(f)|2 |Z(f)|2
= 0 (3.85)
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for all t ∈ [0; 1], which means that the probability that the function of the random variables Z(m)

expressed in (3.85) is not 0 can be made arbitrarily small by increasing N . In other words, the

probability density function of the left hand side of (3.85) approaches a Dirac delta function at 0

when N goes to infinity.

The limit (3.85) gives us the guarantee that if we build a Taylor expansion of a certain order M

for the compressor, the higher the vector size N , the lower the needed order M will be for a good

approximation, and that with N →∞, the order 0 will give the exact result. The construction of

the Taylor expansion of the integrand of (3.78) for large N is thus motivated.

Define the integrand of Equation (3.78) as γm(z, t),

γm(z, t) =


√

Nc1

∑P−1
i=0

|ˆ̄hi(m)|2PN−1
f=0 |ˆ̄hi(f)|2 |z(f)|2+2|ˆ̄hi(m)|2 |z(m)|2(t−1)+c2

for m 6= 0, N/2√
Nc1

∑P−1
i=0

|ˆ̄hi(m)|2PN−1
f=0 |ˆ̄hi(f)|2 |z(f)|2+|ˆ̄hi(m)|2z2(m)(t2−1)+c2

for m = 0, N/2
, (3.86)

noting that

γm(z, 1) = ˆ̄a(z,m), (3.87)

and define its Taylor expansion around t = 1:

γm,M (z, t) =
M∑

k=0

1
k!

∂k γm

∂tk
(z, 1) (t− 1)k. (3.88)

With this approximation, the compressor gain becomes

Γm,M (z) =
∫ 1

0

γm,M (z, t) dt =
M∑

k=0

1
k!

∂k γm

∂tk
(z, 1)

∫ 1

0

(t− 1)k dt =
M∑

k=0

(−1)k

(k + 1)!
∂k γm

∂tk
(z, 1) (3.89)

and the compressor G̃M (the subscript M indicates the usage of the Taylor expansion of order M)

becomes

G̃m,M (z) =
√

N Γm,M (z) z(m) =
√

N
M∑

k=0

(−1)k

(k + 1)!
∂k γm

∂tk
(z, 1) z(m). (3.90)

Note that with M = ∞, this compressor becomes exactly equal to the one developed in Section

3.2, G̃(z), due to the analyticity of γm in the variable t for all m (being the infinite power series

γm,∞ of (3.88) coincident with (3.86) in the whole domain t ∈ ]0; 1]).

To conclude the definition of this Taylor expansion, we must find a way to calculate the kth order

derivative of γm at t = 1, for all m. If M is relatively low, that derivative can be simply computed

by hand, but if we want M to be large or if we want to be able to tune that parameter dynamically

to an arbitrary value, it is convenient to find an algorithmic way to compute the derivative. For
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that matter, define the function sequence Tk,m, m = 0, 1, . . . , N − 1, k = 0, 1, 2, . . . as

Tk,m(z, t) = Nc1

P−1∑
i=0

|ˆ̄hi(m)|2k+2|z(m)|2kk!(−1)k2k−1[∑N−1
f=0 |

ˆ̄hi(f)|2 |z(f)|2 + 2|ˆ̄hi(m)|2 |z(m)|2 (t− 1) + c2

]k+1
(3.91)

for m 6= 0 and m 6= N/2, and as

Tk,m(z, t) = Nc1

bk/2c∑
q=0

bk,qt
k−2q

P−1∑
i=0

|ˆ̄hi(m)|2(k−q)+2z(m)2(k−q)(k − q)!(−1)k−q2k−q−1[∑N−1
f=0 |

ˆ̄hi(f)|2 |z(f)|2 + |ˆ̄hi(m)|2 z2(m) (t2 − 1) + c2

]k−q+1

(3.92)

for m = 0 or m = N/2, where bk,q are the elements of the so-called triangle of the Bessel

numbers [12], line k, column l. These elements satisfy the recurrence equation

bk,q = (k − 2q + 1) bk−1,q−1 + bk−1,q, q = 0, 1, . . . , bk/2c, k = 1, 2, 3, . . .

b0,0 = 1

bk,−1 = bk,bk/2c+1 = 0, ∀k = 0, 1, 2, . . . . (3.93)

and have the closed-form expression

bk,q =
(

k

2q

)
(2q)!
q! 2q

. (3.94)

It can be seen, by inspection and direct computation of the derivative, that this sequence satisfies

the properties

T0,m(z, t) =
1
2

γ2
m(z, t) and (3.95)

∂Tk,m

∂t
(z, t) = Tk+1,m(z, t). (3.96)

We will now get a recursive equation for the kth order derivative of γm using all orders smaller

than k. To do this, we use the rule for the kth derivative of a product, proven in Appendix A,

Theorem A.1, here stated for the product of γm with itself as

dk

dxk
[γm(x)γm(x)] =

k∑
n=0

(
k

n

)
dnγm

dxn
(x)

dk−nγm

dxk−n
(x). (3.97)

If we use this rule with the function T0,m, we obtain

∂k T0,m

∂tk
(z, t) = Tk,m(z, t) =

1
2

∂ γ2
m

∂t
(z, t) =

1
2

k∑
n=0

(
k

n

)
∂n γm

∂tn
(z, t)

∂k−n γm

∂tk−n
(z, t). (3.98)

Solving for ∂kγm/∂tk (present in the first and last term of the summation), the required recurrence
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is obtained:

∂k γm

∂tk
(z, t) = γm(z, t)−1

[
Tk,m(z, t)− 1

2

k−1∑
n=1

(
k

n

)
∂n γm

∂tn
(z, t)

∂k−n γm

∂tk−n
(z, t)

]
,

k = 1, 2, 3, . . . , (3.99)

where we define
∑0

n=1
def= 0. Finally, Equation (3.99) can be further worked out due to the

symmetry in its summation, being the result

∂k γm

∂tk
(z, t) = γm(z, t)−1

Tk,m(z, t)−

k−1
2∑

n=1

(
k

n

)
∂n γm

∂tn
(z, t)

∂k−n γm

∂tk−n
(z, t)

 (3.100)

for k odd and

γm(z, t)−1

Tk,m(z, t)−
k
2−1∑
n=1

(
k

n

)
∂n γm

∂tn
(z, t)

∂k−n γm

∂tk−n
(z, t)−

(
k − 1
k/2

)(
∂k/2 γm

∂tk/2
(z, t)

)2


(3.101)

for k even.

To compress the signal using this Taylor expansion all that we need to do is to substitute t = 1

in (3.99) or (3.100) and (3.101), and in (3.91) or (3.92) for all m, using (3.87) and inserting the

result in (3.90). In particular, with this substitution, the expressions (3.91) and (3.92) simplify to

Tk,m(z, 1) =


Nc1

∑P−1
i=0

|ˆ̄hi(m)|2k+2|z(m)|2kk!(−1)k2k−1hPN−1
f=0 |ˆ̄hi(f)|2 |z(f)|2+c2

ik+1 for m 6= 0, N/2

Nc1

∑P−1
i=0

∑bk/2c
q=0 bk,q

|ˆ̄hi(m)|2(k−q)+2z(m)2(k−q)(k−q)!(−1)k−q2k−q−1hPN−1
f=0 |ˆ̄hi(f)|2 |z(f)|2+c2

ik−q+1 for m = 0, N/2.

(3.102)

It is relevant to note that the calculation of the full compressor (the time-domain version F̃ )

boils down to applying Equation (3.64) adapted to this suboptimal compressor, i.e., we now do

F̃ (x) =
DH

N√
N

G̃(
√

NDNΛwx). (3.103)

As a last remark, note that when N → ∞, due to the dominance expressed in Equation (3.79),

the compressor gain degenerates into the 0th order term of (3.89), so that asymptotically, the

compressor just multiplies the input windowed signal in the frequency domain by the square-root

of the inverse of the masking threshold, i.e.,

Γm,M (z)∣∣
N→∞

= Γm,0(z) = γm(z, 1) = ˆ̄a(z,m) and (3.104)

G̃m(z)∣∣
N→∞

= G̃m,M (z)∣∣
N→∞

=
√

N ˆ̄a(z,m) z(m). (3.105)

If you compare the compressor (3.105) with the normalization step (2.62), you will notice that
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asymptotically, the compressor does exactly the thing we wanted to avoid: normalize the input

signal by the perceptual weights ˆ̄a(z,m). Nevertheless, instead of transmitting these perceptual

weights through the channel, at the receiver we now only have to apply the inverse of the compres-

sor (3.105) (the expander); it is not necessary to use the weights at the receiver. How to calculate

the inverse of the compressor will be the subject of Section 3.5.

3.4 Analysis of the Suboptimal Compressor

Now that we have developed a suboptimal compressor, both in its most complete form (Section

3.2) and performing a Taylor approximation on it (Section 3.3), it is of interest to analyze it in

terms of its asymptotic behavior when N → ∞. As our “benchmark criterion”, the rate-loss

(2.39), is given in terms of the Jacobian matrix of the compressor, that matrix will be calculated

explicitly. Due to the lack of practical interest of Section 3.2 (derived from the previously explained

computational burden of the corresponding compressor), this matrix will only be calculated for

the compressor based on the Taylor expansion of Section 3.3. Note that, nevertheless, to obtain

the exact expressions for the complete compressor, M can be set to infinity in the equations of

this section due to the analyticity of γm of Equation (3.86) in t for all m.

After the calculation of the Jacobian Matrix of the suboptimal compressor, it will be time to

analyze its behavior for N →∞, and we will conclude that it converges in weak norm to the optimal

one of Equation (3.66). The asymptotic optimality of the scheme will then be naturally deduced

from this behavior, being the final conclusion that the rate-loss (2.39) vanishes asymptotically.

3.4.1 Jacobian Matrix of the Compressor

Let us then calculate the components of the Jacobian matrix of (3.90). We will apply again the

substitution trick relative to the hermitian symmetry of z of Equation (3.68) (see the surrounding

text). Simple differentiation rules lead to6

∂G̃m,M

∂zl
(z) =

√
N


∂ Γm,M

∂zm
(z) z(m) + Γm,M (z) for l = m

∂ Γm,M

∂zl
(z) z(m) for l 6= m

(3.106)

=
√

N


∑M

k=0
(−1)k

(k+1)!

(
∂k+1 γm

∂zm∂tk (z, 1) z(m) + ∂k γm

∂tk (z, 1)
)

for l = m∑M
k=0

(−1)k

(k+1)!

(
∂k+1 γm

∂zl∂tk (z, 1) z(m)
)

for l 6= m.
(3.107)

6For M = ∞, due to the analyticity of γm(z, t), the convergence of the Taylor series and of its term by term
derivative is uniform so that we can differentiate term by term [5].
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For the new term ∂k+1 γm/(∂zl∂tk), we differentiate both sides of the recursion (3.99) (with t = 1)

with respect to zl, obtaining

∂k+1 γm

∂zl∂tk
(z, 1) =− γm(z, 1)−2 ∂ γm

∂zl
(z, 1)

[
Tk,m(z, 1)− 1

2

k−1∑
n=1

(
k

n

)
∂n γm

∂tn
(z, 1)

∂k−n γm

∂tk−n
(z, 1)

]

+ γm(z, 1)−1

{
∂Tk,m

∂zl
(z, 1)− 1

2

k−1∑
n=1

(
k

n

)[
∂n+1 γm

∂zl∂tn
(z, 1)

∂k−n γm

∂tk−n
(z, 1) +

+
∂n γm

∂tn
(z, 1)

∂k−n+1 γm

∂zl∂tk−n
(z, 1)

]}
.

(3.108)

Reverse-substituting Equation (3.99) in (3.108), working out the result algebraically and taking

advantage of the symmetry of the two terms in the last summation of (3.108), we can obtain a

similar recursion to the one in (3.99), but now for the derivative ∂k+1 γm/(∂zl∂tk).

∂k+1 γm

∂zl∂tk
(z, 1) =− γm(z, 1)−1 ∂k γm

∂tk
(z, 1)

∂ γm

∂zl
(z, 1) +

+ γm(z, 1)−1

[
∂Tk,m

∂zl
(z, 1)−

k−1∑
n=1

(
k

n

)
∂n+1 γm

∂zl∂tn
(z, 1)

∂k−n γm

∂tk−n
(z, 1)

]
(3.109)

= γm(z, 1)−1

[
∂Tk,m

∂zl
(z, 1)−

k−1∑
n=0

(
k

n

)
∂n+1 γm

∂zl∂tn
(z, 1)

∂k−n γm

∂tk−n
(z, 1)

]
,

k = 0, 1, 2, . . . (3.110)

The validity of (3.110) for k = 0 (with
∑−1

n=0
def= 0) comes from the differentiation of Equation

(3.95). This recursion enables us to find the value for the kth order term of the Taylor expansion

of ∂ γm/∂zl around t = 1 (remember that the Schwarz’ theorem holds) using all previous orders

0, 1, . . . , k − 1, all outcomes of Equation (3.99) found so far (orders 1, 2, . . . , k) and a still to be

calculated ∂Tk,m/∂zl.

As you can see from Equation (3.107), to compute the Jacobian matrix of the compressor, we

multiply the result of (3.110) by z(m) so that it will be more convenient to calculate directly the

scaled version of (3.110) by z(m). It is easy to see that recursion (3.110) is linear in the sense that

if we insert a certain linear combination in the non-homogeneous term ∂Tk,m/(∂zl), the solution

we get is the same linear combination of each solution regarding each individual non-homogeneous

term. We can thus state that if we define the scaled

Dk,m,l(z) def=
∂k+1 γm

∂zl∂tk
(z, 1) z(m) and (3.111)

dk,m,l(z) def=
∂Tk,m

∂zl
(z, 1) z(m), (3.112)
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then (3.111) will be the solution of (3.110) if we insert (3.112) in the non-homogeneous term, i.e.,

Dk,m,l(z) = γm(z, 1)−1

[
dk,m,l(z)−

k−1∑
n=0

(
k

n

)
Dn,m,l(z)

∂k−n γm

∂tk−n
(z, 1)

]
,

k = 0, 1, 2, . . . (3.113)

The Jacobian matrix of compressor is then completely defined by equations (3.107), (3.113),

(3.99) and its dependencies, and the scaled derivative of Tk,m with respect to zl, defined in (3.112),

which will be calculated now. As previously stated, we will express Tk,m (Equation (3.102)) as an

analytic function using the hermitian symmetry of z, being thus our differentiation target

Tk,m(z, 1) =


Nc1

∑P−1
i=0

|ˆ̄hi(m)|2k+2z(m)kz(N−m)kk!(−1)k2k−1hPN−1
f=0 |ˆ̄hi(f)|2 z(f)z(N−f)+c2

ik+1 for m 6= 0, N/2

Nc1

∑bk/2c
q=0 bk,q

∑P−1
i=0

|ˆ̄hi(m)|2(k−q)+2z(m)2(k−q)(k−q)!(−1)k−q2k−q−1hPN−1
f=0 |ˆ̄hi(f)|2 z(f)(N−f)+c2

ik−q+1 for m = 0, N/2.

(3.114)

For l 6= m and l 6= N −m, the computation of (3.112) yields

dk,m,l(z)∣∣∣ l 6=m,
N−m

= z(m)z(l)∗
P−1∑
i=0

|ˆ̄hi(l)|2Nc1
|ˆ̄hi(m)|2k+2|z(m)|2k(k + 1)!(−1)k+12k[∑N−1

f=0 |
ˆ̄hi(f)|2 |z(f)|2 + c2

]k+2
(3.115)

for m 6= 0 and m 6= N/2, being this also valid for l = 0 or l = N/2, and

dk,m,l(z)∣∣
l 6=m,
N−m

= z(m)z(l)∗
P−1∑
i=0

|ˆ̄hi(l)|2·

·Nc1

bk/2c∑
q=0

bk,q
|ˆ̄hi(m)|2(k−q)+2z(m)2(k−q)(k − q + 1)!(−1)k−q+12k−q[∑N−1

f=0 |
ˆ̄hi(f)|2 |z(f)|2 + c2

]k−q+2
(3.116)

for m = 0 or m = N/2. For the case l = m or l = N −m, a new term appears:

dk,m,l(z)∣∣
l=m,
N−m

= dk,m,l(z)∣∣
l 6=m,
N−m

+ dk,m,l(z)∣∣ new
l=m,
N−m

, (3.117)

where

dk,m,l(z)∣∣ new
l=m,
N−m

=


Nc1k

∑P−1
i=0

|ˆ̄hi(m)|2k+2|z(m)|2kk!(−1)k2k−1hPN−1
f=0 |ˆ̄hi(f)|2 |z(f)|2+c2

ik+1 for l = m

ej2 arg z(m)Nc1k
∑P−1

i=0
|ˆ̄hi(m)|2k+2|z(m)|2kk!(−1)k2k−1hPN−1

f=0 |ˆ̄hi(f)|2 |z(f)|2+c2

ik+1 for l = N −m
(3.118)
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for m 6= 0 and m 6= N/2, where we define arg 0 def= 0 to handle de case z(N −m) = z(m) = 0, and

dk,m,l(z)∣∣new
l=m

= Nc1

bk/2c∑
q=0

bk,q(k − q)
P−1∑
i=0

|ˆ̄hi(m)|2(k−q)+2z(m)2(k−q)−1(k − q)!(−1)k−q2k−q[∑N−1
f=0 |

ˆ̄hi(f)|2 |z(f)|2 + c2

]k−q+1

(3.119)

for m = 0 or m = N/2. Notice that N −m = m = l in this last case.

The Jacobian matrix of the full compressor F̃M comes directly from Equation (3.65) applied

to the suboptimal compressor (although using a suboptimal compressor, we still use the scheme

of Figure 3.1 with G̃M instead of G)

F̃ ′
M (x) = DH

N G̃′
M (
√

NDNΛwx)DNΛw. (3.120)

3.4.2 Rearranging the Jacobian matrix for Practical Feasibility

Although the Jacobian matrix of the compressor is completely defined now, if we would im-

plement the results written above directly, we would have to compute (3.115) / (3.116) and also

(3.117) with (3.118) / (3.119) for all m,l = 0, 1, . . . , N − 1 and k = 0, 1, . . . ,M , summing up a

total of N2(M +1) executions. We would also have to run the recurrence (3.113) N2(M +1) times

and finally apply (3.107) N2 times (taking (3.111) into account), being thus the computational

complexity O(N2M). The memory spent in the described process is also O(N2M) if we execute it

exactly this way, or O(N2) if we do it component by component. If N is large (typically we work

with the order of thousands) and if we do not need to calculate the Jacobian matrix explicitly,

but we can leave it as the product of two matrices, then there is a much cheaper way to calculate

those two matrices, both in terms of number of computations and memory.

To see this fact we have to do some calculations. First, take a look at equations (3.115),

(3.116). The only dependence on l is on the terms z∗(l) and |ˆ̄hi(l)|2, being the remaining part on

the right a term similar to the summand of Tk,m in i, Equation (3.102), not depending on l, but

obviously depending on the summation variable i. Define then that last part as δk,m,i,

δk,m,i(z) =


Nc1

|ˆ̄hi(m)|2k+2|z(m)|2k(k+1)!(−1)k+12khPN−1
f=0 |ˆ̄hi(f)|2 |z(f)|2+c2

ik+2 for m 6= 0, N/2

Nc1

∑bk/2c
q=0 bk,q

|ˆ̄hi(m)|2(k−q)+2z(m)2(k−q)(k−q+1)!(−1)k−q+12k−qhPN−1
f=0 |ˆ̄hi(f)|2 |z(f)|2+c2

ik−q+2 for m = 0, N/2.

(3.121)

We have thus

dk,m,l(z)∣∣
l 6=m,
N−m

= z(m)z(l)∗
P−1∑
i=0

|ˆ̄hi(l)|2 δk,m,i(z). (3.122)

Due to the already mentioned linearity of the recursion (3.113), the solution of it, for l 6= m and



3.4 Analysis of the Suboptimal Compressor 47

l 6= N −m, when using (3.122), is of the form

Dk,m,l(z)∣∣
l 6=m,
N−m

= z(m)z(l)∗
P−1∑
i=0

|ˆ̄hi(l)|2 ∆k,m,i(z) (3.123)

with Dk,m,i coming out of the recursion

∆k,m,i(z) = γm(z, 1)−1

[
δk,m,i(z)−

k−1∑
n=0

(
k

n

)
∆n,m,i(z, 1)

∂k−n γm

∂tk−n
(z)

]
,

k = 0, 1, 2, . . . (3.124)

for all i = 0, 1, . . . , P − 1. Due to the same reason, for l = m or l = N −m, we can separately

process the contributions of (3.117), so that

Dk,m,l(z)∣∣
l=m,
N−m

= Dk,m,l(z)∣∣
l 6=m,
N−m

+ Dk,m,l(z)∣∣ new
l=m,
N−m

(3.125)

with

Dk,m,l(z)∣∣ new
l=m,
N−m

= γm(z, 1)−1

dk,m,l(z)∣∣ new
l=m,
N−m

−
k−1∑
n=0

(
k

n

)
Dn,m,l(z)∣∣ new

l=m,
N−m

∂k−n γm

∂tk−n
(z, 1)

 ,

k = 0, 1, 2, . . . (3.126)

The branch of Equation (3.118) for l = N −m is equal to the branch for l = m up to a scaling

factor ej2 arg z(m). The linearity of (3.126) delivers thus

Dk,m,l(z)∣∣ new
l=N−m

= ej2 arg z(m)Dk,m,l(z)∣∣new
l=m

. (3.127)

Upon the substitution of the found results in (3.107) (using (3.111)), we finally arrive at an

alternative expression for the elements of the Jacobian matrix of the compressor, namely, for l 6= m

and l 6= N −m

∂G̃m,M

∂zl
(z)∣∣∣ l 6=m,

N−m

=
√

N
M∑

k=0

(−1)k

(k + 1)!

(
z(m)z(l)∗

P−1∑
i=0

|ˆ̄hi(l)|2 ∆k,m,i(z)

)
(3.128)

=
√

Nz(m)z(l)∗
P−1∑
i=0

|ˆ̄hi(l)|2
(

M∑
k=0

(−1)k

(k + 1)!
∆k,m,i(z)

)
, (3.129)

and for l = m or l = N −m

∂G̃m,M

∂zl
(z)∣∣∣ l=m,

N−m

=
∂G̃m,M

∂zl
(z)∣∣∣ l 6=m,

N−m

+
∂G̃m,M

∂zl
(z)∣∣∣ new

l=m,
N−m

(3.130)
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with

∂G̃m,M

∂zl
(z)∣∣∣ new

l=m,
N−m

=
√

N


∑M

k=0
(−1)k

(k+1)!

(
Dk,m,l(z)∣∣new

l=m

+ ∂k γm

∂tk (z, 1)

)
for l = m

∑M
k=0

(−1)k

(k+1)! ej2 arg z(m)Dk,m,l(z)∣∣new
l=m

for l = N −m.

(3.131)

In matrix notation, define the N -by-P tall matrices (P is usually much smaller than N) A and

H by

[A(z)]m,i = z(m)

(
M∑

k=0

(−1)k

(k + 1)!
∆k,m,i(z)

)
and (3.132)

[H(z)]m,i = z(m)|ˆ̄hi(m)|2, (3.133)

m = 0, 1, 2, . . . , N − 1, i = 0, 1, . . . , P − 1, (3.134)

respectively. Furthermore, define an N -by-N matrix V as

V (z) = Λvf (z) + Λvb(z)D
2
N (3.135)

with

[vf (z)]m =
M∑

k=0

(−1)k

(k + 1)!

(
Dk,m,l(z)∣∣new

l=m

+
∂k γm

∂tk
(z, 1)

)
(3.136)

[vb(z)]m =


∑M

k=0
(−1)k

(k+1)! ej2 arg z(m)Dk,m,l(z)∣∣new
l=m

for m 6= 0, N/2

0 for m = 0, N/2
, (3.137)

m = 0, 1, 2, . . . , N − 1.

We name a matrix with the format of (3.135) as a cross-diagonal matrix. This kind of matrices

has non-zero entries only on the main diagonal and on the elements of D2
N with value 1 (cf.

matrix (3.60)). Using these newly defined matrices, the Jacobian matrix of the compressor in the

frequency domain, using the approximation by a Taylor expansion, is given by

G̃′
M (z) =

√
N(V (z) + A(z)H(z)H). (3.138)

It is relevant to note here that, due to the fact that the non-homogeneous terms of the recursions

(3.99), (3.124) and (3.126) for l = m, Tk,m, δk,m,i and (dk,m,l)new
l=m

, respectively, are real and have

their dependence on m only on magnitudes of hermitian symmetric signals (z and ˆ̄hi), ∆k,m,i and

(Dk,m,l)new
l=m

turn out to be real and symmetric in m, with the consequence that the matrices A

and H have hermitian symmetric columns (i.e., D2
NA = A∗ and the same for H), vf is real and

symmetric (vf = v∗f and D2
Nvf = vf ), and vb is hermitian symmetric (D2

Nvb = v∗b ).
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Equation (3.138) expresses the Jacobian matrix of the compressor (in its Taylor expansion

form) as the sum of a large, sparse N -by-N cross-diagonal matrix, which is in principle full-rank,

by a low-rank matrix AHH. If we do not need to calculate G̃′
M explicitly, but only vf , vb, A and

H, then, to calculate A we only need to run (3.124) N(M + 1)P times and (3.132) NP times

(with M +1 terms in the summation of each run). For vf and vb, the computation of (Dk,m,l)new
l=m

has complexity O(NM) and the computation of (3.126) / (3.127), O(M), so that the overall

complexity of the scheme is O(NMP ). In terms of the memory usage, we have again O(NP ) for

a component-wise computation and O(NMP ) for a computation of the equations step-by-step for

all components at the same time. As P is usually on the order of dozens (we used P = 60 in

practice) and N is on the order of thousands (N = 1024 is a reasonable value), there is quite a

performance gain. Furthermore, with this optimization, the computation time and memory usage

vary linearly with N and not quadratically, due to the number of filters P remaining constant

with varying N .

3.4.3 Asymptotic Optimality of the Compressor

We have now derived expressions which enable the computation of the derivative of the com-

pressor in a recursive form and worked them out into a form which sped up its execution time and

amount of memory spent. But what about the performance of the companding scheme associated

to this compressor with respect to the rate-distortion function? This performance is measured in

terms of the rate-loss of Equation (2.39) and, indirectly, through the proximity of the jacobian

matrix G̃′
M to the ideal one of Equation (3.66). We will prove in this subsection that their dis-

tance, in terms of the Hilbert-Schmidt norm, disappears with N asymptotically large, making the

rate-loss vanish under the same conditions.

As previously explained (cf. equations (3.104) and (3.105) and corresponding text), asymptot-

ically, the 0th order term of the compressor gain is dominant, so that the compressor boils down

to multiplying the input signal (in the frequency domain) by the square-root of the inverse of the

masking threshold. The original compressor of Section 3.2 is thus asymptotically the same as the

one corresponding to the Taylor expansion of Section 3.3 for any M ; they both collapse to the

one with M = 0. It is then intuitive, also for large N , that the derivative of the compressor may

be well approximated by the derivative of the asymptotic compressor, i.e., by the 0th order terms

of the equations deduced in Subsection 3.4.1. To see that this is indeed the case, let us check the

asymptotic behavior of those equations. Using the same approach as the one we used to derive

equations (3.83) to (3.85), it is true that

lim
N→∞

|ˆ̄hi(m)|2 Z(m)Z(l)∗∑N−1
f=0 |

ˆ̄hi(f)|2 |Z(f)|2 + c2

= 0 (3.139)

in probability, for all l,m = 0,1, . . . , N − 1 with a convergence rate of O(1/N), i.e., the left hand
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side becomes deterministic and equal to 0 for all m when N →∞ and on average it decreases at

a rate equal to the one of the sequence 1/N . The main differences towards the previous deduction

are on the term c2 and on the usage of Z(l)∗ instead of Z(m)∗. If we assume L proportional to

N (for large N , we even set usually L = N), then c2 is proportional to N2 (cf. Subsection 2.3.2)

so that the effect of it on the previous deduction is just a summation of a constant (the constant

c′2) in the denominator of the right hand side of Equation (3.82). Furthermore, the amplitude

of Z(l)/
√

N has the same behavior (in terms of its expected value and variance) as the one of

Z(m)/
√

N with varying N (for l 6= m), as it belongs to the same (square-root of the) periodogram,

but simply calculated on another frequency value.

We can also formulate a similar convergence statement for a similar sequence of random vari-

ables than the one of Equation (3.139), but without signal on the numerator. We have in that

case

lim
N→∞

|ˆ̄hi(m)|2∑N−1
f=0 |

ˆ̄hi(f)|2 |Z(f)|2 + c2

= 0. (3.140)

Here,

1
N2

N−1∑
f=0

|ˆ̄hi(f)|2 |Z(f)|2 + c2

 (3.141)

converges in probability to a non-zero value when N → ∞ (to the power of X plus a constant),

so that, due to the continuous mapping theorem [16], (3.140) converges to 0 at a rate O(1/N2).

Due to the equivalence between convergence in probability and convergence in distribution

when the limit is a deterministic constant [16], we can use Slutsky’s theorem [26] and limits

(3.139) and (3.140) to state that the variable dk,m,l of equations (3.115) and (3.116) converges in

probability to 0 when N →∞ at a rate O(1/Nk+2), k ≥ 0. Using the continuous mapping theorem

again, γm(t, 1) of Equation (3.86) does also converge to 0, but at a rate O(1/
√

N). Furthermore, in

Equation (3.113), the lowest order term of ∂k−n γm/∂tk−n that we use is for k−n = 1, and as Tk,m

of Equation (3.102) vanishes with O(1/Nk+1), the former function, expressed in Equation (3.99),

vanishes at a rate at least O(1/N1,5), i.e., it vanishes with O(1/Nr/2), r ≥ 3. Consequently,

the result of Equation (3.113) also vanishes with O(1/Nr/2), r ≥ 3, and the slowest rate of

convergence occurs with k = 0 (for k = 0 we have thus a rate O(1/N3/2) and for example for

k = 1 a rate O(1/N5/2)). We can finally conclude that the dominant term in the elements of the

Jacobian matrix (3.107) is ∂0 γm/∂t0 = γm, which occurs for l = m, and which decreases at a

rate O(1/
√

N). This term is followed by ∂ γm/∂zl z(m) = D0,m,l (both for l = m and l 6= m),

decreasing at a rate O(1/N3/2). For l 6= m, the term D0,m,l is now the most slowly falling. The

terms that were pointed out are exactly the ones of the Jacobian matrix of the compressor for

M = 0.

The last paragraph should have already given some intuition why the compressor is asymptot-

ically optimal: the terms Dk,m,l all fall at a rate at least O(1/N3/2), whereas the term γm falls
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much more slowly, at a pace O(1/
√

N). The former terms become thus negligible for N → ∞
with respect to the latter one, and if we have the latter term alone, we fulfill the optimality con-

ditions of Equation (3.69). More formally, let us try to calculate the Hilbert-Schmidt distance

from G′(z)−1G̃′
M (z) to the identity matrix. First, look at the Jacobian matrix of the suboptimal

compressor, for M = 0. As already explained, the neglectfulness of Dk,m,l for k > 0 makes the

exact derivative for M 6= 0 arbitrarily near to this one when N → ∞. By simple substitution

of equations (3.115), (3.116) and (3.86) in Equation (3.113) and then (3.107), using further the

definition (3.111) and the identity (3.87), we get

∂G̃m,M

∂zl
(z)∣∣∣

N→∞

=
∂G̃m,0

∂zl
(z) =

√
N


d0,m,l(z)
γm(z,1) + γm(z, 1) for l = m

d0,m,l(z)
γm(z,1) for l 6= m

(3.142)

=
√

Nγm(z, 1)
(

d0,m,l(z)
γm(z, 1)2

+ Iml

)
(3.143)

=
√

N ˆ̄a(z,m)


−Nc1

∑P−1
i=0

|ˆ̄hi(m)|2|ˆ̄hi(l)|2 z(m)z(l)∗hPN−1
f=0 |ˆ̄hi(f)|2 |z(f)|2+c2

i2

Nc1

∑P−1
i=0

|ˆ̄hi(m)|2PN−1
f=0 |ˆ̄hi(f)|2 |z(f)|2+c2

+ Im,l

 , (3.144)

where Im,l is the Kronecker delta at (m,l), i.e., the element (m,l) of the identity matrix. Note that

equations (3.118) and (3.119) are 0 in this case (k = 0). From (3.66), it is then obvious that

[
G′(Z)−1G̃′

M (Z)∣∣
N→∞

]
m,l

=

−
∑P−1

i=0
|ˆ̄hi(m)|2|ˆ̄hi(l)|2 Z(m)Z(l)∗hPN−1

f=0 |ˆ̄hi(f)|2 |Z(f)|2+c2

i2∑P−1
i=0

|ˆ̄hi(m)|2PN−1
f=0 |ˆ̄hi(f)|2 |Z(f)|2+c2

+ Im,l (3.145)

and, from definition (3.35), now for the field of the complex numbers (i.e., using squared magni-

tudes),

∥∥∥∥ G′(Z)−1G̃′
M (Z)∣∣

N→∞
− I

∥∥∥∥2

HS

=
1
N

N−1∑
m,l=0

∣∣∣∣∣∣∣∣
∑P−1

i=0
|ˆ̄hi(m)|2|ˆ̄hi(l)|2 Z(m)Z(l)∗hPN−1

f=0 |ˆ̄hi(f)|2 |Z(f)|2+c2

i2∑P−1
i=0

|ˆ̄hi(m)|2PN−1
f=0 |ˆ̄hi(f)|2 |Z(f)|2+c2

∣∣∣∣∣∣∣∣
2

. (3.146)

We can upper bound this last equation by taking the maximum of the summand:

∥∥∥∥ G′(Z)−1G̃′
M (Z)∣∣

N→∞
− I

∥∥∥∥2

HS

≤ N
N−1
max
m,l=0

∣∣∣∣∣∣∣∣
∑P−1

i=0
|ˆ̄hi(m)|2|ˆ̄hi(l)|2 Z(m)Z(l)∗hPN−1

f=0 |ˆ̄hi(f)|2 |Z(f)|2+c2

i2∑P−1
i=0

|ˆ̄hi(m)|2PN−1
f=0 |ˆ̄hi(f)|2 |Z(f)|2+c2

∣∣∣∣∣∣∣∣
2

. (3.147)

From limits (3.139) and (3.140) and Slutsky’s theorem, the term in the numerator of the right

hand side of (3.147) (inside the squared magnitude) converges in probability to 0 for all m,l =

0,1, . . . ,N − 1 at a rate O(1/N3) when N →∞. The same happens to the denominator, but at a

rate O(1/N2). By dominance of the numerator, the quotient also converges to 0, namely at a rate
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O(1/N). The squared magnitude of the fraction converges thus at rate O(1/N2) and the complete

expression converges to 0 at a rate O(1/N). We have thus

lim
N→∞

∥∥∥∥ G′(Z)−1G̃′
M (Z)∣∣

N→∞
− I

∥∥∥∥
HS

= 0 (3.148)

in probability, at a rate O(1/
√

N), i.e., G′(z)−1G̃′
M (z) is asymptotically equivalent to the identity

matrix, in the sense explained in [25]. We will denote this asymptotic behavior by

G′(Z)−1G̃′
M (Z) N→∞→ I. (3.149)

As we will see in Section 3.5, the Jacobian matrix of the compressor with the 0th order Taylor

expansion of the integrand γm(z,t) (M = 0), whose elements are written in (3.144), is invertible

even with finite N (with N →∞ this statement is trivial, as we fulfill (3.66) and ˆ̄a(x, f) > 0, ∀f).

If we further admit that this happens for all other orders M = 1,2, . . . ,∞, we can finally use

simple matrix convergence properties deduced in [25, Theorem 2.1] and the invariance of the

Hilbert-Schmidt norm upon hermitian transposition of matrices to obtain

G̃′
M (Z) N→∞→ G′(Z), (3.150)

G̃′
M (Z)H N→∞→ G′(Z)H and (3.151)

G̃′
M (Z)−1G̃′

M (Z)−HG′(Z)HG′(Z) N→∞→ I. (3.152)

From equations (3.65), (3.120) and Equation (2.38), we can see that

tr[M̃(X)−1M(X)] = tr
[(

F̃ ′(X)TF̃ ′(X)
)−1

F ′(X)TF ′(X)
]

(3.153)

= tr
[
G̃′

M (Z)−1G̃′
M (Z)−HG′(Z)HG′(Z)

]
(3.154)

and

det M̃(X)
det M(X)

=
1

det[M̃(X)−1M(X)]
=

1
det[G̃′

M (Z)−1G̃′
M (Z)−HG′(Z)HG′(Z)]

(3.155)

so that, due to the asymptotic equivalent distribution of the eigenvalues of the matrices on the left

and right hand side of (3.152), we can use (3.56) with Ψ(v) = v for the trace and Ψ(v) = log2(v)

for the determinant to state that, asymptotically, the rate-loss (2.39) vanishes and the companding

scheme is optimal.
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3.5 Expander

After having derived a suboptimal compressor and having analyzed it in terms of its Jacobian

matrix and its asymptotic behavior with increasing vector dimension, we would like to complete

the whole chain of the companding scheme depicted in Figure 1.2 by building an expander which

implements the inverse function of the suboptimal compressor developed in sections 3.2 and 3.3.

First, we must first prove that such an inverse function exists, at least locally (when the domain

of F is a small neighborhood of a realization x of the input signal X). That proof will only be done

for a Taylor order of the compressor M = 0 due to the complexity of the equations for M > 0.

Nevertheless, as we will see in the simulations (Section 4.3) the compressor with this order of the

Taylor expansion is the most interesting one, since the contribution of the 0th order term to the

gain Γm of Equation (3.89) is dominant. Following the proof, we build an expander based on

numerical methods, using as an initial estimate the signal from the previous audio frame. Finally,

a memory optimization of the expander is done, so that it can run on very large vector dimensions;

in practice, values as large as N = 65536 could be achieved.

3.5.1 Invertibility of the Compressor

Obviously, due to the one-to-one relation between the whole compressor F̃ and the compressor

in the frequency domain G̃, depicted in Figure 3.1 (adapted to the suboptimal compressor), F̃ is

invertible if and only if G̃ is invertible as well. Indeed, using Equation (3.103), we can get the

equivalence

ξ = F̃ (y) =
DH

N√
N

G̃(
√

NDNΛwy) ⇐⇒ y = F̃−1(ξ) = Λ−1
w

DH
N√
N

G̃−1(
√

NDNξ), (3.156)

so that if we know that G̃ is invertible, then we conclude that F̃ is invertible as well. By rearranging

the left hand side of (3.156) so that we have G̃ in terms of F̃ , we can also construct a similar

equivalence, concluding that if F̃ is invertible, so is G̃.

We consequently only have to invert G̃ at point ξ̂ =
√

NDNξ to find out the inverse of F̃ . Due

to the high mathematical complexity of the equations of sections 3.2 and 3.3, no proof could be

found for the invertibility of G̃ for an order M of the Taylor expansion greater than 0. Nevertheless,

as it will be shown in the simulations, Section 4.3, the compressor with order M = 0 is already an

excellent approximation of the compressor with M = ∞, so that M = 0 is the most interesting

(and the least computationally expensive) case to study. Let us then try to get an expression for

the determinant of G̃′
M (z) for M = 0 (or equivalently, for N →∞) to check whether this matrix

is invertible or not. To do that, we first write (3.144) in matrix form, getting an expression similar

to (3.138):

G̃′(z)∣∣
N→∞

= G̃′
M (z)∣∣

M=0
= Λ√

N ˆ̄a(z)

(
I + [−Λˆ̄a(z)−2A′(z)]A′(z)H

)
(3.157)
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with

[A′(z)]m,i =
√

Nc1 |ˆ̄hi(m)|2z(m)∑N−1
f=0 |

ˆ̄hi(f)|2 |z(f)|2 + c2

,

m = 0, 1, 2, . . . , N − 1, i = 0, 1, . . . , P − 1. (3.158)

Using the Matrix Determinant Lemma [27],

det
[
G̃′

M (z)∣∣
M=0

]
= det[Λ√

N ˆ̄a(z)] det
[
I + [−Λˆ̄a(z)−2A′(z)]A′(z)H

]
(3.159)

= det[Λ√
N ˆ̄a(z)] det

[
I−A′(z)HΛˆ̄a(z)−2A′(z)

]
, (3.160)

which means that G̃′
M (with M = 0) is invertible if and only Λ√

N ˆ̄a and I − A′HΛˆ̄a−2A′ are both

invertible. This is obviously valid for the former matrix, since ˆ̄a(z,m) > 0, m = 0, 1, . . . , N −1,∀z
hermitian symmetric. For the latter matrix, this validity is not obvious at first sight; we will use

the Levy-Desplanques theorem to prove that this is indeed the case. If we express each component

(i,j) of the matrix explicitly, we get

[
I−A′(z)HΛˆ̄a(z)−2A′(z)

]
i,j

= Ii,j −
N−1∑
m=0

|ˆ̄hi(m)|2|ˆ̄hj(m)|2|z(m)|2hPN−1
f=0 |ˆ̄hi(f)|2 |z(f)|2+c2

ihPN−1
f=0 |ˆ̄hj(f)|2 |z(f)|2+c2

i
∑P−1

q=0
|ˆ̄hq(m)|2PN−1

f=0 |ˆ̄hq(f)|2 |z(f)|2+c2

,

i,j = 0, 1, . . . , P − 1. (3.161)

We can assume that z 6= 0, since even in silent periods of audio frames there is always noise. The

sum on the right hand side of (3.161), representing the components of A′HΛˆ̄a−2A′, is then strictly

positive as its terms are derived from squared magnitudes (where at least one term is non-zero).

Furthermore, if we sum the columns of the mentioned matrix, we get

P−1∑
j=0

[
A′(z)HΛˆ̄a(z)−2A′(z)

]
i,j

=
P−1∑
j=0

N−1∑
m=0

|ˆ̄hi(m)|2|ˆ̄hj(m)|2|z(m)|2hPN−1
f=0 |ˆ̄hi(f)|2 |z(f)|2+c2

ihPN−1
f=0 |ˆ̄hj(f)|2 |z(f)|2+c2

i
∑P−1

q=0
|ˆ̄hq(m)|2PN−1

f=0 |ˆ̄hq(f)|2 |z(f)|2+c2

(3.162)

=
N−1∑
m=0

|ˆ̄hi(m)|2|z(m)|2PN−1
f=0 |ˆ̄hi(f)|2 |z(f)|2+c2

∑P−1
j=0

|ˆ̄hj(m)|2PN−1
f=0 |ˆ̄hj(f)|2 |z(f)|2+c2∑P−1

q=0
|ˆ̄hq(m)|2PN−1

f=0 |ˆ̄hq(f)|2 |z(f)|2+c2

(3.163)

=
∑N−1

m=0 |
ˆ̄hi(m)|2|z(m)|2∑N−1

f=0 |
ˆ̄hi(f)|2 |z(f)|2 + c2

< 1 (3.164)

since c2 > 0. As each term of that matrix is positive, each term must lie between 0 and 1.
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Consequently, the magnitude of the (i,i)th term of I−A′HΛˆ̄a−2A′ is equal to the term itself,∣∣∣∣[I−A′(z)HΛˆ̄a(z)−2A′(z)
]

i,i

∣∣∣∣ = 1−
[
A′(z)HΛˆ̄a(z)−2A′(z)

]
i,i

, (3.165)

and the magnitude of the (i,j)th term, for j 6= i is equal to the symmetric of the term,∣∣∣∣[I−A′(z)HΛˆ̄a(z)−2A′(z)
]

i,j

∣∣∣∣ = [A′(z)HΛˆ̄a(z)−2A′(z)
]

i,j
(3.166)

If we subtract the sum of the elements of (3.166) from (3.165), we have thus

∣∣∣∣[I−A′(z)HΛˆ̄a(z)−2A′(z)
]

i,i

∣∣∣∣−P−1∑
j=0
j 6=i

∣∣∣∣[I−A′(z)HΛˆ̄a(z)−2A′(z)
]

i,j

∣∣∣∣ = 1−
P−1∑
j=0

[
A′(z)HΛˆ̄a(z)−2A′(z)

]
i,j

(3.167)

and

1−
P−1∑
j=0

[
A′(z)HΛˆ̄a(z)−2A′(z)

]
i,j

= 1−
∑N−1

m=0 |
ˆ̄hi(m)|2|z(m)|2∑N−1

f=0 |
ˆ̄hi(f)|2 |z(f)|2 + c2

> 0. (3.168)

Equations (3.167) and (3.168) tell us that I− A′HΛˆ̄a−2A′ is strictly diagonally dominant. By the

Gershgorin circle theorem [29], each eigenvalue of this matrix lies on an interval7 not containing the

origin, with the consequence that the matrix is invertible. This is known as the Levy-Desplanques

theorem [29].

3.5.2 A Numerical Expander

After some calculations, we arrived finally at the conclusion that G̃′
M is invertible when M = 0,

for all N . By the implicit function theorem in complex analysis [54], there is a local neighborhood

of the function G̃0 where it is invertible (i.e., where G̃−1
0 exists), when defined on that domain.

We are thus sure that, for M = 0, if we use an adequate numerical method to solve the equation

G̃(z) = ξ̂ (3.169)

with a sufficiently close initial estimate z(0), the solution exists and the method will converge to

it. We assume that this also happens for M = 1, 2, . . . ,∞. For the inversion of the complete

compressor function F̃ (x), we only have to use Equation (3.156).

For the first iteration of the method, we propose to rearrange Equation (3.77) as

z(m) =
ξ̂√

N Γm(z)
(3.170)

7The eigenvalues are real due to the symmetry of the matrix.
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and perform a fixed-point iteration of it, i.e., build a second estimate z(1) with

z(1)(m) =
ξ̂√

N Γm(z(0))
, m = 0, 1, . . . , N − 1. (3.171)

This first iteration can be motivated as follows. In the first place, remember that Γ(z), Equation

(3.89), was obtained using a recursive equation (Equation (3.99)), where the non-homogeneous

term, Equation (3.102), was not dependent on the phase of the components of z, but only on

their magnitude. The execution of iteration (3.171) has thus the advantage that it wipes out

phase differences between the initial estimate z(0) and the final desired value z of (3.169). In

other words, if z(0) is very close to z up to phase differences, the second estimate z(1) will be

an excellent initial estimate for the next numerical method, which will be used to “fine-tune” the

obtained vector z(1). The same argument can be applied if z(0) has a similar masking threshold
ˆ̄a−2 than the one of z. Remember that the 0th order term of Γm is exactly the square-root of

the inverse of the masking threshold and that for high vector dimension, only this term matters

(Equation (3.104)). For similar masking thresholds we get thus similar Γ(z) vectors.

For the initial estimate z(0), we propose to use the vector z obtained from running the numerical

methods described in this section on the last audio frame. With this choice, the masking threshold

will not have changed much between the last and current frames due to the stationarity of typical

audio signals in the order of the dozens of milliseconds. By using Equation (3.171) in this way, we

thereby get a good initial estimate for fine-tuning.

For the fine-tuning process, we could use for example the Newton’s method [44] for G̃(z)− ξ̂,

z(n+1) = z(n) − G̃′(z(n))−1
(
G̃(z(n))− ξ̂

)
, n = 1, 2, 3, . . . , (3.172)

with the Jacobian matrix G̃′−1
derived in subsections 3.4.1 and 3.4.2, until successive estimates

are equal up to numerical noise, i.e., until

‖z(n+1) − z(n)‖√
N

< ε, (3.173)

where ε is the numerical unit round-off of the machine executing the algorithm.

Although this process is feasible, calculating the Jacobian matrix was found be, in practice,

computationally expensive. For speeding up this process we thus propose to use a quasi-Newton

method, also of the form

z(n+1) = z(n) − J̃−1
n

(
G̃(z(n))− ξ̂

)
, n = 1, 2, 3, . . . (3.174)

but where now J̃n is an approximation to G̃′(z(n)), instead of its real version. One possibility to

determine J̃n is to use the equivalent of the secant method in multiple dimensions, the Broyden’s
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method [44]. In this method, J̃n is chosen such that it satisfies the secant equation

J̃n

(
z(n) − z(n−1)

)
= G̃(z(n))− G̃(z(n−1)). (3.175)

As this equation is underdetermined for N > 1 (it has N2 unknowns, namely the components

of J̃n and N equations), we have to pose an additional constraint to get a specific solution J̃n.

Broyden chose the solution J̃n that minimized the Frobenius distance to the matrix of the previous

iteration J̃n−1, i.e., J̃n fulfills

J̃n = argminJ̃‖J̃ − J̃n−1‖F = argminJ̃

√√√√ N−1∑
m,l=0

∣∣∣[J̃ ]m,l − [J̃n−1]m,l

∣∣∣2. (3.176)

This solution has the closed form of a rank-one update with respect to the matrix of the previous

iteration, namely [44]8

J̃n = J̃n−1 +

(
∆G̃(n) − J̃n−1∆z(n)

)
∆z(n)H

‖∆z(n)‖2
, n = 2, 3, 4, . . . (3.177)

with

∆G̃(n) = G̃(z(n))− G̃(z(n−1)) and (3.178)

∆z(n) = z(n) − z(n−1). (3.179)

By application of the Sherman-Morrison formula [29], we also have a rank-one update formula

directly for the inverse:

J̃−1
n = J̃−1

n−1 +

(
∆z(n) − J̃−1

n−1∆G̃(n)
)

∆z(n)HJ̃−1
n−1

∆z(n)HJ̃−1
n−1∆G̃(n)

, n = 2, 3, 4, . . . (3.180)

Obviously, these rank-one update formulas need an initial matrix, J̃1, which is the original non-

approximated full-rank Jacobian matrix (whose computation is expensive),

J̃1 = G̃′(z(1)). (3.181)

Practical usage shows that we can gain up to approximately two times on computation time

if we employ the Broyden’s method when the computation of the Jacobian matrix is expensive.

We cannot gain much more with this process in comparison to the Newton’s method because,

although each iteration is faster to execute, the convergence of Newton’s method is quadratic and

the convergence of Broyden’s method, although supra-linear, is slower [44] (more iterations are

8In [44], the solution of a real non-linear equation system is considered, but it is easy to see that the following
equation for G is equivalent to the one of the book for the real function F̃ .
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executed for the same precision). Note additionally that, as the full compressor function F̃ (x) is

a real-valued real vector function, the Jacobian matrix of G̃ satisfies

DH
N G̃′(z)DN ∈ RN×N , (3.182)

or equivalently, if a test vector v ∈ CN is hermitian symmetric then G̃′(z)v is hermitian symmetric

as well. It is easy to prove that the same happens with G̃′(z)−1, so that, using additionally the

property that the dot-product of two hermitian symmetric vectors is real (prove!), the denominator

of (3.180) is real for n = 2. Using the same property of G̃′(z) and G̃′(z)−1, we can also conclude

that, for n = 2, both vectors which form the one-rank update in equations (3.177) and (3.180)

(i.e., the vectors a and b which produce the update abH) are hermitian symmetric. The final

consequence is that, for all n = 2, 3, 4, . . ., the one-rank update vectors are hermitian symmetric

and DH
N J̃nDH is a real matrix.

3.5.3 Memory Optimization of the Expander

The developed expander uses a quasi-Newton method of the form (3.174) to fine-tune the initial

estimate z(1). Unfortunately, this method has the inconvenient that the approximation for the

Jacobian matrix J̃n takes a space of O(N2) in the memory of the computer that executes it. When

the vector dimension that we are working with is large (typically we are working with value of N

around 1024, but for theoretical simulations this number can go up to N = 65536), the memory

used just to store that matrix is unbearably high. If, for example, we want to use N = 65536 just

for the sake of theoretical simulations of the asymptotical behavior of the compressor and if one

component of the matrix takes 32 bit of memory space, we will have to possess at least 16 GB

RAM (Random Access Memory)! There is a solution to this problem, which is to avoid calculating

J̃n explicitly, taking advantage of the Jacobian matrix of the compressor in the form of Equation

(3.138).

Indeed, Equation (3.138) expresses the Jacobian Matrix as a low-rank (rank P ) update of a

cross-diagonal matrix (see Section 3.4.2 for an explanation on cross-diagonal matrices). We can

exploit this form in the inversion of the matrix using the Woodbury matrix identity [27], here

transcribed in a specialized form as

(V + XY H)−1 = V −1 − V −1X
(
I + Y HV −1X

)−1
Y HV −1, (3.183)

for generic matrices V ∈ CN×N and X,Y ∈ CN×P , with N and P arbitrary positive integers.

Applying this identity to (3.138) delivers

G̃′
M (z)−1 =

1√
N

V (z)−1
(
I−A(z)C(z)−1H(z)HV (z)−1

)
, (3.184)
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where

C(z) = I + H(z)HV (z)−1A(z). (3.185)

Additionally, as proven in Appendix A (Section A.2), the inverse of a cross-diagonal matrix is cross-

diagonal. Applying the result of the inverse in equations (A.15) to (A.17) to V (z) in Equation

(3.135), taking into account the hermitian symmetry of vf and vb and the fact that vf ∈ RN , we

get

V (z)−1 = Λuf (z) + Λub(z)D
2
N (3.186)

with

uf (z,m) =
1

vf (z,m)2 − |vb(z,m)|2
vf (z,m) and (3.187)

ub(z,m) = − 1
vf (z,m)2 − |vb(z,m)|2

vb(z,m). (3.188)

Note that V −1 also has the property that uf and ub are hermitian symmetric (and uf is even

real), so that a left multiplication of a hermitian symmetric vector by V −1 produces a hermitian

symmetric vector as well. Additionally, due to the hermitian symmetry of the columns of A and

H, (3.185) is a real (P -by-P ) matrix. Finally, note that ub(z, 0) = ub(z,N/2) due to the lower

branch of Equation (3.137).

We can thus implement any multiplication of the matrix G̃′
M (z)−1 with any vector v with

the block diagrams of Figure 3.2. As you can see from the main diagram, Figure 3.2(a), we

first multiply the input vector v with the cross-diagonal matrix V −1. Although this is a large

N -by-N matrix, we do not need to calculate it explicitly, as it is sparse. Indeed, as shown in

Equation (3.186) and in the block diagram of Figure 3.2(b), for performing this multiplication

we only need to swap the input vector, i.e., do the operation [v(0), v(1), v(2), . . . , v(N − 1)]T →
[v(0), v(N −1), v(N −2), . . . , v(1)]T (this is the left multiplication by D2

N ; cf. matrix (3.60)), then

multiply the result point-wise by ub, and sum it to the point-wise multiplication of the original

vector by uf . The second step in the main diagram is the left multiplication of the result of

V −1v by the P -by-N matrix HH, producing a vector of size P . Note that usually P � N and

that this resulting vector is real in the case of interest, where v is hermitian symmetric. We then

multiply this last result by a P -by-P matrix C−1, and finally by the N -by-P matrix A, returning

to the original dimension N . That result (which is hermitian symmetric in the case of interest) is

subtracted from the original input vector and the output is multiplied again with V −1 (again with

the diagram of Figure 3.2(b)), being thus (3.184) implemented without recurring to any N -by-N

matrix. The maximum matrix size that we need is N -by-P , and taking the same example as

above (N = 65536) with P = 60, we only need 15 MB×2 to store the matrices A and H now (the

other elements have a negligible memory consumption with respect to this one). Note that for the

calculation of C, we do not need to use any N -by-N either; we only need to run the diagram of

Figure 3.2(c) for every column of C (P times), and this scheme runs operations which are similar



60 3 A Suboptimal Companding Scheme

to the ones described above. The inversion of C for the execution of Figure 3.2(a) is either done

explicitly (the matrix is small; its size is namely P -by-P ) once, or we can solve the linear equation

system C(z) v = r every time we want to do an operation of the type v = C(z)−1r, v,r ∈ RP .

v
N +//•

��

⊕ N // V (z)−1 // G̃′(z)−1v

V (z)−1 N // H(z)H P // C(z)−1 P // A(z)

N

− OO

(a) Main Diagram

v
N //•

��

×uf (z) N // ⊕ N // V (z)−1v

D2
N

N // ×ub(z) N //•

OO

(b) Multiplication of v with the Cross-diagonal Matrix V −1

[A(z)]·,i
N // V (z)−1 N // H(z)H P // ⊕ P // [C(z)]·,i

[I]·,i

P

OO

(c) Building the column i of C, i = 0, 1, . . . , P − 1

Figure 3.2: Block Diagrams for the execution of operation G̃′(z)−1v for some (hermitian symmet-
ric) vector v. The labels of the arrows denote the size of the vector output on the previous block,
× denotes point-wise multiplication and • are simple junction points.

To apply the Broyden’s method using the cheaper way to compute the matrix multiplication

G̃′(z)−1v described in the last paragraph, it is easy to see that if we define

a(n) =
∆z(n) − J̃−1

n−1∆G̃(n)

∆z(n)HJ̃−1
n−1∆G̃(n)

and (3.189)

b(n) = J̃−H
n−1∆z(n) (3.190)

then the approximation of the Jacobian matrix in Broyden’s method, (3.180) and (3.181), can be

written non-recursively as

J̃−1
n = G̃′

M (z(1))−1 +
n∑

k=2

a(k)
[
b(k)
]H

, n = 1, 2, 3, . . . (3.191)

with
∑1

k=2 ≡ 0. If we keep all a(k), b(k), k = 2, 3, . . . n on memory, we can thus calculate any
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J̃−1
n v (for hermitian symmetric v, cf. Equation (3.174)) by implementing

J̃−1
n v = G̃′

M (z(1))−1v +
n∑

k=2

a(k)

([
b(k)
]H

v

)
(3.192)

with the methodology described above for G̃′(z(1))−1v, i.e., we accumulate, for k = 2, 3, . . . , n, the

dot-product of v with [b(k)]H (a real scalar) times the vector a(k) (a hermitian symmetric vector),

and sum the result with the inverse of the derivative of G̃M at z(1), applied to v using the diagram

of Figure 3.2. To build the new a(n), Equation (3.189), when passing from iteration n− 1 to the

iteration n, we can use (3.192) for J̃−1
n−1 with v = ∆G̃(n). For b(n), we do a similar procedure with

J̃−H
n . Applying the hermitian conjugate operator to (3.191) and (3.184) we get

J̃−H
n = G̃′(z(1))−H +

n∑
k=2

b(k)
[
a(k)

]H
, n = 1, 2, 3, . . . (3.193)

J̃−H
n v = G̃′(z(1))−Hv +

n∑
k=2

b(k)

([
a(k)

]H
v

)
(3.194)

and

G̃′
M (z)−H =

1√
N

(
I− V (z)−HH(z)C(z)−HA(z)H

)
V (z)−H (3.195)

=
1√
N

(
I− V (z)−1H(z)C(z)−TA(z)H

)
V (z)−1 (3.196)

=
1√
N

V (z)−1
(
I−H(z)C(z)−TA(z)HV (z)−1

)
, (3.197)

where in (3.196) we used the fact that uf is real and that ub is hermitian symmetric to state

V −H = V −1 and also the fact that C is a real matrix. We can thus calculate b(n) using (3.194)

for J̃−H
n−1 and (3.197) with the operation order described in the text corresponding to Figure 3.2.

These equations are very similar to the ones of J̃−1
n−1, with the difference that a gets switched by

b, A by H and vice-versa, and we use C−T instead of C−1. The diagram that we get for this

operation is the same as the diagram of Figure 3.2, up to these differences.



Chapter 4

Simulating the Suboptimal

Compressor

A suboptimal companding scheme was developed and analyzed in Chapter 3, and it was proven

that it behaves optimally when the vector dimension N goes to infinity. In this chapter, we simulate

the companding scheme, showing simulation figures and tables that corroborate the theoretical

results. The main simulation compares rate-distortion figures associated to the distortion measure

with the actual rate-distortion performance obtained by the compander. The simulations are done

for the case of high resolution, that is, when the size of the basic element of the quantization lattice

is much smaller than the standard deviation of the source (D → 0). This approximation is valid

when we are coding audio at high fidelity (at about 32 kbps per channel or higher), which is the

case of interest for this thesis. For doing such simulations, we first calculate the rate-distortion

function for the distortion measure (and for a certain source) we are concerned with (see Section

2.3), and afterwards, we also calculate the rate-loss (2.39). Following these calculations, we show

and discuss the executed simulations.

It is important to note that, although, in most of the cases, the correspondent results are

not shown in this thesis, every step in Chapter 3 (and specifically every approximation) was

confirmed either by calculating derivatives (e.g., the sensitivity matrix or the Jacobian matrix

of the compressor) numerically for a white noise test signal (i.e., using the difference quotient)

and overlaying the numerical results with the calculated ones, or by confirming that numerical

optimizations delivered exactly the same outputs as the non-optimized versions, up to numerical

roundoff errors.
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4.1 The Rate Distortion Function at High Resolution

In this section, we calculate the rate-distortion function R(D) explicitly for the distortion

measure (2.42) and examine its behavior for N →∞.

4.1.1 Calculation

We will now calculate the rate-distortion function (2.6) for the distortion measure (2.42). It

is easy to see that this distortion measure is locally quadratic (conditions (2.1) and (2.3) apply)

and that the remaining more technical conditions described in [37] also apply for non-pathological

sources due to the invertibility of the sensitivity matrix. We are thus allowed to use the result for

the rate-distortion function for a locally quadratic distortion measure (2.10) (see Section 2.1).

To calculate the last term of the Equation (2.10), we will use the case L 6= N as reference

but, as the equations defining M(x) in the case L = N (equations (3.9) and (3.17)) are exactly

the same as the ones of the approximation of the Toeplitz matrix Mt(x) by the circulant matrix

M̄c(x) in the case L = N (equations (3.54) and (3.37)), we can use the following results for both

L 6= N and L = N (M̄c(x) and Mt(x) degenerate both in Mc and ā degenerates in a in this last

case). We get, calculating thus the determinant of M(x) for L 6= N ,

detM(x) = det[ΛwMt(x)Λw] =

[
N−1∏
n=0

w(n)

]2

det Mt(x) (4.1)

≈

[
N−1∏
n=0

w(n)

]2 N−1∏
f=0

[N ˆ̄a2(x, f)], (4.2)

where (4.1) is the exact value of the determinant for L 6= N and (4.2) is the approximated value.

Both equations are exact for L = N . Extracting the binary logarithm of the determinant gives

log2 detM(x) = 2
N−1∑
n=0

log2 w(n) + log2 det Mt(x) (4.3)

≈ 2
N−1∑
n=0

log2 w(n) + N log2 N +
N−1∑
f=0

log2[ˆ̄a
2(x, f)], (4.4)

so that the last term of the rate-distortion function (2.10) is

1
2N

E[log2 det M(X)] =
1
N

N−1∑
n=0

log2 w(n) +
1

2N
E log2 detMt(X) (4.5)

≈ 1
N

N−1∑
n=0

log2 w(n) +
log2 N

2
+

1
2N

N−1∑
f=0

E log2[ˆ̄a
2(X, f)]. (4.6)

Summing up equations (2.10) and (4.6), the rate-distortion function for the distortion measure
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(2.42) is given, at high resolution, by

R(D) ≈ h(X)− 1
2

log2(2πeD) +
1
N

N−1∑
n=0

log2 w(n) +
1

2N
E log2 det Mt(X) (4.7)

≈ h(X)− 1
2

log2(2πeD) +
1
N

N−1∑
n=0

log2 w(n) +
log2 N

2
+

1
2N

N−1∑
f=0

E log2[ˆ̄a
2(X, f)] (4.8)

and the distortion-rate functions, which can be obtained using Equation (2.11), have analog ex-

pressions.

Obviously, in practice, when implementing Equation (4.7) or (4.8) we have to substitute the

expectation operator by a statistical average, with increasingly accurate results as the number of

(N -sized) x sample vectors increases (assuming that the x vectors are independent).

It should be noted that for the case L 6= N , the approximation M(X) ≈ M̄(X) produces

asymptotically an exact result in (4.6), since from (3.54), (3.30) and (3.56) with Ψ(v) = log2 v, we

have

lim
N→∞

1
2N

E[log2 det M̄(X)] = lim
N→∞

1
2N

E[log2 det M̄c(X)] + lim
N→∞

1
N

log2 det Λw (4.9)

= E

 lim
N→∞

1
2N

N−1∑
f=0

log2 ec(X, f)

+ lim
N→∞

1
N

log2 det Λw (4.10)

= E

 lim
N→∞

1
2N

N−1∑
f=0

log2 et(X, f)

+ lim
N→∞

1
N

log2 det Λw (4.11)

= lim
N→∞

1
2N

E[log2 detMt(X)] + lim
N→∞

1
N

log2 detΛw (4.12)

= lim
N→∞

1
2N

E[log2 detM(X)]. (4.13)

4.1.2 Asymptotic Expression (N →∞) and Behavior

Although numerically irrelevant, theoretically it is of interest to see that for N much larger than

the support of the autocorrelation of a and than the support of ŵ, we can approximate sums by

integrals in Equation (4.6), since then the variations of ˆ̄a2 and w take place on a much larger time-

and frequency-scale than 1/N , respectively. In fact, denoting by ˆ̄a2(x, ν) the continuous inverse

of the masking threshold, given by the limit as L →∞ of Equation (2.44) (with re-calibration of

c2 with changing L) at the linear frequency value of ν = f/L · fs, and denoting also by w(t) the

continuous window function defined in the interval [0, 1], obtained by calculating a window of size
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N →∞ and doing the substitution t = n/N , we get as an approximation

1
2N

E[log2 detM(X)] =
N−1∑
n=0

log2[w(n)]
1
N

+
log2 N

2
+

1
2fs

N−1∑
f=0

E log2[ˆ̄a
2(X, f)]

fs

N
(4.14)

≈
∫ 1

0

log2 w(t) dt +
log2 N

2
+

1
2fs

∫ fs

0

E log2[ˆ̄a
2(X, ν)] dν (4.15)

=
∫ 1

0

log2 w(t) dt +
log2 N

2
+

1
fs

∫ fs
2

0

E log2[ˆ̄a
2(X, ν)] dν, (4.16)

where in (4.16) we used the even symmetry of ˆ̄a2(x, ν) around ν = fs/2.

The variant of the inverse of the masking threshold â′2(x, ·) exposed in Subsection 2.3.2 is useful

to study the behavior of R(D) when N → ∞, since â′2(x, ·)/N is asymptotically independent of

N . Indeed, using equations (2.56) and (3.49), we get the succession of equalities

ˆ̄a2(x, f) =
L

N
â2

(
x,

L

N
f

)
=

1
N2

â′2
(

x,
L

N
f

)
. (4.17)

We can thus rewrite Equation (4.6) in terms of â′2(x, ·)/N , getting

1
2N

E[log2 detM(X)] =
1
N

N−1∑
n=0

log2 w(n) +
1

2N

N−1∑
f=0

E log2

[
â′2
(
X, L

N f
)

N

]
. (4.18)

Finally, following the same steps as in (4.14) through (4.16), we have

1
2N

E[log2 detM(X)] ≈
∫ 1

0

log2 w(t) dt +
1
fs

∫ fs
2

0

E log2

[
â′2(X, ν)

N

]
dν, (4.19)

where â′2(x, ν) = NL â2(x, ν), with the rate-distortion function at high resolution given by

R(D) ≈ h(X)− 1
2

log2(2πeD) +
∫ 1

0

log2 w(t) dt +
1
fs

∫ fs
2

0

E log2

[
â′2(X, ν)

N

]
dν. (4.20)

Equation (4.20) converges when N → ∞. As previously explained, the last term involving

â′2(x, ν)/N has its dependence canceled out asymptotically, and similar arguments apply to the

distortion per dimension D in the first term (cf. Subsection 2.3.2). This means that, for N not

too small, so that the autocorrelation of the inverse of the masking threshold has a support much

smaller than N and that the power estimates of x ∗ hi and (y − x) ∗ hi have almost converged,

the rate distortion function is practically independent of N , that is, if we want to know the

minimal rate associated with the distortion per dimension D, we know that that rate is the same1

independently of N .

1Naturally, this only applies for N/fs < 300 ms, since otherwise â′2 is not proportional to N .
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4.2 Rate-loss of the Suboptimal Compander

For doing the main simulation of this thesis, besides needing a basis for comparison given by

the best achievable (the rate-distortion function), we also need to know how the actual scheme

performs in a rate-distortion sense, or equivalently, how much we loose with respect to the rate-

distortion curve. That loss is characterized by Equation (2.39), and will be calculated in this

section. We will first calculate the rate-loss for the case that we do not use any companding

scheme, using the identity function as the compressor and expander (F ≡ I, F (x) = x), and then

recalculate it for the compressor of Chapter 3.

4.2.1 Identity Compander

For the identity compander F (x) = F (x)−1 = x, the Jacobian matrix of F and M̃ of Equation

(2.38) are both the identity matrix and the rate-loss (at high resolution) degenerates in

H(QD,I)−H(QD,F ) ≈ − 1
2N

E log2 detM(X) +
1
2

log2

[
E tr

(
M(X)

N

)]
. (4.21)

The first term on the right hand side was already calculated in Section 4.1. For the second term,

due to the linearity of the trace operator, we just need to calculate tr M and divide the result by

N afterwards. We have then from equations (3.30), (3.54), and (3.37)

tr M(x) = tr [ΛwMt(x)Λw] = tr
[
Λ2

wMt(x)
]

=

[
N−1∑
n=0

w2(n)

] 1
L

L−1∑
f=0

Lâ2(x, f)

 (4.22)

≈ tr
[
Λ2

wDH
NΛN ˆ̄a2DN

]
=

[
N−1∑
n=0

w2(n)

] 1
N

N−1∑
f=0

N ˆ̄a2(x, f)

 , (4.23)

where we used the fact that Mt and M̄c are Toeplitz matrices, with equal elements along the

diagonal, given by the inverse DFT of the eigenvalues of Mc at the time-index n = 0. We have

thus, using (4.5),

H(QD,I)−H(QD,F ) ≈ − 1
N

N−1∑
n=0

log2 w(n)− 1
2N

E log2 detMt(X)

+
1
2

log2

[
1
N

N−1∑
n=0

w2(n)

]
+

1
2

log2 E

 1
L

L−1∑
f=0

Lâ2(X, f)

 (4.24)

≈ − 1
N

N−1∑
n=0

log2 w(n)− 1
2N

N−1∑
f=0

E log2[N ˆ̄a2(X, f)]

+
1
2

log2

[
1
N

N−1∑
n=0

w2(n)

]
+

1
2

log2 E

 1
N

N−1∑
f=0

N ˆ̄a2(X, f)

 , (4.25)
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where, for L 6= N , the upper equation is valid exactly and the lower equation refers to the

approximation of Mt by M̄c. For L = N , both equations deliver the exact results (M̄c and Mt

degenerate both in Mc and ā degenerates in a). To retrieve this loss in terms of distortion, we can

simply use (2.41) for this particular rate-loss of Equation (4.25).

The behavior of the rate-loss when N → ∞ follows similar steps as the ones in Subsection

4.1.2: we use the dimension independent â′2(x, f)/N instead of ˆ̄a2(x, f) (cf. Subsection 2.3.2) and

approximate sums of discrete functions by integrals of their continuous counterparts. The result

is

H(QD,I)−H(QD,F ) ≈ −
∫ 1

0

log2 w(t) dt− 1
fs

∫ fs
2

0

E log2

[
â′2(X, ν)

N

]
dν

+
1
2

log2

∫ 1

0

w2(t) dt +
1
2

log2

[
2
fs

∫ fs
2

0

E
{

â′2(X, ν)
N

}
dν

]
. (4.26)

Note that from Jensen’s inequality, the following chains are valid:

∫ 1

0

log2 w(t) dt =
1
2

∫ 1

0

log2 w2(t) dt (4.27)

≤ 1
2

log2

[∫ 1

0

w2(t) dt

]
(4.28)

and

1
fs

∫ fs
2

0

E
{

log2

[
â′2(X, ν)

N

]}
dν =

1
2fs

∫ fs

0

E
{

log2

[
â′2(X, ν)

N

]}
dν (4.29)

≤ 1
2fs

∫ fs

0

log2 E
{

â′2(X, ν)
N

}
dν (4.30)

≤ 1
2

log2

[
1
fs

∫ fs

0

E
{

â′2(X, ν)
N

}
dν

]
(4.31)

=
1
2

log2

[
2
fs

∫ fs
2

0

E
{

â′2(X, ν)
N

}
dν

]
. (4.32)

These chains confirm that the rate-loss (4.26) is greater or equal than 0 and make explicit that

we have to satisfy the equalities in it to achieve optimality. Nevertheless, log2 is a strictly concave

function and, in general, the distribution of â′2(X, ν) is not degenerate (its probability density

function is not a Dirac delta distribution). Consequently, equality is, in general, not achieved in

the series of inequalities (4.27) to (4.32) so that we cannot achieve optimality using the identity

compressor, even with N →∞.
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4.2.2 Compander of Chapter 3

We will also use the decomposition (3.138) of the Jacobian matrix of the compressor here to

avoid calculating large N -by-N matrices explicitly. From Equation (2.39), we see that the new

terms that we have to calculate are the expected values of [log2 det M̃ ]/(2N) and of tr(M̃−1M)/N .

For the first expression, algebraic manipulation using equations (2.38) and (3.65) delivers

1
2N

log2 det M̃(x) =
1

2N
log2 det[F̃ ′(x)TF̃ ′(x)] =

1
N

log2|det F̃ ′(x)| (4.33)

=
1
N

log2|det[DH
N G̃′(z) DNΛw]| = 1

N

N−1∑
n=0

log2 w(n) +
1
N

log2|det G̃′(z)|

(4.34)

with z equal to the one of Equation (3.20). Applying the matrix determinant lemma to (3.138),

we obtain

1
N

log2|det G̃′(z)| = 1
N

log2|det[
√

N(V (z) + A(z)H(z)H)]| (4.35)

=
log2 N

2
+

1
N

log2|detV (z)|+ 1
N

log2|det[I + H(z)HV (z)−1A(z)]| (4.36)

=
log2 N

2
+

1
2N

N−1∑
m=0

log2

∣∣vf (z,m)2 − |vb(z,m)|2
∣∣+ 1

N
log2|det C(z)|, (4.37)

where we used (3.185), (3.135), (A.14), and the symmetry properties of vf and vb.

For tr(M̃−1M), we can use simple properties of linear algebra, namely the commutativity of

the trace of a product of two square matrices, to get

tr[M̃(x)−1M(x)] = tr
{

[F̃ ′(x)TF̃ ′(x)]−1M(x)
}

(4.38)

= tr
{

[ΛwDH
N G̃′(z)HG̃′(z)DNΛw]−1ΛwMt(x)Λw

}
(4.39)

= tr
{(

Λ−1
w DH

N

) (
G̃′(z)−1G̃′(z)−HDNMt(x)Λw

)}
(4.40)

= tr
{

G̃′(z)−1G̃′(z)−HDNMt(x)DH
N

}
= tr

{
G̃′(z)−1G̃′(z)−HM̂t(x)

}
(4.41)

with

M̂t(x) def= DNMt(x)DH
N (4.42)

equal to the diagonal matrix ΛNâ2 for L = N , ΛN ˆ̄a2 when approximating the Toeplitz matrix Mt

by the circulant one (the matrix M̄c) for L 6= N , and if we do not want to do that approximation

for L 6= N , a certain non-diagonal matrix with the given expression. We will use the Taylor

expanded compressor G̃M from now on, replacing G̃′ by G̃′
M in the previous expressions. From
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equations (3.184) and (3.196), we can continue working out this last result:

tr[M̃(x)−1M(x)] =
1
N

tr{
(
I−A(z)C(z)−1H(z)HV (z)−1

)
·

·
(
I− V (z)−1H(z)C(z)−TA(z)H

)
Mu(z)}, (4.43)

where we define the unwindowed sensitivity matrix Mt left and right multiplied by V −1 by Mu:

Mu(z) def= V (z)−1M̂t(x)V (z)−1. (4.44)

We have then

tr[M̃(x)−1M(x)] =
1
N

tr {Mu(z)} − 1
N

tr
{
C(z)−1H(z)HV (z)−1Mu(z)A(z)

}
− 1

N
tr
{
C(z)−TA(z)HMu(z)V (z)−1H(z)

}
+

1
N

tr
{
C(z)−1H(z)HV (z)−2H(z)C(z)−TA(z)HMu(z)A(z)

}
. (4.45)

The first subtractive term on the right hand side of (4.45) is real: as the matrix V −1Mu is a

product of matrices which produce a hermitian symmetric vector when left multiplying hermitian

symmetric vectors (this is true for M̂t due to the form (4.42) with a real Mt), that matrix itself has

the same property. The columns of A are hermitian symmetric, so that the columns of V −1MuA

are hermitian symmetric as well and HHV −1MuA is real, as a consequence of being a matrix

composed by dot-products of hermitian symmetric vectors (H has hermitian symmetric columns

as well). C also is real, proving that the result of the multiplication C−1HHV −1MuA is real, thus

that this last matrix has a real trace. Furthermore, the two subtractive terms of (4.45) are equal:

tr
{
C(z)−TA(z)HMu(z)V (z)−1H(z)

}
= tr

{[
C(z)−TA(z)HMu(z)V (z)−1H(z)

]H}
(4.46)

= tr
{
H(z)HV (z)−1Mu(z)A(z)C(z)−1

}
(4.47)

= tr
{
C(z)−1H(z)HV (z)−1Mu(z)A(z)

}
, (4.48)

where we used V −H = V −1 and the symmetry of the real matrix Mt to state that

Mu(z)H = V (z)−1DNMt(x)HDH
NV (z)−1 = V (z)−1DNMt(x)DH

NV (z)−1 = Mu(z). (4.49)

We can thus leave out the third term of Equation (4.45) if we double the second one:

tr[M̃(x)−1M(x)] =
1
N

tr {Mu(z)} − 2
N

tr
{
C(z)−1

[
H(z)H

(
V (z)−1Mu(z)

)
A(z)

]}
+

1
N

tr
{
C(z)−1

[
H(z)HV (z)−2H(z)

]
C(z)−T

[
A(z)HMu(z)A(z)

]}
. (4.50)

The parentheses in Equation (4.50) suggest the best order in which we should compute the trace
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of M̃−1M when implementing the rate-loss equations. All matrices on the level of the brackets [·]
on the last two terms of the right hand side of (4.50) are P -by-P , so that the shown multiplication

is computationally cheap to do. To compute those P -by-P matrices, we first have to left multiply

an N -by-P matrix (A or H) by a matrix which will be shown to be cross-diagonal for the cases

L = N and L 6= N when approximating Mt by the circulant matrix M̄c. As shown in Subsection

3.5.3 (see specifically Figure 3.2(b)), the left multiplication by a cross diagonal matrix is fast and

we do not need to store the cross-diagonal matrix explicitly. In this case, we have to perform the

multiplication using a scheme similar to the one of Figure 3.2(b) P times, for all columns of A or

H. The only case where the matrix in question is not cross-diagonal is the case where we want to

calculate the rate-loss for L 6= N without using the approximation by a circulant matrix. As it is

only worth to use that case for small N (since the approximation is asymptotically correct), there

are no memory or computational complexity problems in handling N -by-N matrices, so that we

can calculate all N -by-N matrices explicitly. After the computationally feasible left multiplication

of A or H by an N -by-N matrix, we only have to multiply the result by a P -by-N matrix (HH or

AH), which implies computing P 2 dot products of N -sized vectors, also a computationally feasible

task. We thus conclude (if we prove the cross-diagonality of the N -by-N matrices in the cases

where we use large N) that the execution of (4.50) is feasible even for large N , e.g., N = 65536.

On the right hand side of Equation (4.50), the only N -by-N matrix we have left on the outer

level (the level of the brackets [·]) is Mu, in the first term. It is also not necessary to calculate this

matrix explicitly for large N , since it is further simplifiable by using the commutative property of

the trace in Equation (4.44). We can easily obtain

tr {Mu(z)} = tr
{

V (z)−2M̂t(x)
}

(4.51)

and using the simple to deduce properties

D2
NΛv = ΛD2

N vD2
N , (4.52)

D4
N = I (4.53)

and the symmetry properties of uf and ub, we calculate V −2 explicitly as

V (z)−2 =
(
Λuf (z) + Λub(z)D

2
N

)2
= Λuf (z)2+|ub(z)|2 + Λ2uf (z)ub(z)D

2
N , (4.54)

where the juxtaposition of two vectors denotes point-wise multiplication. Finally, the linearity of

the trace operator delivers

tr {Mu(z)} = tr
{

Λuf (z)2+|ub(z)|2M̂t(x)
}

+ tr
{

Λ2uf (z)ub(z)

[
D2

NM̂t(x)
]}

(4.55)

=
N−1∑
m=0

([
uf (z)2 + |ub(z)|2

]
m

[M̂t(x)]m,m + [2uf (z)ub(z)]m [M̂t(x)]N−m,m

)
(4.56)
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with [M̂t(x)]N,0 ≡ [M̂c(t)]0,0. It is important to note that, as desired, Equation (4.56) produces a

real output (otherwise we would have a complex rate-loss!) because from (4.42), the fact that Mt

is a real matrix, the symmetry of DN and the identity D3
N = DH

N , we have

[DNMt(x)DH
N ]m,l = [DNMt(x)∗DH

N ]m,l = [DH
NMt(x)DN ]∗m,l (4.57)

=
[
D2

N

(
DNMt(x)DH

N

)
D2

N

]∗
m,l

=
[
DNMt(x)DH

N

]∗
N−m,N−l

(4.58)

for all m,l = 0, 1, . . . N − 1 with the convention of the indexing mod N . This implies that the

sequences [M̂t(x)]m,m and [M̂t(x)]N−m,m, m = 0, 1, . . . N−1 are hermitian symmetric, being thus

a real trace in (4.56) obtained2.

For L 6= N without approximation (case which is only used for small N), we can simply

calculate Mt and then M̂t explicitly, with Equation (4.42), using finally (4.56). Otherwise, for

L = N or for the approximated version of L 6= N , M̂t is diagonal (equal to ΛNâ2 for L = N and

ΛN ˆ̄a2 for the approximated L 6= N), so that the right term in the summand of (4.56) vanishes

(remember that ub(z, 0) = ub(z,N/2) = 0) and

tr {Mu(z)} =
N−1∑
m=0

[
uf (z)2 + |ub(z)|2

]
m

N ˆ̄a(z,m)2 (4.59)

(for N = L, ā degenerates in a), so that no explicit N -by-N matrix needs to be computed for the

trace of (4.59) in these cases.

For the confirmation that no computation of N -by-N matrices is needed for L = N and for

the approximated L 6= N , the only thing that is left to do is to express the N -by-N matrices

in the second and third terms of (4.50) as cross-diagonal matrices when M̂t is diagonal. These

matrices are Mu, V −1Mu and V −2. Concerning V −2, this task was already done in (4.54). For the

other two matrices, we can use the symmetry of ˆ̄a2, the commutativity of the product of diagonal

matrices and property (4.52) to get

V (z)−1ΛN ˆ̄a(z)2 =
(
Λuf (z) + Λub(z)D

2
N

)
ΛN ˆ̄a(z)2 = Λuf (z)ΛN ˆ̄a(z)2 + Λub(z)D

2
NΛN ˆ̄a(z)2 (4.60)

= ΛN ˆ̄a(z)2Λuf (z) + ΛD2
N [N ˆ̄a(z)2]Λub(z)D

2
N = ΛN ˆ̄a(z)2

(
Λuf (z) + Λub(z)D

2
N

)
(4.61)

= ΛN ˆ̄a(z)2V (z)−1. (4.62)

We obtain thus, substituting M̂t = ΛN ˆ̄a2 in (4.44) and using (4.54)

Mu(z) = V (z)−1ΛN ˆ̄a(z)2V (z)−1 = ΛN ˆ̄a(z)2V (z)−2 (4.63)

= ΛN ˆ̄a(z)2[uf (z)2+|ub(z)|2] + ΛN ˆ̄a(z)2[2uf (z)ub(z)]D
2
N (4.64)

2It is also possible to prove that the diagonal of M̂t is in fact real (and thus also symmetric), but as that result
is not needed to achieve a real trace in (4.56), it will not be proven here.
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and

V (z)−1Mu(z) = V (z)−1ΛN ˆ̄a(z)2V (z)−2 = ΛN ˆ̄a(z)2V (z)−1V (z)−2 (4.65)

= ΛN ˆ̄a(z)2
(
Λuf (z) + Λub(z)D

2
N

) (
Λuf (z)2+|ub(z)|2 + Λ2uf (z)ub(z)D

2
N

)
(4.66)

= ΛN ˆ̄a(z)2
(
Λuf (z)[uf (z)2+3|ub(z)|2] + Λub(z)[3uf (z)2+|ub(z)|2]D

2
N

)
(4.67)

= Λ[N ˆ̄a(z)2]uf (z)[uf (z)2+3|ub(z)|2] + Λ[N ˆ̄a(z)2]ub(z)[3uf (z)2+|ub(z)|2]D
2
N . (4.68)

Joining equations (4.5), (4.6), (2.39), (4.34), (4.37) and (4.50), the rate-loss for the companding

scheme of Chapter 3 at high resolution is given (approximately) by

H(QD,F̃ )−H(QD,F ) ≈ 1
2N

N−1∑
m=0

E log2

∣∣vf (Z,m)2 − |vb(Z,m)|2
∣∣+ 1

N
E log2|detC(Z)|

− 1
2N

E log2 det Mt(X)− log2 N

2

+
1
2

log2

[
E tr {Mu(Z)} − 2 E tr

{
C(Z)−1

[
H(Z)H

(
V (Z)−1Mu(Z)

)
A(Z)

]}
+ E tr

{
C(Z)−1

[
H(Z)HV (Z)−2H(Z)

]
C(Z)−T

[
A(Z)HMu(Z)A(Z)

]} ]
(4.69)

≈ 1
2N

N−1∑
m=0

E log2

∣∣vf (Z,m)2 − |vb(Z,m)|2
∣∣+ 1

N
E log2|detC(Z)|

− 1
2N

N−1∑
f=0

E{log2[ˆ̄a
2(Z, f)]} − log2 N

+
1
2

log2

[
E tr {Mu(Z)} − 2 E tr

{
C(Z)−1

[
H(Z)H

(
V (Z)−1Mu(Z)

)
A(Z)

]}
+ E tr

{
C(Z)−1

[
H(Z)HV (Z)−2H(Z)

]
C(Z)−T

[
A(Z)HMu(Z)A(Z)

]} ]
,

(4.70)

where we should use Equation (4.69) for exact values when L 6= N , and (4.70) for L = N and

for large N in L 6= N , taking advantage of the fact that the matrices Mu, V −1Mu and V −2 are

cross-diagonal to perform matrix multiplications as in the diagram of Figure 3.2(b). Naturally,

for L = N , Mt and ā degenerate in Mc and a, respectively.

4.3 Simulations

After calculating the rate-distortion function for the distortion measure in question and the

rate-loss incurred by the usage of the suboptimal companding scheme developed in Chapter 3, we

are now in condition to simulate the rate-distortion performance of the scheme. In this section, we

do this as the main simulation, showing experimentally that the scheme is asymptotically optimal.

Furthermore, we also confirm and discuss other theoretical results, namely the approximation of
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the sensitivity matrix (3.6) by a circulant matrix (Section 3.1), the asymptotic behavior of the

rate-distortion function (Subsection 4.1.2) and the validity of the Taylor expansion of Section

3.3. We then proceed explaining a limitation that the distortion measure and the companding

scheme have and try to solve that limitation modifying them appropriately. Finally, rate-distortion

simulations are repeated and discussed for the modified compander and distortion measure.

4.3.1 Distortion-rate Performance

We will start with the simulations of the distortion-rate performance of the companding scheme

of Chapter 3. We implemented the companding scheme based on its Taylor expansion with the

parameters of Table 4.1, the distortion-rate function equations without and with approximation of

the sensitivity matrix by the circulant matrix of equations (3.54), (3.37), the rate-distortion func-

tions being given by equations (4.7) and (4.8), respectively (using the relation between equations

(2.10) and (2.11), we could translate them to the correspondent distortion-rate functions), and the

distortion-loss (in dB), without and with approximation, equations (4.69) and (4.70), respectively

(and its dependencies), using (2.41) to get the results in terms of the distortion-rate function.

Parameter Value
Input signal x Gaussian i.i.d. samples with zero mean, variance σ2

Power of the input signal σ2 0,012

Source entropy h(X) 1
2 log2(2πe σ2)

Vector dimension N Powers of 2 from 256 to 65536
DFT dimension L 8192 for N ≤ 8192, N otherwise
Window w Hamming, w(n) = 0,54− 0,46 cos

(
2π n

N

)
Sample frequency fs 48 kHz
Quantizer ZN (component-wise uniform scalar quantization)
Inverse of the quantization scale, 1/s 5 scales varying exponentially from 103 to 105

Sphere packing loss SLD (dB) 10 log10

(
2πe
12

)
≈ 1,5 dB

Sphere packing loss SLR (bit/dim) 1
2 log2

(
2πe
12

)
≈ 0,2546 bit/dim

Order of Taylor expansion M 3

Table 4.1: Values for the parameters used in the simulations.

We used the calculations for the non-approximated version of the sensitivity matrix for N ≤
1024 and the calculations for the approximated version for 1024 ≤ N < 8192. From N = 8192

on (inclusive), we used the “approximation” equations since in this case we had L = N , delivering

thus the equations for the “approximation” exact values (in this case M̄c = Mc and ā = a).

Furthermore, the expected values in the equations were replaced by statistical averages (several

realizations of the signal X were emitted), with lower number of realizations for higher vector size

N and vice-versa. The reason for decreasing the number of realizations with higher N is that the

quantities for which we should estimate the expected value are averages themselves (normalized

traces and normalized sums of logarithms of eigenvalues). Assuming that these inner quantities

that we are averaging (the eigenvalues and their logarithms) are well behaved, the inner average
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is consistent, so that these quantities have a low variance for high N . The outer averages (the

ones that replace the expectation) reduce the variance furthermore, and thus the lower the N , the

heavier that reduction needs to be performed (the higher the needed number of realizations) and

vice-versa. In practice, we used on the order of 100 realizations for N = 256, of 10 realizations for

N = 1024 and 1 realization for N = 8192 or higher.

As an implementation note, we would like to mention that due to numerical errors on the

estimation of the eigenvalues of Mt (necessary for the calculation of the logarithm of its determinant

without overloading the numerical representation), its weakest values were considered numerical

noise (see Figure 4.1 for an example). To avoid this problem, the eigenvalues of Mt and the ones

of the approximation M̄c (which are N ˆ̄a(x, f), f = 0, 1, . . . , N − 1) were sorted and the noisy

eigenvalues of Mt were substituted by the correspondent ones in M̄c. The decision on which

eigenvalues were noisy was made on basis of a threshold on the index of 41 kHz ·N/fs; the index

values larger than the threshold were replaced. Note that sorting does not affect the result of the

previous calculations, because the relevant equations are written in terms of sums of functions

of eigenvalues, and the sum is a commutative operation. Also an implementation detail, when

implementing Equation (4.56), as the values of uf increase abruptly in the high and in the very

low frequency range (uf is given in Equation (3.187) and vf decays to 0 rapidly in those ranges),

the result of the multiplication on the left side of (4.56) yields a result which is on a much higher

order of magnitude in that range than outside the range. Again, this problem was solved with the

substitution by the approximated values, with the thresholds 150 Hz ·N/fs and 13 kHz ·N/fs in

the low and high frequencies, respectively.
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Figure 4.1: Sorted eigenvalues of the Toeplitz matrix Mt calculated numerically and using the
approximation by the circulant matrix M̄c.



4.3 Simulations 75

The results of the main simulation, several distortion-rate figures for varying vector dimen-

sion, are shown in Figure 4.2 (only the results corresponding to the vector dimensions N ∈
{256, 1024, 8192, 65536} are shown). In Figure 4.3 we show the distortion-rate figures for N = 1024

with approximation overlaid with the ones without approximation of the Toeplitz Mt by the cir-

culant M̄c.
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(b) N = 1024
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(c) N = 8192
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(d) N = 65536

Figure 4.2: Distortion-rate performance of the companding scheme for varying N . Distortions are
in terms of the SNR in dB (10 log10(σ2/D)). The blue line represents the Shannon’s distortion-
rate function. The blue dotted line gives the best achievable ZN lattice vector quantizer (LVQ)
distortion-rate performance. The green and red lines give the performance of the companding
scheme and of the identity compander F (x) = F−1(x) = x. The red crosses are results obtained
from quantizing the source directly (i.e., using the identity compander), and calculating the rate
and distortion values directly.

The vertical axis represents the signal-to-noise ratio (SNR) in dB, i.e., DdB = 10 log10(σ2/D),

and the horizontal axis represents the rate per dimension R. The blue line depicts the Shannon’s

distortion-rate function of (4.7) or (4.8), D(R). The blue dotted line is the best ever achievable

with a ZN lattice vector quantizer (LVQ). It is given by the D(R) function minus the sphere
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packing loss in dB. The green line, given by the D(R) function minus the sphere packing loss

minus the rate-loss of Equation (4.69) or (4.70), is the performance that we have theoretically

upon the usage of the developed companding scheme (remember that the optimal compander

would run on the blue dotted line, if it would exist). The red line, given by the D(R) function

minus the sphere packing loss minus the rate-loss for the identity compander of Equation (4.24)

or (4.25), is the theoretical performance without compander. Finally, the red crosses represent the

measured D(R) performance without compander, obtained from quantizing the source directly,

measuring the distortion with Equation (2.42) and estimating the rate at the output of the entropy

coder with the high-resolution approximation [23]

H(QD(s),I) ≈ h(X)− 1
N

log2(Vol(sΛ)) (4.71)

= h(X)− 1
N

log2(s
NVol(ZN )) = h(X)− log2 s, (4.72)

where s is the quantization scale factor and Vol denotes the hyper-volume of the basic cell of the

quantizer, which is 1 for the ZN lattice. For Figure 4.3, the blue, dotted blue, dotted green and

dotted red lines and the red crosses have the same meaning as the lines in Figure 4.2 (the red

and green line not being dotted), and the light-blue, dotted light-blue, dark green and brown lines

correspond to the blue, dotted blue, green and red lines, respectively, but for the calculations with

approximation of the Toeplitz matrix Mt by the circulant matrix M̄c.

Figure 4.2 corroborates the theoretical considerations on asymptotical optimality. Indeed, the

theoretical performance of the companding scheme gets very close to the best possible, the one of

the optimal scheme with the ZN LVQ. For a higher detail, see Table 4.2, which shows the distortion

loss of the companding scheme for varying dimension N (the distances between the performance

of the compander and the performance of an optimal scheme using a ZN LVQ, i.e., between the

green and blue dotted line of Figure 4.2). To get the rate-loss, it suffices to use the proportionality

rule that a gain of 6 dB corresponds to an additional rate of 1 bit. Note that N = 1024 is the

vector size which corresponds to the frame-size used in practice (N/fs = 21,3 ms); (much) lower

or higher values of N do not correspond to the frequency and time resolution of the human ear,

respectively. Furthermore, for N/fs � 20 ms, the audio signal cannot be considered stationary.

N 256 512 1024 2048 4096 8192 16384 32768 65536
Distortion Loss (dB) 14,6 14,0 12,6 11,0 8,65 6,27 4,28 2,77 1,57

Table 4.2: Distortion Loss of the companding scheme for varying N .

We can also see through Figure 4.2 that the identity compander does not achieve asymptotic

optimality, as explained in Subsection 4.2.1. This motivates the usage of the compressor: in [28],

a companding scheme was developed for a different distortion measure, and the authors concluded

that the performance of the identity compander is so close to the optimal performance that it is not

worth to do companding or normalization by perceptual weights; the identity compander could be
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Figure 4.3: Distortion-rate performance of the companding scheme for N = 1024. Comparison
of the circulant matrix approximation with the exact values. See Figure 4.2 for the meaning of
the common colors (the dotted red and green here are exactly the same as the solid red and
green in Figure 4.2, respectively). The common colors between the two figures refer to the non-
approximated version. The light-blue, dotted light-blue, dark green and brown lines correspond
to the blue, dotted blue, green and red lines, respectively, but for the approximated version.
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directly used without a big penalty in performance. For our distortion measure, this is obviously

not the case, since the rate-loss incurred by not using any companding scheme is approximately 9

bit/dim (distortion loss of 54 dB).

Additionally, note that Figure 4.3 confirms the approximations of the matrix Mt for N suffi-

ciently large. Indeed, the approximated and non-approximated versions are on top of each other.

Although not visible at first sight, the distortion-rate functions of Figure 4.2 (and corresponding

best LVQ optimal performances) reach a steady offset when N → ∞. That can be seen more

clearly through Table 4.3, which shows the additional term of the distortion-rate function with

respect to the Shannon lower bound (1/(2N) E[log2 detM(X)]). This excess term converges with

increasing N , which is in line with the theoretical results of Subsection 4.1.2; the remaining terms

of the distortion-rate function (4.7) or (4.8) with (2.11) only depend on normalized values, thus

not changing with N .

N 256 512 1024 2048 4096 8192 16384 32768 65536
Excess -4,74 -4,93 -5,01 -5,13 -5,13 -5,14 -5,13 -5,14 -5,14

Table 4.3: Excess term of D(R) with respect to the Shannon lower bound,
1/(2N) E[log2 detM(X)].

The attentive reader probably noticed an important lack in the graphs of Figure 4.2: the green

crosses, i.e., the measured performance values with companding scheme were missing. For produc-

ing such results, we would need to measure the distortion between the signals before compression

and after expansion (which is not difficult; we just have to implement the whole chain and use

(2.42)), and measure the entropy at the output of the quantizer, using the approximation (4.71)

with F (X) instead of X. The problem is in this last procedure: as the differential entropy of

(4.71) refers to a vector size N which is on the order of hundreds or thousands, and as the compo-

nents of the vector F (X) are not independent, to estimate h[F (X)], we would need to gather an

extremely high number of (N -dimensional) samples of F (X) for the estimation of its probability

density function (through the calculation of its N -dimensional histogram), and then of its entropy.

That process is thus not computationally feasible. There are other methods for estimating the

entropy, which are not based on histogram computations (the so-called plug-in estimators), such as

sample-spacings estimators [6, 35] and nearest-neighbors estimators [6]. Another way to estimate

h[F (X)] would be to use the random variable substitution rule to find out the probability density

function of F (X) in terms of the one of X, and then to calculate the differential entropy using

Equation (2.9), (with F (X) instead of X). Nevertheless, the estimation of h[F (X)] is out of the

scope of this thesis, being left for future work.
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4.3.2 Validity of the Taylor Expansion

To test how good the approximation of the original compressor of Section 3.2 by the Taylor

expansion of Section 3.3 is, and what order of M we must use to get a good approximation,

we computed the contribution of the 0th to the 6th order terms of the signal dependent gain

Γ of Equation (3.89) for the vector size most useful in practice, N = 1024. Remember that the

compressor, Equation (3.90), essentially point-wise multiplies the windowed input in the frequency

domain by the gain. The contributions can be seen in Figure 4.4, depicted in double-logarithmic

scale. The figure shows that already for N = 1024, if we use M = 0, we get only a small difference

between the original and the Taylor expanded compressor. If we want a finer detail we can use

higher M , but the order of units is more than enough. Indeed, the distance between the 0th and

1st order terms is at least 15,7 dB, which means that the 1st order term has values that are

attenuated at least 6,1 times with respect to the values of the 0th order term. For the 2nd order

term this distance is 23,9 dB (15,7 times), and for the 6th order 42,8 dB (138 times).
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Figure 4.4: Contribution of the jth order term of the Taylor expansion of the signal-dependent
Γ, j = 0, 1, . . . , 6.

4.3.3 Limitations

Figure 4.4 shows an important limitation that the developed multidimensional companding

scheme exhibits: as the gain Γ decreases abruptly with increasing frequency, the inversion of the

compressor, although mathematically possible (at least for M = 0; see Subsection 3.5.1), is a

numerically badly conditioned problem. Using the rough rationale based on Equation (3.170) that
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the expander multiplies the incoming signal point-wise by the inverse of Γ, we can see through

Figure 4.4 that the quantization noise present in the input of the expander will be heavily amplified

in the high frequencies (imagine the characteristics upside-down, since the inverse in the linear

domain corresponds to the symmetric in the log domain). The same happens for the very low

frequencies. In practice, this means that two very different signals in the non-compressed domain

will have very near or even equal compressed signals, up to numerical noise. This situation is

depicted in Figure 4.5, where we applied the multidimensional companding chain (Figure 1.2) with

a small quantization step size of s = 10−5 to an input signal given by two sinusoids (frequencies

1 kHz and 1,2 kHz at levels 50 dBSPL and 40 dBSPL, respectively), and observed the original,

the expanded and the compressed and re-compressed expanded signal.
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Figure 4.5: Numerical bad conditioning of the inversion of the compressor.

To deal with this limitation, we can crop the gain Γ and the masking threshold ˆ̄a of the

distortion measure (2.42), i.e., if the frequency is below a certain threshold in the low-frequency

range, we use the boundary value (the value on the threshold) of the gain/masking threshold, and

if the frequency is above another threshold, in the high-frequency range, we use the boundary

value there. Between the two thresholds, the original gain/masking threshold are conserved. For

N = 1024, the distortion-rate performance of the compressor was simulated again cropping Γ and
ˆ̄a only in the high frequency range at {24, 18, 14} kHz (the first case corresponds to not cropping

at all, since fs/2 = 24 kHz), and then cropping in the low frequency range at {50, 100} Hz for

no high-frequency cropping and for high-frequency cropping at 18 kHz. The results are shown in

figures 4.6 and 4.7, respectively.

We observe a degradation of performance for decreasing threshold of the high-frequency crop:

the distortion-rate function, the ZN best distortion-rate performance and the distortion-rate per-

formance of the compander all sink in the graphs, i.e., for the same rate, the best achievable and

the actual distortions increase (the SNR decreases). At a certain point (in the figure, at 14 kHz)

the performance of the compander sinks below the performance of not doing anything, i.e., of

using the identity compander F (x) = x. For the low-frequency cropping case no performance loss

is obtained, as the compander curves lie on top of each other. For practical numerical well condi-
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Figure 4.6: Distortion-rate performances for cropping in the high-frequency range at 24, 18 and
14 kHz.
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tioning, a cropping in the low frequencies at 50 Hz and in the high frequencies at 18 kHz suffices.

The graph of Figure 4.7(b) (with the dotted magenta line, corresponding to the low frequency

cropping at 50 Hz) is thus the one that depicts the performance of the scheme in a practically

situation.



Chapter 5

Conclusion

5.1 Summary

In this thesis paper, a multidimensional companding scheme was developed for the perceptual

distortion measure [59]. Although the developed scheme is suboptimal, it was proven that no

optimal scheme exists under a wide range of solutions for the optimality condition (2.19), and

that, nevertheless, the conceived scheme reached optimality asymptotically, i.e., with increasing

vector dimension N .

The scheme was developed in the frequency domain; in its most simple form, the compressor

windows the input signal, applies a Discrete Fourier Transform (DFT), multiplies the input signal

by the square-root of the inverse of its masking threshold (the square-root of Equation (2.44)),

and then goes back into the time domain with the inverse DFT. This process is exactly the same

as the process of normalization by perceptual weights, represented in Equation (2.62), but with

the advantage that no perceptual weights have to be transmitted through the channel.

At the receiver, an algorithm based on numerical methods, the expander, has to be run. The

expander does not depend on the perceptual weights and it can be run using the previous audio

frame, already available at the decoder, as its initial condition.

The theoretical results and assumptions were corroborated with simulations.

5.2 Future Work

As in every work, due to restrictions of all types, it was not possible to complete a thorough

research on this theme, and some topics were consequently left open. We would like to point out

some of those topics, as an indication for possible future work.
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On the theoretical side, it would be interesting to explore fully the conditions in which an

optimal companding scheme exists, both in general and for the particular sensitivity matrix derived

in this work (see Section 3.1 and the optimality condition, Equation (2.19)). It was proven that,

given a certain square-root of the sensitivity matrix, the Schwarz’ theorem could be applied to it

to obtain a necessary and sufficient condition for the existence of an optimal scheme (Subsection

2.2.4). These results were extended for other square-roots, given in terms of the original square-

root through a left multiplication by an orthogonal matrix. The extension only covered the case

in which the orthogonal matrix did not depend on the input signal. It would be thus interesting

to explore the (more complex) case of orthogonal matrices dependent on the input signal. This

case covers all possible square-roots of the sensitivity matrix, as explained in Subsection 2.2.4.

Another area where theoretical work could be done is on proving (or disproving) the invertibility

of the constructed compressor almost everywhere (with probability 1) when a Taylor expansion of

order M > 0 (or even M = ∞) is used. In this thesis, such a proof was only delivered for M = 0

(Subsection 3.5.1). Although this is an important theoretical step to use the companding scheme

based on this compressor for M > 0 (independently of the form of the expander), we have seen in

the simulations (Section 4.3) that M = 0 forms the most interesting case, since the other terms of

the Taylor expansion are negligible with respect to the one for M = 0. It is thus a wise suggestion

that future work on this theme should rely on the compressor with a Taylor expansion of order

M = 0.

A radical change on the work done here, but still in the framework of multidimensional com-

panding for this distortion measure, would be trying other compressors. One possibility in that

direction is trying to apply the work of Heusdens et al. [28] for this distortion measure with the

substitution explained in Subsection 2.3.3. It seems to the author that the way to go here would

be applying a multi-rate technique to downsample the signal of the work [28] of size NP down

to the size N , and then upsample it back at the receiver. We would have to investigate in which

conditions no loss of information occurs, and how exactly the distortion measure (2.42) maps into

the one of Heusdens (Equation (2.61)) in that case. A less radical change in the framework of

design alterations would be to develop a compressor using a different square-root of the sensi-

tivity matrix, integrating the appropriate equations in it (and also developing the correspondent

expander, obviously).

Coming back again to the work of this thesis paper, one point that was missing in the simula-

tions was the comparison of the theoretical distortion-rate performance of the companding scheme

with practical “measured” values (Section 4.3). For doing that comparison, we would have to find

an efficient way to estimate the differential entropy of an N -dimensional source (with N large)

using a tolerable number of vector samples. An additional point that was not done at the simu-

lations and that would be useful to get a global fair overview of the scheme, was to compare the

(distortion-rate) performance of the companding scheme with the performance of a scheme based

on the perceptual weighting of Equation (2.62).
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Regarding the bad conditioning of the inversion of the compressor, other solutions of the prob-

lem could be explored, such as the usage of another filterbank hi which still correlates reasonably

with the behavior of the inner ear but that does not exhibit the problem of a (too) quickly decaying

inverse of the masking threshold for very low and high frequencies.

As a final indication for future work, note that the development of the expander is not yet

complete. As explained in Section 3.5, the expander works by performing one fixed point iteration

and fine-tuning the result using Broyden’s method. In the first place, there are computational

complexity issues here: although the fixed point iteration is a light computation (it has the same

complexity as the calculation of the compressor), the fine-tuning process is still expensive due

to the compulsory calculation of the Jacobian matrix (or elements of it) in the first iteration.

One possibility for future work is thus the research on less computationally expensive numerical

methods. In the second place, independently of the numerical method used, a very important

condition to check is that the numerical method converges. Indeed, it is known that the Newton

and Broyden methods converge [32] when the initial guess is “sufficiently close” to the root of the

equation to solve but, in quantitative terms, how close should the initial estimate be, and how can

we find an initial estimate so that the method converges always? Of course another possibility for

future work would be to try to find an analytical inverse of the compressor, at least for M = 0.

This would in principle solve the complexity issues and the problem of doubtful convergence.
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Appendix A

Proofs for Identities Used in the

Document

A.1 The Binomial Theorem for the Derivative of a Product

Theorem 1. Let

a, b : Ω ⊆ R → R (A.1)

be two real-valued real functions defined in an open set, Ω, which are k-times differentiable in it,

k = 1, 2, . . . Then,

c : Ω ⊆ R → R

c(x) = a(x) b(x) ∀x ∈ Ω (A.2)

is k-times differentiable with

c(k)(x) def=
dk

dxk
[a(x)b(x)] =

k∑
n=0

(
k

n

)
dna

dxn
(x)

dk−nb

dxk−n
(x), ∀x ∈ Ω. (A.3)

Proof. The proof is made by induction. First, note that, for k = 1,

c(1)(x) =
d
dx

[a(x)b(x)] =
1∑

n=0

(
1
n

)
dna

dxn
(x)

d1−nb

dx1−n
(x) = a(x)

db

dx
(x) +

da

dx
(x)b(x) (A.4)

is a simple application of the rule for the derivative of the product of two differentiable functions.
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Now assume that statement (A.3) is valid for a certain order k0, k0 = 0, 1, . . . , k − 1. As

c(k0)(x) =
dk0

dxk0
[a(x)b(x)] =

k0∑
n=0

(
k0

n

)
dna

dxn
(x)

dk0−nb

dxk0−n
(x) (A.5)

is a sum of a scaled product of functions which are differentiable (in particular, a and b are

differentiable k ≥ k0 +1 times), c(k0) is itself differentiable and thus c is differentiable k0 +1 times

with

c(k0+1)(x) =
d c(k0)

dx
(x) =

k0∑
n=0

(
k0

n

)(
dn+1a

dxn+1
(x)

dk0−nb

dxk0−n
(x) +

dna

dxn
(x)

dk0−n+1b

dxk0−n+1
(x)
)

. (A.6)

This followed directly from the usage of the product rule and of the sum rule in differentiation.

Substitution of variables on the right term and a bit of algebraic work yields

c(k0+1)(x) =
k0∑

n=0

(
k0

n

)
dn+1a

dxn+1
(x)

dk0−nb

dxk0−n
(x) +

k0−1∑
n=−1

(
k0

n + 1

)
dn+1a

dxn+1
(x)

dk0−nb

dxk0−n
(x) (A.7)

=
k0−1∑
n=0

[(
k0

n

)
+
(

k0

n + 1

)]
dn+1a

dxn+1
(x)

dk0−nb

dxk0−n
(x) + a(x)

dk0+1b

dxk0+1
(x) +

dk0+1a

dxk0+1
(x)b(x).

(A.8)

Using the recursive definition of the binomial coefficients,(
k0 + 1
n + 1

)
=
(

k0

n

)
+
(

k0

n + 1

)
, n = 0, 1, . . . , k0 − 1, k0 = 1, 2, 3, . . . , (A.9)

we obtain

c(k0+1)(x) =
k0−1∑
n=0

(
k0 + 1
n + 1

)
dn+1a

dxn+1
(x)

dk0−nb

dxk0−n
(x) + a(x)

dk0+1b

dxk0+1
(x) +

dk0+1a

dxk0+1
(x)b(x) (A.10)

=
k0∑

n=1

(
k0 + 1

n

)
dna

dxn
(x)

dk0+1−nb

dxk0+1−n
(x) + a(x)

dk0+1b

dxk0+1
(x) +

dk0+1a

dxk0+1
(x)b(x) (A.11)

=
k0+1∑
n=0

(
k0 + 1

n

)
dna

dxn
(x)

dk0+1−nb

dxk0+1−n
(x), (A.12)

which proves that (A.3) is also valid for order k0 + 1. Applying the previous considerations

recursively for k0 = 1, 2, 3, . . . , k − 1 yields the complete proof of the theorem.
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A.2 Determinant and Inverse of a Cross-diagonal Matrix

Theorem 2. Define as Λv the diagonal matrix whose diagonal elements are the elements of the

vector v. Furthermore, let f = [f(0), f(1), f(2), . . . , f(N −1)]T and b = [b(0), b(1), b(2), . . . , b(N −
1)]T be two N -dimensional complex vectors, N = 2, 4, 6, . . .1, where b(0) = b(N/2) = 0, and let

X = Λf + ΛbD
2
N (A.13)

be a cross-diagonal matrix, where D2
N is the matrix operator of Equation (3.60). Then we have

detX = f(0)f
(

N

2

) N
2 −1∏
m=1

[f(m)f(N −m)− b(m)b(N −m)] (A.14)

with
∏0

m=1 ≡ 1. Furthermore, if none of the factors of (A.14) vanishes, then X is invertible with

X = Λφ + ΛβD2
N , (A.15)

where φ = [φ(0), φ(1), φ(2), . . . , φ(N − 1)]T and β = [β(0), β(1), β(2), . . . , β(N − 1)]T are given by

φ(m) =
1

f(m)f(N −m)− b(m)b(N −m)
f(N −m) (A.16)

β(m) = − 1
f(m)f(N −m)− b(m)b(N −m)

b(m), (A.17)

m = 0, 1, 2, . . . , N − 1,

with φ(N) ≡ φ(0) and β(N) ≡ β(0). In particular, φ(0) = 1/f(0), φ(N/2) = 1/f(N/2) and

β(0) = β(N/2) = 0.

Proof. To begin with, let us express X explicitly. For N ≥ 4, using Equation (3.60), X can be

graphically depicted as

X =



f(0)

f(1) b(1)
. . . . ..

f
(

N
2 − 1

)
b
(

N
2 − 1

)
f
(

N
2

)
b
(

N
2 + 1

)
f
(

N
2 + 1

)
. .. . . .

b(N − 1) f(N − 1)



, (A.18)

1It is not difficult to prove similar things for odd N but due to the lack of interest (N is usually a power of two)
that proof is not shown here.
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where blank positions represent zeros. Using the Laplace expansion [29] for the determinant of a

matrix along the first row yields

det X = f(0) det



f(1) b(1)
. . . . ..

f
(

N
2 − 1

)
b
(

N
2 − 1

)
f
(

N
2

)
b
(

N
2 + 1

)
f
(

N
2 + 1

)
. .. . . .

b(N − 1) f(N − 1)


(A.19)

For N = 4, a simple application of the Laplace expression again yields the result for the determi-

nant. Otherwise, we proceed. As N is even, the matrix on the right hand side of (A.19) has an

odd (N − 1) number of lines and columns. If we apply again a Laplace expansion to it in its first

row, both f(1) and b(1) terms appear with a plus sign in the expansion:

detX = f(0)

(

f(1) det



f(2) b(2) 0
. . . . ..

...

f
(

N
2 − 1

)
b
(

N
2 − 1

) ...

f
(

N
2

) ...

b
(

N
2 + 1

)
f
(

N
2 + 1

) ...

. .. . . .
...

b(N − 2) f(N − 2) 0

0 . . . . . . . . . . . . . . . 0 f(N − 1)



+

b(1) det



0 f(2) b(2)
...

. . . . ..

... f
(

N
2 − 1

)
b
(

N
2 − 1

)
... f

(
N
2

)
... b

(
N
2 + 1

)
f
(

N
2 + 1

)
... . .. . . .

0 b(N − 2) f(N − 2)

b(N − 1) 0 . . . . . . . . . . . . . . . 0



)
.

(A.20)

We will now apply the same expansion to the last row of the matrices in (A.20). These matrices
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are (N − 2)-by-(N − 2), having thus an even number of rows and columns. Being that the case,

the element in the lower right corner appears with a plus sign and the one in the lower left corner

with a minus sign. We have thus

det X = f(0) [f(1)f(N − 1)− b(1)b(N − 1)] ·

· det



f(2) b(2)
. . . . ..

f
(

N
2 − 1

)
b
(

N
2 − 1

)
f
(

N
2

)
b
(

N
2 + 1

)
f
(

N
2 + 1

)
. .. . . .

b(N − 2) f(N − 2)


. (A.21)

For N = 6, again a simple application of the Laplace expansion is enough to prove the result. If

N > 6, we have to apply the Laplace expansion recursively to this matrix the same way we did in

equations (A.19) to (A.21), ending up with

det X = f(0)

N
2 −2∏
m=0

[f(m)f(N −m)− b(m)b(N −m)] det


f
(

N
2 − 1

)
0 b

(
N
2 − 1

)
0 f

(
N
2

)
0

b
(

N
2 + 1

)
0 f

(
N
2 + 1

)
 .

(A.22)

A last application of the Laplace expansion delivers the result (A.14). For N = 2, X is of the form

X =

 f(0) 0

0 f(1)

 (A.23)

and the result is obvious.

To find the inverse of X (if it is invertible) we only have to solve the equation

X−1X = I (A.24)

with our candidate X−1 for φ and β forcing β(0) = β(N/2) = 0 (these two values do not add

degrees of freedom to the inverse). If false equations appear, then our candidate is invalid. Nev-

ertheless, as we will see next, no such thing occurs. We get using (A.18) for X and its equivalent
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for X−1 with φ and β instead of f and b, respectively,

N−1∑
k=0

[X−1]m,k[X]k,l = [I]m,l, m,l = 0, 1, . . . N − 1 ⇐⇒ (A.25)

 f(m) b(N −m)

b(m) f(N −m)


 φ(m)

β(m)

 =

 1

0

 for m = 1, 2, . . . , N
2 − 1, N

2 + 1, . . . , N − 1 and

φ(m)f(m) = 1 for m = 0 or m = N
2 .

(A.26)

This system has the same number of unknowns and equations and its solution is

 φ(m)

β(m)

 =



 f(m) b(N −m)

b(m) f(N −m)


−1  1

0

 for m = 1, 2, . . . , N
2 − 1, N

2 + 1, . . . , N − 1 and

 1
f(m)

0

 for m = 0 or m = N
2

(A.27)

=
1

f(m)f(N −m)− b(m)b(N −m)

 f(N −m)

−b(m)

 , (A.28)

with f(N) ≡ f(0) and b(N) ≡ b(0).
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