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ABSTRACT

In this paper, we develop a multidimensional companding
scheme for the preceptual distortion measure by S. van de Par
[1]. The scheme is asymptotically optimal in the sense that
it has a vanishing rate-loss with increasing vector dimension.
The compressor operates in the frequency domain: in its sim-
plest form, it pointwise multiplies the Discrete Fourier Trans-
form (DFT) of the windowed input signal by the square-root
of the inverse of the masking threshold, and then goes back
into the time domain with the inverse DFT. The expander is
based on numerical methods: we do one iteration in a fixed-
point equation, and then we fine-tune the result using Broy-
den’s method. Additionally, we will show simulations which
corroborate the approximations and results of the theoretical
derivations.

Index Terms— Multidimensional companding, asymp-
totic optimality, perceptual distortion measure, sinusoidal au-
dio coding

1. INTRODUCTION

In this last decade we have observed an explosive increase in
the usage of audio coding schemes and coded audio content,
which enable the reduction of the information throughput (bi-
trate) of an audio signal on the order of 7 to 15 times with
respect to the original Pulse Code Modulation (PCM) coded
signal, with very reduced penalty in perceptual quality [2].
These schemes make countless applications possible, such
as handheld audio decoders with reduced memory capacity
which nevertheless can carry hours of audio content, stream-
ing thorugh bandwidth constrained channels such as the In-
ternet with low bandwith usage and high experienced qual-
ity, delivery of audio content interactively through the World
Wide Web (WWW), digital radio, digital television, recorded
digital video, and many more.

This decrease in bitrate yet with surprisingly high trans-
parency is achieved through the exploitation of the perceptual
irrelevance and statistical redundancy present in the audio sig-
nal [3]. Indeed, contemporary audio coders uselossysource

coding mechanisms based on quantization, where less percep-
tually important information is quantized more roughly and
vice-versa, andlosslesscoding of the symbols emitted by the
quantizer to reduce statistical redundancy. In the quantization
process of the (en)coder, it is desirable to quantize the infor-
mation extracted from the signal in a rate-distortion optimal
sense, i.e., in a way that minimizes the perceptual distortion
experienced by the user subject to the constraint of a certain
available bitrate.

Due to its mathematical tractability, the Mean Square
Error (MSE) is the elected choice for the distortion measure
in many coding applications. In audio coding, however, the
usage of more complex perceptual distortion measures dif-
ferent from the MSE, exploting the frequency selectivity and
masking phenomena of the human auditory system, achieves
a much higher performance, i.e., a higher perceptual quality
for the same bitrate. A way to code with these measures
is to multiply the input signal by certain perceptual weights
before quantizing on the encoder and do the inverse (divide)
on the decoder, so that the perceptual distortion measure
gets mapped into an MSE in the normalized domain. These
weights are usually related to the masking threshold, a time-
frequency function delivering the maximum distortion power
insertible in a time-frequency bin so that the distortion isstill
inaudible. The ease of use of the MSE distortion measure
makes this solution attractive, having it been employed in
several quantization schemes [4], [5], [6], [7], [8].

Nevertheless, such an approach has the inconvenient that
the weights have to be transmitted as side information through
the channel so that the receiver can do the inverse normaliza-
tion, thereby introducing an overhead in the transmission pro-
cess. In the case of a multiple description coding scenario [9],
this overhead may be intolerably high. In such a scenario we
have to transmit information throughn > 1 channels and at
the receiverm ≤ n channels are received successfully. The
channels that were not transmitted successfully do not arrive
at all (they are “erased”). As we don’t know at the sender
which channels will arive, we have to transmit the perceptual
weights in all channels. With increasing number of channels
n, for a constant total bit budget, the useful information for



the audio signal becomes thus smaller and smaller, becoming
a multiple description audio coding scheme thus useless for
highn.

To solve this problem, we will make use ofmultidimen-
sional companding[10]. As shown in figure 1, in a mul-
tidimensional companding quantization scheme the source
x ∈ R

N is first pre-processed by applying a non-linear vector
functionF to it, that we call thecompressor, then the result
is vector quantized, transmitted through the channel in an
efficient way, and finally at the receiver the inverse function
F−1, theexpander, is applied as a post-processing step, be-
ing the reproductiony obtained in this fashion. The set of
both functions, the compressor and the expander, is called the
compander.

x // F (·) // Q(·) channel
// F−1(·) // y

Fig. 1. Source coding with multidimensional companding

In [10], it was shown that general non-difference mea-
sures (which satisfy some natural conditions) are equivalent to
the MSE measure at high resolution (at low distortion levels)
in the compressed domain (between the compressed source
signal and the not-yet-expanded received signal) if an “opti-
mal” companding scheme (in the sense described in [10]) was
applied, thus making all schemes optimal for the MSE mea-
sure also optimal for this type of non-MSE measures upon
application of the optimal companding scheme. The advan-
tage of using an optimal companding scheme in audio source
coding is then that coding with a perceptually relevant (non-
MSE) distortion measure can be done with any MSE-based
scheme without the need to do pre-normalization of the in-
put signal with perceptual weights. The transmission of this
side information is thereby removed, and multiple description
coding can be done with an arbitrary large number of descrip-
tionsn without performance loss.

Although the usage of multidimensional companding
seems promising, an optimal companding scheme does in
general not exist [10]. To work around that problem, a
suboptimalcompanding scheme must be built, having an ad-
ditional rate (entropy), the so calledrate loss, at the output
of the quantizer in relation to the rate that would be theoreti-
cally achievable with the (non-existent) optimal companding
scheme. In this paper we will sum up the work done in
[11], which had as objective the construction and simulation
of such a sub-optimal companding scheme, with vanishing
rate-loss with increasing vector dimension, for the percep-
tual distortion measure developed by S. van de Par [1], a
distortion measure designed for sinusoidal audio coding [12]
applications.

This paper is organizes as follows. In section

2. PRELIMINARIES

We will start overviewing the theme of multidimensional
companding, and in particular the condition for optimality
that we will need to derive the companding scheme and the
additional rate at the output of the quantizer when using a
sub-optimal scheme, with respect to the optimal scheme, the
so-calledrate-loss. For an extensive treatment of the subject
we refer the reader to [10]. Subsequently, we will deliver the
distortion measure which will be used in this paper, described
in [1].

2.1. Multidimensional Companding

Linder et al. [10] treated the theme of multidimensional com-
panding (figure 1) assuming that the distortion measure which
we are coding with islocally quadratic. This type of distor-
tion measures is characterized by being of classC3(RN ) (d
is 3 times continuously differentiable) with respect toy, by
being strictly positive except in its absolute minimumy = x,
where it should be 0,

d(x, y) ≥ 0 with equality iff y = x, (1)

and by having a Taylor expansion with respect toy aroundx
given by

d(x, y) = (y − x)TM(x)(y − x) + O(‖y − x‖3), (2)

where‖ · ‖ denotes thel2 norm and where the matrixM(x),
dubbed in [10] as thesensitivity matrix, is defined as

[M(x)]m,l =
1

2

∂2d(x,y)

∂ym∂yl

∣∣∣
y=x

, m,l = 0, 1, . . . , N −1, (3)

i.e., it is half of the Hessian matrix ofd with respect toy
calculated aty = x. The absence of the 0th and 1st order term
in (2) comes directly from the condition (1). Due to the same
condition,M(x) is positive definite.

It was defined in [10] that a multidimensional companding
scheme is optimal when the Jacobian matrix

[F ′(x)]m,l =
∂Fm

∂xl

(x), m,l = 0, 1, . . . , N − 1 (4)

of the compressor satisfies1

M(X) = F ′(X)TF ′(X) (5)

almost everywere, whereM(X), is the sensitivity matrix of
equation (3), whereT denotes transposition and where we de-
note random variables by uppercase letters and their realiza-
tions by the lowercase correspondences. Due to the positive
definiteness of (3), there exists a matrixF ′ satisfying (5) [13].

1In the original paper there was a multiplying constantc which is set to 1
for simplicity. No loss of generality occurs.



We call any such a matrix a square-root ofM , denoted here
by

√
M . An equivalent condition to (5) is then

F ′(x) =
√

M(x), (6)

for some square-root ofM . When fixing the matrix
√

M ,
the solution of (6) is not unique: any solution of the form
U(x)

√
M(x) with U(x) orthogonal is also a solution of (5)

and all solutions of (5) are separated by the left-multiplication
by an orthogonal matrix. In this paper, we will restrict our-
selves to the caseU(x) = I, whereI is the identity matrix.

Additionally, the rate-loss of a sub-optimal companding
scheme at high resolution (low distortion) was derived in [10]
as being

H(QD,F̃ ) − H(QD,F ) ≈

≈ 1

2N
E log2

(
det M̃(X)

detM(X)

)

+
1

2
log2

[
E tr

(
M̃(X)−1M(X)

N

)] (7)

with
M̃(X) = F̃ ′(X)TF̃ ′(X), (8)

2.2. Perceptual Distortion Measure

In [1], S. van de Par defined an auditory, perceptually rele-
vant distortion measure to be used in the context of sinusoidal
audio coding, which delivers the distortion detectabilityof an
N -dimensional signalx and its reproductiony as a weighted
mean square error of the windowed signals in the frequency
domain. More precisely, the distortion measure betweenx
andy is defined as

d(x, y) =

L−1∑

f=0

â2(x, f) |ŷw(f) − x̂w(f)|2, (9)

where the juxtaposition of two vectors denotes the pointwise
product between them, thê operator denotes theL-point
unnormalized discrete Fourier transform (DFT) in which the
input signal is zero-padded up to sizeL, i.e. for anyN -
dimensional signalu

û(f) =

N−1∑

n=0

u(n) e−j 2π
L

fn, f = 0, 1, . . . , L − 1, (10)

and wherew is anN -size frequency selective window (e.g.
the Hann one) withw(n) > 0 ∀n and â2(x, f) is selected
to be the (signal dependent) inverse of the masking threshold
at frequencyf/L · fs (fs denotes the working sample rate),
given by

â2(x, f) = Nc1

P∑

i=1

|ĥi(f)|2
∑L−1

f ′=0 |ĥi(f ′)|2 |x̂w(f ′)|2 + c2

,

f = 0, 1, . . . , L − 1. (11)

In this last equation,c1 > 0 andc2 > 0 are calibration con-
stants, beingc1 independent ofN andhi(n) is the (L-point)
impulse response of the cascade of the filter simulating the
behavior of the outer- and middle ear with theith gamma-
tone filter of the filter-bank of sizeP , simulating the band-
pass characteristic of the basilar membrane of the cochlea [1].
These filtershi are assumed to be absolutely summable.

In accordance to what was explained in the introduction
(section 1), we would like to point out that this distortion mea-
sure can be transformed into a mean-square-error (MSE) by
normalization of the input signal. Indeed, looking at the form
(9) of the distortion measure, we can define

x̂′(f) = â(f) x̂w(f) ŷ′(f) = â(f) ŷw(f) (12)

and work on the normalized domainx′, y′, i.e. quantize and
transmitx′ and recovery from ŷ′. Nevertheless, if we use the
normalization directly, the square-root of the inverse of the
masking threshold̂a has to be transmitted to the receiver to
perform the inverse normalization

ŷw(f) =
ŷ′(f)

â(f)
, (13)

with the consequence of an intorable overhead in a multiple
description coding scenario with high number of channels.

3. A SUBOPTIMAL COMPANDING SCHEME

In section 2, we have shown the basic elements necessary to
construct a companding scheme for the distortion measure in
question. Based on those elements, we will construct a sub-
optimal companding scheme in this section.

3.1. Sensitivity Matrix

We will first work out the optimality condition (5), check
whether optimality can be achieved, and then, due to arriving
at a negative result, we will construct a sub-optimal compres-
sor based on the same condition. As we can see through the
condition equation, to express it explicitely we have to calcu-
late the sensitivity matrix (3). Those calculations were done
in [11], where the casesL = N andL 6= N were treated
separately, being the result

M(x) = ΛwMc(x)Λw . (14)

with
Mc(x) = DH

NΛNâ(x)2DN , (15)

whereΛu denotes a diagonal matrix with the elements of the
vectoru in the diagonal,H denotes hermitian transposition
andDN denotes the normalized DFT matrix [14].Mc is a
circulant matrix due to being diagonalized by the DFT matrix
[15]. In turn, forL 6= N , the result is

M(x) = ΛwMt(x)Λw, (16)



with

[Mt(x)]ml = [Mc(x)]ml, m,l = 0, 1, . . . , N − 1 (17)

where in this caseMc is a largerL-by-L matrix, given by

Mc(x) = DH
LΛLâ(x)2DL. (18)

The matrixMt is a cropped version of the circulantMc,
being consequently a Toeplitz matrix. Due to the difficulty
in dealing with Toeplitz matrices, namely in calculating their
eigenvalues, determinant, inverse and other functions,Mt

was approximated by a circulant matrixMt,a on basis of
asymptotic equivalence results of [15]. The approximation
Mt ≈ Mt,a will therefore deliver exact results asN → ∞
and good approximations for the sizes ofN tipically dealt
with in audio codingN ∼ 1024. After some calculations, the
approximation resulted in

Mt,a(x) = DH
NΛN ˆ̃a2DN , (19)

where

ˆ̃a2(x, f) =
L

N
â2

(
x,

L

N
f

)
, f = 0, 1, . . . , N − 1 (20)

is a decimated, energy corrected version of the masking
threshold. It was also shown, forN not too small, that we
can decimate the band-pass filters instead of the masking
threshold, i.e. define

ˆ̃hi(f)
def
= ;

√
L

N
ĥi

(
L

N
f

)
, f = 0, 1, . . . , N − 1 (21)

and use

ˆ̃a2(x, f) = Nc1

P∑

i=1

|ˆ̃hi(f)|2
∑N−1

f ′=0 |
ˆ̃
hi(f ′)|2 |x̂wN (f ′)|2 + c2

,

f = 0, 1, . . . , N − 1, (22)

whereûN stands for theN -point DFT ofu.

3.2. Compressor

Having delivered the form of the sensitivity matrix in section
3.1, we will work now more deeply out what condition the
optimal compressor should satisfy and develop a compressor
using the derived optimality condition.

From equations (5), (6) and (16) with the approximation
(19) forL 6= N ) or (14) and (15) forL = N , we can see that
a possible square-root is

F ′(x) =
√

M(x) = DH
NΛ√

N ˆ̃a(x)DNΛw, (23)

where forL = N , â sould be used instead ofˆ̃a (in this case
â = ˆ̃a anyway, but the origin of the equations is different). In

[11], it was proven that no optimal companding scheme ex-
ists for the specific sensitivity matrix given by (23) and forall
sensitivity matrices given by the left-multiplication of equa-
tion (23) by a signal-independent orthogonal matrixU . The
signal-dependent case was left for future work.

A suboptimal companding scheme was thus developed,
andU(x) was set toI. The proposed scheme windows the
input signal, goes into the frequency domain using the DFT,
applies a non-linear functionG and goes back into the time
domain with the inverse DFT. In a block diagram, the scheme
can be synthesized as depicted in figure 2. In mathematical
terms, the compressor is given by

F (x) =
DH

N√
N

G(
√

NDNΛwx). (24)

It is easy to see through the application of the chain rule [16]
that the optimality condition (23) degenerates into

G′(z) =
√

NΛˆ̃a(x(z)) ≡
√

NΛˆ̃a(z), (25)

wherex(z) = Λ−1
w DH

N z/
√

N and we use a slight abuse of
notation, saying that now̃̂a is a function ofz directly.

There areN2 equations andN unknowns in equation
(25), meaning that the equation system is overdetermined.
To build the compressor, we discard theN2 − N equations
outside the diagonal elements, and choose to satisfy only the
N equations on the diagonal. This negligence of equation
results in a sub-optimal compressor, since with the resulting
compressor the off-diagonal elements of its Jacobian matrix
will not be 0. Calculations show that the resulting compressor
is of the form

G̃m(z) =
√

N Γm(z) z(m), m = 0, 1, . . . , N − 1, (26)

where the expression for the componentm was given, where
the tilde stands for sub-optimality, and where the signal-
dependent gainΓ has a componentm given by

Γm(z) =

∫ 1

0

γm(z, t) dt (27)

with

γm(z, t) =

=

√√√√√Nc1

P∑

i=1

|ˆ̃hi(m)|2

‖Λˆ̃
hi

z‖2 + 2|ˆ̃hi(m)|2 |z(m)|2 (t − 1) + c2

(28)

for m 6= 0 andm 6= N/2, and

γm(z, t) =

=

√√√√√Nc1

P∑

i=1

|ˆ̃hi(m)|2

‖Λˆ̃
hi

z‖2 + |ˆ̃hi(m)|2z2(m) (t2 − 1) + c2

(29)

for m = 0 or m = N/2.



x // × window // DFT // G(·) // iDFT // F (x)

Fig. 2. Block Diagram of the compressorF (x)

3.3. Taylor Expansion

Equations (28) and (28) show that the integrand of (27) is
given in terms of a sum of‖Λˆ̃

hi

z‖2 + c2 with a term pro-

portional to themth component of the same squared norm,

|ˆ̃hi(m)|2 |z(m)|2. The proportionality constant (taken 6=
0, N/2 as an example)2(t − 1) is on the order of the units
(note thatt ∈ [0, 1]), and as consequence, the dependence
on t gets weaker and weaker with increasing vector dimen-
sionN – themth component of the squared norm gets more
and more neglegible with respect to the whole squared-norm.
This motivates a Taylor expansion ofΓm around, say, around
t = 1 with orderM (for the full motivation, see [11]).

The Taylor expansion results in

Γm,M (z) =

M∑

k=0

(−1)k

(k + 1)!

∂k γm

∂tk
(z, 1), (30)

where the derivatives ofγm with respect tot are obtained by
a recursive equation, which computes a certain orderk using
all previously calculated orders of the same quantity (orders
smaller thank) and an “inhomogeneous” function sequence
(for eachm), with the property that the first element of the
sequence is proportional toγ2

m and the derivative of thekth el-
ement is the(k + 1)st element.

Note that if we useM = 0 we get the very simple expres-
sion

Γm,0(z) = γm(z, 1) = ˆ̃a(z, m), (31)

i.e., in its most simple form, the compressor multiplies the
(windowed) input signal by the square-root of the inverse of
the masking threshold in the frequency domain. If you com-
pare the compressor (26) with the normalization step (12),
you will notice that asymptotically, the compressor does ex-
actly the thing we wanted to avoid: normalize the input signal
by perceptual weights. Nevertheless, instead of transmitting
perceptual weights through the channel, at the receiver we
now only have to apply the inverse of the compressor (26)
(the expander); it is not necessary to use the weights at the
receiver. How to calculate the inverse of the compressor will
be the subject of subsection 3.5.

3.4. Analysis of the Compressor

In [11], the compressor was analysed in terms of the optimal-
ity condition (25). Its effective Jacobian matrix was calcu-
lated, having been the result given in terms of recursive equa-
tions as well. Note that the Jacobian matrix ofG̃ is different

from the one in (25) due to the discarding of the diagonal
equations on this last equation; even the diagonal elements
are not exactly the same due to the execution of the Taylor
expansion with finiteM . Furthermore, it was noted that the
Jacobian matrix is given by a low-rank update of a matrix de-
fined there as beingcross diagonal, meaning that it is of the
form

V (z) = Λvf (z) + Λvb(z)D
2
N , (32)

where, in this particular case,vf is a real symmetric (vf (m) =
vf (N−m)) vector andvb is a hermitian symmetric (vb(m)∗ =
vb(N − m)) complex vector. The expression of the Jacobian
matrix is then given by the update

G̃′(z) =
√

N(V (z) + A(z)H(z)H), (33)

whereA(z) andH(z) areN -by-P tall matrices (P ≪ N ).
For a higher detail, the results for the Jacobian matrix can be
consulted in [11].

Additionally, the asymptotic (N → ∞) optimality of the
compressor (26) was established in [11]. Intuitively, as the
term ‖Λˆ̃

hi

z‖2 + c2 gets dominant with respect to the term

|ˆ̃hi(m)|2 |z(m)|2 in the Taylor expansion ofγm (equations
(28) and (29)), asymptotically, the compressor for an arbitrary
M = 0, 1, . . . ,∞ behaves like the compressor forM = 0.
The Jacobian matrix of the compressor forM = 0 can be
calculated, being the result the expression

G̃′(z)∣∣
M=0

=
√

NΛˆ̃a(z) (E + I) (34)

with E having as components

[E]ml =

−∑P

i=1
|ˆ̃hi(m)|2|ˆ̃hi(l)|2 z(m)z(l)∗

h

‖Λˆ̃
hi

z‖2+c2

i

2

∑P

i=1
|ˆ̃hi(m)|2

‖Λˆ̃
hi

z‖2+c2

. (35)

As intuition indicates, the term1/(‖Λˆ̃
hi

z‖2 + c2) in the de-
nominator of (35) decays withN , but its square, present in the
numerator, decays faster. It is thus also intuitive thatE → 0
with increasingN and thatG̃′ fulfills the optimality condition
(25) asymptotically, making the rate-loss (7) vanish asymptot-
ically. A formal derivation can be found in [11].

3.5. Expander

After having derived a suboptimal compressor and having
analysed it in terms of its asymptotic behaviour with increas-
ing vector dimension, it is now natural to complete the whole



chain of the companding scheme depicted in 1 by building an
expander which implements the inverse function of the sub-
optimal compressor.

It can be proven [11] that, at least forM = 0, the com-
pressor is invertible. We are thus sure that if we use an ade-
quate numerical method to solve the equation

G̃(z) = ξ̂ (36)

for a certainx̂i with a sufficiently close initial estimatez(0),
the solution exists,z = G̃−1(ξ̂) and the method will converge
to it. For the inversion of the complete compressor function
F (x) we only have to use the equivalence relation

ξ = F̃ (y) =
DH

N√
N

G̃(
√

NDNΛwy) ⇐⇒

⇐⇒ y = F̃−1(ξ) = Λ−1
w

DH
N√
N

G̃−1(
√

NDNξ), (37)

which is directly deductible from the definition ofG (or the
equivalent for the suboptimal compressor) (24).

For the first iteration of the method, we propose to rear-
range equation (26) as

z(m) =
ξ̂√

N Γm(z)
(38)

and perform a fixed-point iteration of it, i.e., build a second
estimatez(1) with

z(1)(m) =
ξ̂√

N Γm(z(0))
, m = 0, 1, . . . , N − 1. (39)

This first iteration can be motivated as follows. In the first
place, it can be shown thatΓ(z) does not dependent on the
phase of the components ofz, but only on their magnitude.
The execution of iteration (39) has thus the advantage that it
wipes out phase differences between the initial estimatez(0)

and the final desired valuez of (36). In other words, ifz(0)

is very close toz up to phase differences, the second estimate
z(1) will be an excellent initial estimate for the next numerical
method, which will be used to “fine-tune” the obtained vector
z(1). The same argument can be applied ifz(0) has a similar
masking threshold̂̃a−2 than the one ofz. Remember that the
0th order term ofΓm is exactly the square root of the inverse of
the masking threshold and that for high vector dimension only
this term matters (cf. equation (31) and the considerations
on the asymptotical compressor in subsection 3.4) so that for
similar masking thresholds we get similarΓ(z).

For obtaining similar masking thresholds, we propose to
use the vectorz obtained from running the numerical meth-
ods described in this section on the last audio frame as an
initial estimatez(0) for this frame; for this choice the mask-
ing threshold will not have changed much between these two
frames due to the stationarity of typical audio signals in the
order of the dozens of miliseconds. By using equation (39)

in this way, we thereby get a good initial estimate for fine-
tuning.

For the fine-tuning process we propose to use the Broy-
den’s method [17], due to its supralinear convergence [17] but
lower complexity than the Newton’s method. The equations
defining this method are

z(n+1) = z(n) − J̃−1
n

(
G̃(z(n)) − ξ̂

)
, n = 1, 2, . . . (40)

with

J̃n = J̃n−1+

(
∆G̃(n) − J̃n−1∆z(n)

)
∆z(n)H

‖∆z(n)‖2
, n = 2, 3, . . .

(41)
and the initial matrix equal to the Jacobian matrix of the com-
pressor at the initial guess

J̃1 = G̃′(z(1)). (42)

A memory optimization taking advantage of the form (33)
of the Jacobian matrix of the compressor and of the one-rank
updates of (41) (and of its inverse) was done in [11] to enable
the execution of the expander for largeN without calculat-
ing theN -by-N matricesJn explicitely. The largest matrix
size stored in memory after the optimization wasN -by-P (re-
member thatP ≪ N ).

4. SIMULATIONS

4.1. Distortion-rate performance

In this section we will simulate the companding scheme,
showing simulation figures and tables that corroborate the
theoretical results. After calculating the rate-distortion func-
tion for the distortion measure in question, using results of
[18], and the rate-loss of equation (7), simulations of the
distortion-rate performance of the compander with the pa-
rameters of table 1 were done. We used calculations for
the non-approximated version of the sensitivity matrix for
N ≤ 1024 (i.e. Mt instead ofMt,a) and the calculations
for the approximated version for1024 ≤ N < 8192 (Mt,a

instead ofMt). FromN = 8192 on (inclusive) we used the
matrixMc (in this caseMt = Mt,a = Mc. Furthermore, the
expected values in the equations were replaced by statistical
averages (several realizations of the signalX were emitted),
with lower number of realizations for higher vector sizeN
and vice-versa. The reason for decreasing the number of
realizations with higherN is that the quantities for which we
should estimate the expected value are averages themselves
(normalized traces and normalized sums of logarithms of
eigenvalues). Assuming that these inner quantities that we
are averaging (the eigenvalues and their logarithms) are well
behaved, the inner average is consistent, so that these quan-
tities have a low variance for highN . The outer averages
(the ones that replace the expectation) reduce the variance



Parameter Value

Input signalx Gaussian i.i.d. samples with zero mean, varianceσ2

Power of the input signalσ2 0,012

Vector dimensionN Powers of 2 from 256 to 65536
DFT dimensionL 8192 forN ≤ 8192, N otherwise
Windoww Hamming,w(n) = 0,54 − 0,46 cos

(
2π n

N

)

Sample frequencyfs 48 kHz
Quantizer Z

N (componentwise uniform scalar quantization)
Inverse of the quantization step size,1/s 5 scales varying exponentially from103 to 105

Order of Taylor expansionM 3

Table 1. Values for the parameters used in the simulations

furthermore, and thus the lower theN , the heavier that re-
duction needs to be performed (the higher the needed number
of realizations) and vice-versa. In practice, we used on the
order of 100 realizations forN = 256, of 10 realizations for
N = 1024 and 1 realization forN = 8192 or higher.

As output, graphs like the one in 3 were delivered. This
graph shows the distortion-rate performance of the compand-
ing scheme (forN = 1024, in this particular case). The rate-

Fig. 3. Distortion-rate performance of the companding
scheme forN = 1024. Distortions are in terms of the SNR
in dB (10 log1 0(σ2/D)). The blue line represents the Shan-
non’s distortion-rate function. The blue dotted line givesthe
best achievableZN lattice vector quantizer (LVQ) distortion-
rate performance. The green and red lines give the perfor-
mance of the companding scheme and of the identity com-
panderF (x) = F−1(x) = x. The red crosses are results
obtained from quantizing the source directly (i.e. using the
identity compander), and calculating the rate and distortion
values directly.

loss (the horizontal distance between the blue dotted line and
the green line in the graph) was extracted for several valuesof

N , being the results for thedistortion-loss, the correspondent
quantity in the vertical axis of the graph, shown in table 2.

As we can see from figure 3, the scheme performs well
with N = 1024, and from table 2 we can confirm that asymp-
totic optimality is achieved. Note thatN = 1024 is the vec-
tor size which corresponds to the frame-size used in practice
(N/fs = 21,3 ms, wherefs is the sample frequency); (much)
lower or higher values ofN don’t correspond to the frequency
and time resolution of the human ear, respectively. Further-
more, forN/fs ≫ 20 ms the audio signal can’t be considered
stationary.

Additionally, we computed the distortion-rate figures for
N = 1024 with and without approximation ofMt by Mt,a,
and overlaid the resulting curves. The resultant graph can be
seen in figure 4. As we can see, the lines which correspont to
each other are practically perfectly overlaid, which indicates
that for N = 1024 we can approximateMt by Mt,a when
L 6= N .

4.2. Taylor expansion

To test how good the approximation of the original compres-
sor of section 3.2 by the Taylor expansion of section 3.3 is,
and what order ofM we must use to get a good approxima-
tion, we computed the contribution of the0th to the6th order
terms of the signal dependent gainΓ of equation (30) (re-
member that the compressor essentially multiplies pointwise
the windowed input in the frequency domain by the gain,
equation (26)), for the vector size most useful in practice,
N = 1024. The contributions can be seen in figure 5, de-
picted in double-logarithmic scale. The figure shows that al-
ready forN = 1024 we can useM = 0. If we want a finer
detail we can use higherM , but the order of units will be more
than enough. Indeed, the distance between the 0th and 1st or-
der terms is at least15,7 dB, which means that the1st order
term has values that are attenuated at least6,1× with respect
to the values of the0th order term. For the2nd order term this
distance is23,9 dB (15,7×), and for the6th order42,8 dB
(138×).



N 256 512 1024 2048 4096 8192 16384 32768 65536
Distortion Loss (dB) 14,6 14,0 12,6 11,0 8,65 6,27 4,28 2,77 1,57

Table 2. Distortion Loss of the companding scheme for varyingN

Fig. 4. Distortion-rate performance of the companding
scheme forN = 1024. Comparison of the circulant ma-
trix approximation with the real values. See 3 for the mean-
ing of the colors (the dotted red and green here are exactly
the same as the solid red and green in figure 3, respectively).
The common colors between the two figures refer to the non-
approximated version. The light-blue, dotted light-blue,dark
green and brown lines correspond to the blue, dotted blue,
green and red lines, respectively, but for the approximated
version.

4.3. Limitations

Figure 5 shows an important limitation that the developed
multidimensional companding scheme has: as the gainΓ de-
creases abruptly with increasing frequency, the inversionof
the compressor, although mathematically possible (at least for
M = 0; see subsection 3.5), is a numerically badly condi-
tioned problem. Using the rough rationale based on equation
(38) that the expander multiplies the incoming signal point-
wise by the inverse ofΓ, we can see through figure 5 that the
quantization noise present in the input of the expander willbe
heavily amplified in the high frequencies (imagine the char-
acteristics upside-down, since the inverse in the linear domain
corresponds to the symmetric in the log domain). The same
happens for the very low frequencies. In practice, this means
that two very different signals in the non-compressed domain
will have very near compressed signals, up to numerical error.

To deal with this limitation we can crop the gainΓ and
the masking threshold̃̂a of the distortion measure, i.e., if the

Fig. 5. Contribution of thejth order term of the Taylor ex-
pansion of the signal-dependentΓ, j = 0, 1, . . . , 6

frequency is below a certain threshold in the low-frequency
range, we use the boundary value (the value on the threshold),
and if the frequency is above another threshold, in the high-
frequency range, we do the same. Between the two thresh-
olds, the original gain/masking threshold are conserved. For
N = 1024, the distortion-rate performance of the compressor
was simulated again croppingΓ and ˆ̃a in the high frequency
range at{24, 18, 14} kHz (the first case corresponds to not
cropping asfs/2 = 24 kHz), and then cropping in the low
frequency range at{50, 100} Hz for no high-frequency crop-
ping and for high-frequency cropping at18k Hz. The results
are shown in figures 6 and 7, respectively.

We observe a degradation of performance for decreas-
ing threshold of the high-frequency crop: the distortion-rate
function, theZ

N best distortion-rate performance and the
distortion-rate performance of the compander all sink in the
graphs, i.e., for the same rate, the best achievable and the
actual distortions increase (the SNR decreases). At a certain
point (in the figure at14 kHz) the performance of the com-
pander sinks below the performance of not doing anything,
i.e., of using the identity companderF (x) = x. For the low-
frequency cropping case no performance loss is obtained, as
the compander curves lie on top of each other. For practical
numerical good condition, a cropping on the low frequencies
at50 Hz and on the high frequencies at18 kHz suffices. The
graph 7(b) is thus the one that depicts the performance of the
scheme in a practial situation.



(a) 24 kHz (no cropping) (b) 18 kHz (c) 14 kHz

Fig. 6. Distortion-rate performances for cropping in the high-frequency range at 24, 18 and14 kHz

(a) no cropping (b) high-frequency cropping at18 kHz

Fig. 7. Distortion-rate performances for cropping in the low-frequency range at 50 and100 Hz, for no high-frequency cropping
and for cropping at18 kHz

5. CONCLUSIONS

A multidimensional companding scheme was developed for
the perceptual distortion measure [1]. Although the devel-
oped scheme is suboptimal, it was proven (in [11]) that no
optimal scheme exists under a wide range of solutions for
the optimality condition (5), and that nevertheless the con-
ceived scheme reached optimality asymptotically, i.e., with
increasing vector dimensionN . The scheme was developed
in the frequency domain; in its most simple form, the com-
pressor windows the input signal, applies a Discrete Fourier
Transform (DFT), multiplies the input signal by the square-
root of the inverse of its masking threshold, the square-root of
equation (11), and then goes back into the time domain with
the inverse DFT. This process is exactly the same as the pro-
cess of normalization by perceptual weights of equation (12),

but with the advantage that no perceptual weights have to be
transmitted through the channel. At the receiver, an algorithm
based on numerical methods, the expander, has to be run. The
expander does not depend on the perceptual weights and it
can be run using the previous audio frame, already available
at the decoder, as its initial condition. The theoretical results
and assumptions were corroborated with simulations.
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