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ABSTRACT coding mechanisms based on quantization, where less percep

. o _ . tually important information is quantized more roughly and
In this paper, we develop a multidimensional companding;ice yersa, antbssleszoding of the symbols emitted by the
scheme for the preceptual distortion measure by S. van de P&lﬂantizer to reduce statistical redundancy. In the quatitia

[1]. The scheme is asymptotically optimal in the sense thafcess of the (en)coder, it is desirable to quantize thar-nf
it has a vanishing rate-loss with increasing vector dim@msi |\ -+ion extracted from the signal in a rate-distortion optim

The compressor operates in the frequency domain: in its Sin%‘ense, i.e., in a way that minimizes the perceptual distort

plest form, it pointwise multiplies the Discrete Fourieas- oy nerienced by the user subject to the constraint of a certai
form (DFT) of the windowed input signal by the square-root,, -.1-ve pitrate

of the inverse of the masking threshold, and then goes back _ _ -

into the time domain with the inverse DFT. The expanderis Due to its mathematical tractability, the Mean Square
based on numerical methods: we do one iteration in a fixede"ror (MSE) is the elected choice for the distortion measure
point equation, and then we fine-tune the result using Broyl many coding applications. In audio coding, however, the
den’s method. Additionally, we will show simulations which Usage of more complex perceptual distortion measures dif-

corroborate the approximations and results of the themareti ferent from the MSE, exploting the frequency selectivitglan
derivations. masking phenomena of the human auditory system, achieves

o ) ) a much higher performance, i.e., a higher perceptual gualit
_Index Terms— Multidimensional companding, asymp- for the same bitrate. A way to code with these measures
tqtlc oppmahty, perceptual distortion measure, sindsbau- g g multiply the input signal by certain perceptual weight
dio coding before quantizing on the encoder and do the inverse (divide)
on the decoder, so that the perceptual distortion measure
1. INTRODUCTION get.s mapped into an MSE in the normglized domain. These
weights are usually related to the masking threshold, a-time

In this last decade we have observed an explosive increase ffigduency function delivering the maximum distortion powe
the usage of audio coding schemes and coded audio conteffSertible in a time-frequency bin so that the distortiostif
which enable the reduction of the information throughpist (b 'Naudible. The ease of use of the MSE distortion measure
trate) of an audio signal on the order of 7 to 15 times with™akes this solution attractive, having it been employed in
respect to the original Pulse Code Modulation (PCM) codeg€Veral quantization schemes [4], [5], [6], [7], [8].
signal, with very reduced penalty in perceptual quality. [2] Nevertheless, such an approach has the inconvenient that
These schemes make countless applications possible, sugfe weights have to be transmitted as side information tijirou
as handheld audio decoders with reduced memory capacitfie channel so that the receiver can do the inverse normaliza
which nevertheless can carry hours of audio content, streantion, thereby introducing an overhead in the transmission p
ing thorugh bandwidth constrained channels such as the Iress. In the case of a multiple description coding scenéjo [
ternet with low bandwith usage and high experienced qualthis overhead may be intolerably high. In such a scenario we
ity, delivery of audio content interactively through the Mo have to transmit information through > 1 channels and at
Wide Web (WWW), digital radio, digital television, recomle the receiverm < n channels are received successfully. The
digital video, and many more. channels that were not transmitted successfully do notearri
This decrease in bitrate yet with surprisingly high trans-at all (they are “erased”). As we don’'t know at the sender
parency is achieved through the exploitation of the peradpt which channels will arive, we have to transmit the perceptua
irrelevance and statistical redundancy presentin theoaigi  weights in all channels. With increasing number of channels
nal [3]. Indeed, contemporary audio coders lassysource n, for a constant total bit budget, the useful information for



the audio signal becomes thus smaller and smaller, becoming 2. PRELIMINARIES
a multiple description audio coding scheme thus useless for
highn. We will start overviewing the theme of multidimensional

To solve this problem, we will make use ofultidimen- companding, and in particular the condition for optimality
sional companding10]. As shown in figure 1, in a mul- that_\{ve will need to derive the companding scheme aqd the
tidimensional companding quantization scheme the sourcdditional rate at the output of the quantizer when using a
x € RN is first pre-processed by applying a non-linear vectosub-optimal scheme, with respect to the optimal schem(_e, the
function F to it, that we call thecompressarthen the result so-calledrate-loss For an extensive treatment of_ the $ubject
is vector quantized, transmitted through the channel in aie refer the reader to [10]. Subsequently, we will deliver th
efficient way, and finally at the receiver the inverse functio distortion measure which will be used in this paper, desfib
F~1, theexpandeyis applied as a post-processing step, bell [1].
ing the reproductiony obtained in this fashion. The set of
both functions, the compressor and the expander, is cdiked t 2.1. Multidimensional Companding

compander Linder et al. [10] treated the theme of multidimensional eom

panding (figure 1) assuming that the distortion measurehwhic
we are coding with isocally quadratic This type of distor-
F71() ‘—> y tion measures is characterized by being of cla$érR”") (d

is 3 times continuously differentiable) with respectitoby
being strictly positive except in its absolute minimygre= z,

Fig. 1. Source coding with multidimensional companding Where it should be 0,

z —>‘F() ‘ ‘Q() ‘ channel

_ _ d(z,y) >0 with equality iffy = z, (1)
In [10], it was shown that general non-difference mea-
sures (which satisfy some natural conditions) are equitéte  and by having a Taylor expansion with respecy taroundz
the MSE measure at high resolution (at low distortion levelsgiven by
in the compressed domain (between the compressed source
signal and the not-yet-expanded received signal) if ani*opt  d(z,y) = (y — )" M(z)(y — z) + O(|y — z||*), (2)
mal” companding scheme (in the sense described in [10]) was
applied, thus making all schemes optimal for the MSE meawhere|| - | denotes thé, norm and where the matri/ (z),
sure also optimal for this type of non-MSE measures upoflubbed in [10] as theensitivity matrixis defined as
application of the optimal companding scheme. The advan- 5
. ) ; . : 10%d(z,y)

tage of using an optimal companding scheme in audio sourcg M/ (z)],,; = = ———-| ,
coding is then that coding with a perceptually relevant ¢non 2 Oym Oy I
MSE) distortion measure can be done with any MSE-based
scheme without the need to do pre-normalization of the inl-€., it is half of the Hessian matrix af with respect toy
put signal with perceptual weights. The transmission af thi calculated ay = z. The absence of thé"tand F' order term
side information is thereby removed, and multiple deswipt N (2) comes directly from the condition (1). Due to the same

coding can be done with an arbitrary large number of descripeondition, M (x) is positive definite. . _
tionsn without performance loss. Itwas defined in [10] that a multidimensional companding

scheme is optimal when the Jacobian matrix

m,=0,1,...,N—1, (3)

Although the usage of multidimensional companding
seems promising, an optimal companding scheme does in OF
general not exist [10]. To work around that problem, a [F'(2)]mu = a—m(x), ml=0,1,....,N—1 (4)
suboptimakompanding scheme must be built, having an ad- e
ditional rate (entropy), the so calledte loss at the output  of the compressor satisffes
of the quantizer in relation to the rate that would be thaoret
cally achievable with the (non-existent) optimal compaigdi M(X)=F'(X)TF'(X) (5)
scheme. In this paper we will sum up the work done in
[11], which had as objective the construction and simufatio almost everywere, wher®/ (X), is the sensitivity matrix of
of such a sub-optimal companding scheme, with vanishingquation (3), wheré denotes transposition and where we de-
rate-loss with increasing vector dimension, for the percepnote random variables by uppercase letters and their aealiz
tual distortion measure developed by S. van de Par [1], Hons by the lowercase correspondences. Due to the positive
distortion measure designed for sinusoidal audio codigg [1 definiteness of (3), there exists a matfiksatisfying (5) [13].

appllc?tlons' ) ) ) 1In the original paper there was a multiplying constamthich is set to 1
This paper is organizes as follows. In section for simplicity. No loss of generality occurs.




We call any such a matrix a square-root/df, denoted here In this last equation;; > 0 ande; > 0 are calibration con-
by v/M. An equivalent condition to (5) is then stants, being; independent ofV andh;(n) is the (L-point)
, impulse response of the cascade of the filter simulating the
F'(z) = v/ M(z), () behavior of the outer- and middle ear with tie gamma-
for some square-root af/. When fixing the matrixy/A/,  tone filter of the filter-bank of sizé”, simulating the band-
the solution of (6) is not unique: any solution of the form pass characteristic of the basilar membrane of the cochlea [
U(SC)\/W with U (z) orthogonal is also a solution of (5) These filtersh; are assumed to be absolutely summable.

and all solutions of (5) are separated by the left-multatiien In accordance to what was explained in the introduction
by an orthogonal matrix. In this paper, we will restrict our- (section 1), we would like t_O point out that this distortioeaa
selves to the cadé(x) = I, wherel is the identity matrix. sure can be transformed into a mean-square-error (MSE) by

Additionally, the rate-loss of a sub-optimal compandingnormalization of the input signal. Indeed, looking at thenfo
scheme at high resolution (low distortion) was derived ] [1 (9) of the distortion measure, we can define

as being ¥ ) . y ) -
¥(f)=a(f)zw(f)  §f)=alf)yu(f) 12
H(Qp ) — H(@Qp,r) =~ _ _ _ .
- and work on the normalized domair, ¢/, i.e. quantize and
~ —Elog det M (X) transmitz’ and recovey from 3’. Nevertheless, if we use the
2N >\ det M(X) normalization directly, the square-root of the inverseha t
- _ (7) masking threshol@ has to be transmitted to the receiver to
1
1 M(X)"t*M((X) f hei lizati
+ 5 log, |E tr — perform the inverse normalization
~1
with S ot =20 13)
M(X) = F'(X)"F'(X), (8)
with the consequence of an intorable overhead in a multiple
2.2. Perceptual Distortion Measure description coding scenario with high number of channels.

In [1], S. van de Par defined an auditory, perceptually rele-
vant distortion measure to be used in the context of sinasoid

audio coding, which delivers the distortion detectabitifyan In section 2, we have shown the basic elements necessary to

N-dimensional signat and its reproductiop as a weighted . : : :
: ) . construct a companding scheme for the distortion measure in
mean square error of the windowed signals in the frequenc

domain. More preciselv. the distortion measure between a/uestion. Based on those elements, we will construct a sub-
andy is 'defined ZS Y optimal companding scheme in this section.

3. ASUBOPTIMAL COMPANDING SCHEME

L-1 e . .
R - - 3.1. Sensitivity Matrix
d(z,y) = > a*(x, f) lgu(f) — zw(f)?,  (9)
f=0 We will first work out the optimality condition (5), check

where the juxtaposition of two vectors denotes the poirﬂwisWhemer optlmahty can b? achieved, and then, glue to agivin
at a negative result, we will construct a sub-optimal corapre

product between them, the operator denotes thé-point based on th dition. A th h th
unnormalized discrete Fourier transform (DFT) in which the>0F Pased on the same condition. AS we can see through the

input signal is zero-padded up to size i.e. for any N- ::c;ndtlr:lon eqq?tllct)n,tote_xprgssTnhexpllcn(lalylvvtg have tcn:u;l
dimensional signak ate the sensitivity matrix (3). Those calculations weraeo

in [11], where the cases = N and L # N were treated

N1 om separately, being the result
i(f) = Y ulm)e VN fo00 L1 @)
n=0 M(z) = ApM.(z)Ay. (14)

and wherew is an N-size frequency selective window (e.g. .
the Hann one) withu(n) > 0 VYn anda?®(z, f) is selected with H

to be the (signal dependent) inverse of the masking thrdshol Me(x) = DnAnag)2 D, (15)

at frequencyf/L - fs (fs denotes the working sample rate), whereA,, denotes a diagonal matrix with the elements of the

given by vectoru in the diagonal! denotes hermitian transposition
P R ) and Dy denotes the normalized DFT matrix [14)V/. is a
a(z, f) = Nex Z _ |hi(f)] : circulant matrix due to being diagonalized by the DFT matrix
' — S ()12 |7 (f)]2 + 2 [15]. Inturn, forL # N, the result is

f=0,1,...,L—1. (12) M(z) = Ay M, (2) Ay, (16)



with [11], it was proven that no optimal companding scheme ex-
ists for the specific sensitivity matrix given by (23) and &dir
[Mi(2)]u = [Me(2)]a,  ml=0,1,...,N =1 (17)  sensitivity matrices given by the left-multiplication ofjea-
tion (23) by a signal-independent orthogonal matrix The
signal-dependent case was left for future work.
A suboptimal companding scheme was thus developed,
andU(z) was set tal. The proposed scheme windows the

The matrix}M, is a cropped version of the circulaht,, input signal, goes into the frequency domain using the DFT,

being consequently a Toeplitz matrix. Due to the difficulty@PPlies a non-linear functiof and goes back into the time
in dealing with Toeplitz matrices, namely in calculatingith domain with the inverse DFT. In a block diagram, the scheme

eigenvalues, determinant, inverse and other functidds, Ca" be synthesized as_depicted in figure 2. In mathematical
was approximated by a circulant matri¥; , on basis of ~(€rms, the compressor is given by

asymptotic equivalence results of [15]. The approximation DX

M, ~ M, , will therefore deliver exact results @ — oo F(x) = —\/N G(\/NDNAw:v). (24)

\?V?t?] 31023 di)pgcr)c(;)i(:gzstfn1s();zr X:‘?erSZ:r‘if(f:gIF::lﬁalt)i/oggatl:le It is easy to see through the application of the chain rul¢ [16
' ' that the optimality condition (23) degenerates into

approximation resulted in
G'(2) = VNA; (o)) = VNA; L), (25)

where in this casé/. is a largerL-by-L matrix, given by

Mc('r) = DEAL&(zPDL- (18)

My o(z) = DNA gz Dy, 19
bol?) e (19) wherez(z) = A,'DX2/v/N and we use a slight abuse of
where notation, saying that nowis a function ofz directly.

) I I There areN? equations andV unknowns in equation
a*(x, f) = —a? (x, —f) , f=0,1,...,N—1 (20) (25), meaning that the equation system is overdetermined.

N N To build the compressor, we discard th& — N equations
is a decimated, energy corrected version of the maskin?\;”Side the diagonal elements, and choose to satisfy oely th
threshold. It was also shown, fé¥ not too small, that we equations on the diagonal. This negligence of equation

can decimate the band-pass filters instead of the maskif§Sults in @ sub-optimal compressor, since with the reggilti
threshold. i.e. define compressor the off-diagonal elements of its Jacobian ratri

will not be 0. Calculations show that the resulting compoess

; dﬁf'\/fﬁ L o No1 (o1 is of the form
)=y Z<Nf)’ f=01 . N=1 @D Gm(2) = VNT(2) 2(m), m=0,1,...,N—1, (26)

and use where the expression for the componentvas given, where
. the tilde stands for sub-optimality, and where the signal-
|hi(f)|? dependent gaifl has a component given by

) P
dQ(Iaf) = NCIZ

=1 Lo lha( £ Fn (£ + c2 Ton(2) = / () de (27)
f=0,1,...,N —1, (22) 0
with
whered y stands for theV-point DFT of u.
’Ym(za t) =
3.2. Compressor P . 9
comp I Y o _Ihitm)
Having delivered the form of the sensitivity matrix in secti =1 1A= 2]|2 + 2hi(m)|2 [2(m)]2 (£ — 1) + 2
3.1, we will work now more deeply out what condition the hi
optimal compressor should satisfy and develop a compressor (28)
using the derived optimality condition. for m # 0 andm # N/2, and
From equations (5), (6) and (16) with the approximation B
(19) for L # N) or (14) and (15) fol, = N, we can see that Tm(2,t) =
a possible square-root is P 2
hi m 2
/ } S _ |hi(m)|
Fl(x) = /M (x) = DNA /550y D Aw, (23) ] ||Aziz|‘2 + [ha(m)[222(m) (£2 — 1) + 2
(29)

where forL = N, a sould be used instead af(in this case
a = a anyway, but the origin of the equations is different). Infor m = 0 orm = N/2.
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Fig. 2. Block Diagram of the compresséi(z)

3.3. Taylor Expansion from the one in (25) due to the discarding of the diagonal

. . .equations on this last equation; even the diagonal elements
E_quatl_onts (28) e;nd (28) STW th2at the m_:Egratnd of (27) Rre not exactly the same due to the execution of the Taylor
glve_n in terms of a sum o fqu  c2 With a term pro- expansion with finitel/. Furthermore, it was noted that the
portional to them™ component of the same squared norm,jacobian matrix is given by a low-rank update of a matrix de-
|]?Li(m)|2 |z(m)|?. The proportionality constant (take #  fined there as beingross diagonalmeaning that it is of the

0, N/2 as an example)(t — 1) is on the order of the units form

(note thatt € [0,1]), and as consequence, the dependence V(z) = Ay, (2) + Moy () D (32)

o_nt gets Wealfher and weaker with increasing vector d'men\'/vhere, in this particular casey is a real symmetric(; (m) =
sion N —them™ component of the squared norm gets more,, (N—m)) vector and, is a hermitian symmetrias (m)* =

and more neglegible with respect to the whole squared—norr%'b(N — m)) complex vector. The expression of the Jacobian
This motivates a Taylor expansionbf, around, say, around matrix is then given by the update

t = 1 with orderM (for the full motivation, see [11]).

The Taylor expansion results in G'(2) =VN(V(2) + A(z)H(2)"), (33)
M (—1)F 9%~ where A(z) and H(z) are N-by-P tall matrices P < N).
e (2) = Z e 8tkm (2,1), (30)  For a higher detail, the results for the Jacobian matrix @n b

k=0 consulted in [11].
Additionally, the asymptoticlyfy — oo) optimality of the
compressor (26) was established in [11]. Intuitively, as th

term HA}:L_ZHQ + c2 gets dominant with respect to the term

where the derivatives of,,, with respect ta are obtained by
a recursive equation, which computes a certain okdesing
all previously calculated orders of the same quantity (rde

smaller thank) and an “inhomogeneous” function sequence|ibi(m)|2 |z(m)|? in the Taylor expansion of,, (equations
(for eachm), with the property that the first element of the (28) and (29)), asymptotically, the compressor for an eabjt

sequence is proportionaltd, and the derivative of the™ el- A7 = 0,1,..., 00 behaves like the compressor fbf = 0.
ement is the{k_ +1)* element. _ The Jacobian matrix of the compressor far = 0 can be
~ Note thatif we usel/ = 0 we get the very simple expres- calculated, being the result the expression
sion _
Tn0(2) = (2 1) = é(z,m), (31) G|, = VN (B+D (34)

i.e., in its most simple form, the compressor multiplies the, i, & having as components
(windowed) input signal by the square-root of the inverse of

the masking threshold in the frequency domain. If you com- _ Zp i (m) 2R (D)2 2(m) =(1)*

pare the compressor (26) with the normalization step (12), =1 [||A}:lvzH2+02]2

you will notice that asymptotically, the compressor does ex [Elmi = P ‘lem)‘z : (35)
actly the thing we wanted to avoid: normalize the input signa >im1 W

by perceptual weights. Nevertheless, instead of tranismitt

perceptual weights through the channel, at the receiver ws intuition indicates, the term/([|A; z[|* + ¢2) in the de-

now only have to apply the inverse of the compressor (26hominator of (35) decays witlv, but itésquare, presentin the

(the expander); it is not necessary to use the weights at theumerator, decays faster. It is thus also intuitive that> 0

receiver. How to calculate the inverse of the compressdr wilwith increasingV and thati’ fulfills the optimality condition

be the subject of subsection 3.5. (25) asymptotically, making the rate-loss (7) vanish asyatip
ically. A formal derivation can be found in [11].

3.4. Analysis of the Compressor

. . 3.5. Expander
In [11], the compressor was analysed in terms of the optimal- XP

ity condition (25). Its effective Jacobian matrix was calcu After having derived a suboptimal compressor and having
lated, having been the result given in terms of recursiveaequ analysed it in terms of its asymptotic behaviour with insrea
tions as well. Note that the Jacobian matrix(ofs different  ing vector dimension, it is now natural to complete the whole



chain of the companding scheme depicted in 1 by building am this way, we thereby get a good initial estimate for fine-

expander which implements the inverse function of the subtuning.

optimal compressor. For the fine-tuning process we propose to use the Broy-
It can be proven [11] that, at least faf = 0, the com- den’s method [17], due to its supralinear convergence [47] b

pressor is invertible. We are thus sure that if we use an adéswer complexity than the Newton’s method. The equations

guate numerical method to solve the equation defining this method are
G(z)=§ (36) L) _ 0 _ j (é(z(")) — 5) . n=1,2,... (40)
for a certainii with a s~uffici§ntly close initial estimate(®), with
the solution exists; = G~1(¢) and the method will converge
to it. For the inversion of the complete compressor function (AG n) _ 1Az(n)) Azt
F(z) we only have to use the equivalence relation T = Jo ” TE n=23
AZ n ) ) e
(41)

- DH
§=Fly) = 75 G(VNDyAwy)
- DY
= y=F1)=A,' LG (VNDyE), (37) o
VN S=G'(20), (42)
which is directly deductible from the definition &f (or the
equivalent for the suboptimal compressor) (24).
For the first iteration of the method, we propose to rear-
range equation (26) as

and the initial matrix equal to the Jacobian matrix of the eom
pressor at the initial guess

A memory optimization taking advantage of the form (33)
of the Jacobian matrix of the compressor and of the one-rank
updates of (41) (and of its inverse) was done in [11] to enable
the execution of the expander for largé without calculat-

3 ing the N-by-N matricesJ,, explicitely. The largest matrix
z(m) = ——— (38) size stored in memory after the optimization wésby-P (re-
VN Tom(2) member tha’ < N).
and perform a fixed-point iteration of it, i.e., build a sedon
estimate:(!) with 4. SIMULATIONS
1) _ € —0.1 N_1. (39 4.1. Distortion-rate performance
z m) = 5 — Yy by ey .
) = 7o) (39)

In this section we will simulate the companding scheme,
This first iteration can be motivated as follows. In the firstshowing simulation figures and tables that corroborate the
place, it can be shown th&l(z) does not dependent on the theoretical results. After calculating the rate-distamtfunc-
phase of the components of but only on their magnitude. tion for the distortion measure in question, using results o
The execution of iteration (39) has thus the advantage that j18], and the rate-loss of equation (7), simulations of the
wipes out phase differences between the initial estiméte  distortion-rate performance of the compander with the pa-
and the final desired valueof (36). In other words, i(®)  rameters of table 1 were done. We used calculations for
is very close to: up to phase differences, the second estimatéhe non-approximated version of the sensitivity matrix for
2 will be an excellent initial estimate for the next numerical N < 1024 (i.e. M, instead ofM: ,) and the calculations
method, which will be used to “fine-tune” the obtained vectorfor the approximated version fdi024 < N < 8192 (M,
21, The same argument can be applied® has a similar  instead ofM;). From N = 8192 on (inclusive) we used the
masking threshold —2 than the one of. Remember that the matrix M, (in this caseM; = M; , = M.. Furthermore, the
0" order term of",,, is exactly the square root of the inverse of expected values in the equations were replaced by statistic
the masking threshold and that for high vector dimensiog onl averages (several realizations of the sigialvere emitted),
this term matters (cf. equation (31) and the considerationwith lower number of realizations for higher vector sixe
on the asymptotical compressor in subsection 3.4) so that f@and vice-versa. The reason for decreasing the number of
similar masking thresholds we get similafz). realizations with higheN is that the quantities for which we
For obtaining similar masking thresholds, we propose tshould estimate the expected value are averages themselves
use the vectot obtained from running the numerical meth- (normalized traces and normalized sums of logarithms of
ods described in this section on the last audio frame as agigenvalues). Assuming that these inner quantities that we
initial estimate=(“) for this frame; for this choice the mask- are averaging (the eigenvalues and their logarithms) atle we
ing threshold will not have changed much between these twbehaved, the inner average is consistent, so that these quan
frames due to the stationarity of typical audio signals ia th tities have a low variance for highv. The outer averages
order of the dozens of miliseconds. By using equation (39§the ones that replace the expectation) reduce the variance



Parameter | Value |

Input signake Gaussian i.i.d. samples with zero mean, variarnce
Power of the input signat? 0,012
Vector dimensionV Powers of 2 from 256 to 65536
DFT dimensionL 8192 forN < 8192, N otherwise
Window w Hamming,w(n) = 0,54 — 0,46 cos (27 %)
Sample frequency 48 kHz
Quantizer Z™ (componentwise uniform scalar quantizatign)
Inverse of the quantization step siZ€s 5 scales varying exponentially fron3 to 10°
Order of Taylor expansiof/ 3

Table 1. Values for the parameters used in the simulations

furthermore, and thus the lower thé, the heavier that re- N, being the results for thaistortion-lossthe correspondent
duction needs to be performed (the higher the needed numbguantity in the vertical axis of the graph, shown in table 2.

of realizationS) and vice-versa. In praCtice, we used on the As we can see from ﬁgure 3, the scheme performs well
order of 100 realizations favV = 256, of 10 realizations for with N = 1024, and from table 2 we can confirm that asymp-
N = 1024 and 1 realization fofV. = 8192 or higher. totic optimality is achieved. Note thaf = 1024 is the vec-

As output, graphs like the one in 3 were delivered. Thisor size which corresponds to the frame-size used in peactic
graph shows the distortion-rate performance of the com-panqN/fS = 21,3 ms, wheref, is the sample frequency); (much)
ing scheme (forV = 1024, in this particular case). The rate- |ower or higher values oV don’t correspond to the frequency

6 e 1024 and time resolution of the hum_an ear, respectively. Fu:rther
120p ' more, forN/ f, > 20 ms the audio signal can’t be considered
stationary.

Additionally, we computed the distortion-rate figures for
N = 1024 with and without approximation ai/; by M, ,,
and overlaid the resulting curves. The resultant graph ean b
seen in figure 4. As we can see, the lines which correspont to
each other are practically perfectly overlaid, which iradés

100+

80~

60

a 4
; ) i apprOXImatMt by Mt’a -2
- /——/4«/—//—//—/——/——/——/ L ;A N
20+ B
. S, 4.2, Taylor expansion
or Dcompv ‘heory(R)
i "*p(RgR) To test how good the approximation of the original compres-
: é ‘7 | | 1‘0 1‘1 tmy S, S0r of section 3.2 by the Taylor expansion of section 3.3 is,
Rate (bivdim) and what order of\/ we must use to get a good approxima-

tion, we computed the contribution of th® to the6" order
Fig. 3. Distortion-rate performance of the compandingterms of the signal dependent gdinof equation (30) (re-
scheme forV = 1024. Distortions are in terms of the SNR member that the compressor essentially multiplies posewi
in dB (10log, 0(c?/D)). The blue line represents the Shan-the windowed input in the frequency domain by the gain,
non’s distortion-rate function. The blue dotted line gies  equation (26)), for the vector size most useful in practice,
best achievablg" lattice vector quantizer (LVQ) distortion- N = 1024. The contributions can be seen in figure 5, de-
rate performance. The green and red lines give the perfopicted in double-logarithmic scale. The figure shows that al
mance of the companding scheme and of the identity conready forNV = 1024 we can use\/ = 0. If we want a finer
panderF(z) = F~'(z) = x. The red crosses are results detail we can use highét, but the order of units will be more
obtained from quantizing the source directly (i.e. using th than enough. Indeed, the distance betweenthald # or-
identity compander), and calculating the rate and disiorti der terms is at leadt5,7 dB, which means that th&®* order
values directly. term has values that are attenuated at leédst with respect

to the values of theé™ order term. For th@" order term this
loss (the horizontal distance between the blue dotted fige a distance i€23,9 dB (15,7x), and for the6"" order42,8 dB
the green line in the graph) was extracted for several valfies (138x).



N 256 | 512 | 1024 | 2048 | 4096 | 8192 | 16384 | 32768 | 65536
Distortion Loss (dB)|| 14,6 | 14,0 12,6 | 11,0 | 8,65 | 6,27 | 4,28 | 2,77 | 1,57

Table 2. Distortion Loss of the companding scheme for varyivig
D(R) figures, N = 1024 50
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Fig. 4. Distortion-rate performance of the compandingFig- 5. Contribution of thej" order term of the Taylor ex-
scheme forN = 1024. Comparison of the circulant ma- Pansion of the signal-dependdntj = 0,1,...,6

trix approximation with the real values. See 3 for the mean-
ing of the colors (the dotted red and green here are exactl| . _ .
the same as the solid red and green in figure 3, respectivel’é?.equency is below a certain threshold in the low-frequency
The common colors between the two figures refer to the no ange, we use the boundary value (the value on the threshold)
approximated version. The light-blue, dotted light-bldark

and if the frequency is above another threshold, in the high-
green and brown lines correspond to the blue, dotted bluér’equency range, we do the same. Between the wo thresh-

green and red lines, respectively, but for the approximatealds' the or|g|na_l galr_1/mask|ng threshold are conserved. F
version. NN = 1024, the distortion-rate performance of the compressor
was simulated again croppifiganda in the high frequency
range at{24, 18, 14} kHz (the first case corresponds to not
4.3. Limitations cropping asfs/2 = 24 kHz), and then cropping in the low
frequency range gt0, 100} Hz for no high-frequency crop-

Figure 5 shows an important limitation that the developeging and for high-frequency cropping 8k H z. The results
multidimensional companding scheme has: as the Gala-  are shown in figures 6 and 7, respectively.
creases abruptly with increasing frequency, the inversion We observe a degradation of performance for decreas-
the compressor, although mathematically possible (atfeas ing threshold of the high-frequency crop: the distortiaier
M = 0; see subsection 3.5), is a numerically badly condifunction, theZ" best distortion-rate performance and the
tioned problem. Using the rough rationale based on equatiogistortion-rate performance of the compander all sink & th
(38) that the expander multiplies the incoming signal pointgraphs, i.e., for the same rate, the best achievable and the
wise by the inverse df, we can see through figure 5 that the actual distortions increase (the SNR decreases). At aierta
quantization noise presentin the input of the expandereill point (in the figure a4 kHz) the performance of the com-
heavily amplified in the high frequencies (imagine the charpander sinks below the performance of not doing anything,
acteristics upside-down, since the inverse in the linearalo  j.e., of using the identity compandé&l(z) = . For the low-
corresponds to the symmetric in the log domain). The samgequency cropping case no performance loss is obtained, as
happens for the very low frequencies. In practice, this rmeanthe compander curves lie on top of each other. For practical
that two very different signals in the non-compressed damainumerical good condition, a cropping on the low frequencies
will have very near compressed signals, up to numericat.erroat 50 Hz and on the high frequencies & kHz suffices. The

To deal with this limitation we can crop the gaihand graph 7(b) is thus the one that depicts the performance of the
the masking threshold of the distortion measure, i.e., if the scheme in a practial situation.



Approximate D(R) figures, N - 1024 Approximate D(R) figures, N = 1024

Approximate D(R) figures, N - 1024

1001 100

SNR (dB)
3

SNR (dB)
IS

SNR (dB)

Shannon’s D(R) _— Shannon's D(R) _— Shannon’s D(R)

- --DR)Z'LvVa - - --pR)Z"Lva = - --DR)Z'Lva

0 Dcump meo:y(ﬁ) or Dmmv‘ lheﬂ'\/(H) 0 Dcump meoly(ﬁ)
+ Dyocomp 0P + D, (R) + D, R)

) ) ) ) ) — Dnommn meoly(R) , . . — DﬂﬂCOmD‘ meﬂr‘/(ﬁ) — Dnommn meoly(R)

‘nocomp, exp' nocom, el
L L L , _ L L L L L \
10 11 12 13 5 6 7

10 1 12 13 5 6 7 10 11 12 13

9 9
Rate (bitdim) Rate (bitdim)

9
Rate (bitdim)

(a) 24 kHz (no cropping) (b) 18 kHz (c) 14 kHz
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5. CONCLUSIONS but with the advantage that no perceptual weights have to be
transmitted through the channel. At the receiver, an algari

o ) _ based on numerical methods, the expander, has to be run. The
A multidimensional companding scheme was developed foéxpander does not depend on the perceptual weights and it

the perceptual distortion measure [1]. Although the develzan pe run using the previous audio frame, already available

oped scheme is suboptimal, it was proven (in [11]) that nQy the decoder, as its initial condition. The theoreticalis
optimal scheme exists under a wide range of solutions fognq assumptions were corroborated with simulations.
the optimality condition (5), and that nevertheless the-con

ceived scheme reached optimality asymptotically, i.ethwi
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