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ABSTRACT
We discuss the usage of symmetric polynomials for representing
2D shapes in their most general form, i.e., arbitrary sets of unla-
beled points in the plane. Although particular families of these
polynomials have been used in the past, we present general re-
sults that pave the way for the development of new representations
that exhibit key properties for shape recognition. We show that
all monomial symmetric polynomials satisfy homogeneity, which
enables leveraging on previous work on spectral invariants to obtain
invariance/completeness with respect to shape orientation. Repre-
sentations based on symmetric polynomials are invariant to shape
point relabeling. We single out elementary symmetric polynomials
and power sums as particular families of polynomials that further
enable obtaining completeness with respect to point labeling. We
discuss the efficient computation of these polynomials and study
how perturbations in the shape point coordinates affect their values.

Index Terms— Symmetric polynomials, Monomial symmetric
polynomials, Elementary symmetric polynomials, Power sums, Ho-
mogeneity, Invariance, Completeness, Shape representation

1. INTRODUCTION

Several image analysis tasks, ranging from classification, recogni-
tion, and retrieval, to denoising and coding, require dealing with the
shape of image regions. The representation of two-dimensional (2D)
shape has thus deserved attention in the past decades (surveys of pro-
posed methods can be found in [1, 2, 3]). The majority of approaches
consider shapes that are well-described by closed contours, which
are easy to represent, e.g., [4, 5, 6]. However, in many real-life sce-
narios, the underlying shapes contain multiple contours, lines, and/or
small isolated regions that are better modeled as points. For us, a 2D
shape is thus an arbitrary set of points in the plane.

The representation of shapes whose points are labeled only re-
quires factoring out rigid geometric transformations and dealing with
point coordinate disturbances [7, 8]. However, often shape points
come without labels or natural ordering, e.g., when arising from au-
tomatic edge/corner/interest-point detection. In these cases, simple
normalization takes care of global position and scale, but normaliz-
ing a point set with respect to rotation is harder than it could seem
at first sight (degenerate cases and sensitivity to the noise motivates
ongoing research, e.g., [9, 10]). A distinct approach is to simul-
taneously estimate the global rotation and point label permutation
relating shapes to compare. This is a non-convex problem that im-
poses the usual limitations on iterative algorithms like ICP [11] or
EM [12, 13] (uncertain convergence, sensitivity to the initialization).

We consider using symmetric polynomials to represent 2D
shape, which is immediately motivated by their invariance to shape
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point relabeling. Focusing on particular families of symmetric
polynomials, we address completeness, which guarantees that the
representation preserves all shape information. In what respects to
dealing with unknown shape orientation, we show how the usage of
spectral invariants enables extending to this case the properties of
the representation. The end result is a theoretically sound way to
represent arbitrary shapes as simple points in a shape space, where
standard algorithms (for classification, filtering, etc) can be used.
We conclude the paper with the illustration of a task that uses this
space: the computation of the mean shape.

2. SYMMETRIC POLYNOMIALS OF 2D SHAPE POINTS

A polynomial s : CN → C is a symmetric polynomial if it is invari-
ant to all permutations of its variables. Some examples of symmetric
polynomials in N complex variables, z1, . . . , zN ∈ C, are:

p1(z1, . . . , zN ) = z1 + · · ·+ zN , (1)

p3(z1, . . . , zN ) = z3
1 + · · ·+ z3

N , (2)

s(z1, . . . , zN ) = z1 + z3
1 + · · ·+ zN + z3

N , (3)

e2(·) = z1z2+· · ·+z1zN+z2z3+· · ·+z2zN+· · ·+zN−1zN . (4)

It is immediate that polynomials (1), (2), and (3) are symmetric.
Polynomial (4) is also symmetric, since it is given by the sum of
all products of pairs of its variables (a permutation of these vari-
ables amounts to reordering the terms in the sum, which does not
change the polynomial). It can also be easily seen that summing or
multiplying two arbitrary symmetric polynomials yields a symmetric
polynomial. (In fact, symmetric polynomials form a ring [14].)

The invariance just stated is the most immediate characteristic
of symmetric polynomials that motivates their usage for shape rep-
resentation. In fact, representing a 2D shape, i.e., an arbitrary set of
points in the plane, z1, . . . , zN ∈ C, via a set of symmetric polyno-
mials evaluated at z1, . . . , zN , is appealing, since the representation
results insensitive to the point labels, which are unavailable in many
practical scenarios. In this paper, we study other properties of this
kind of representation that are key to shape recognition, in particu-
lar, its completeness and the way it behaves with a rigid geometric
transformation of the shape (since shape position and scale are easily
factored out through normalization, what remains is a rotation).

Each of the terms zd11 · · · z
dN
N , with d1, . . . , dN ∈ N∪{0}, in a

polynomial, is a monomial, which we will denote by (d1, . . . , dN ).
For example, in the variables z1, z2, z3, z4, the monomial z1z2

3 is
denoted by (1, 0, 2, 0). The order of a monomial is given by the sum
of the degrees of its variables. For example, polynomials (1), (2),
and (4) have monomials of order 1, 3 and 2, respectively.



3. MONOMIAL SYMMETRIC POLYNOMIALS

If a symmetric polynomial has a monomial (d1, . . . , dN ), it also has
to have all the monomials that can be generated from (d1, . . . , dN )
by a permutation, i.e., all the monomials (dπ(1), . . . , dπ(N)), where
π denotes an arbitrary element of the symmetric group SN [15]. The
so-called monomial symmetric polynomials are generated this way.

To construct a monomial symmetric polynomials, consider a
(so-called indexing) monomial (d1, . . . , dN ), with d1 ≥ . . . ≥ dN .
Summing all the monomials that can be obtained by arbitrary per-
mutations of the variables of the indexing monomial (d1, . . . , dN ),
we obtain the indexed monomial symmetric polynomial:

s(d1,...,dN )(z1, . . . , zN ) =
1

|G|
∑
π∈SN

zd1π(1) · · · z
dN
π(N), (5)

where |G| denotes the number of permutations that do not change the
indexing monomial, acting as a normalization. The non-increasing
order of d1, . . . , dN guarantees the uniqueness of the indexing, i.e.,
that we do not have two different monomials originating the same
symmetric polynomial. Naturally, a monomial that is not given in
non-increasing order can be appropriately sorted without changing
the resultant monomial symmetric polynomial.

Any permutation of the variables z1, . . . , zN in (5) amounts to
reordering the monomials in the sum, leaving the polynomial un-
changed. As an example of the construction process, the indexing
monomial (3, 2, 1), for which |G| = 1, yields the polynomial

s(3,2,1)(·) = z3
1z

2
2z3+z3

1z2z
2
3+z2

1z
3
2z3+z2

1z2z
3
3+z1z

3
2z

2
3+z1z

2
2z

3
3 .

Polynomials (1), (2), and (4), are also examples of monomial sym-
metric polynomials. Polynomial (3) is not a monomial symmetric
polynomial, being the sum of (1) and (2). (In fact, any symmet-
ric polynomial can be written as a linear combination of monomial
symmetric polynomials [14].)

4. HOMOGENEITY AND SHAPE ROTATION

Any monomial symmetric polynomial satisfies the homogeneity
property, which states that when all the variables are multiplied by
a constant, the resulting polynomial is the original one multiplied
by the same constant raised to the order of the polynomial. This is
shown by considering wn = αzn, n = 1, . . . , N , with α ∈ C; then,

s(d1,...,dN )(w1, . . . , wN ) =
1

|G|
∑
π∈SN

wd1π(1) · · ·w
dN
π(N)

=
1

|G|
∑
π∈SN

(αzπ(1))
d1 · · · (αzπ(N))

dN

= α
∑N

n=1 dn 1

|G|
∑
π∈SN

zd1π(1) · · · z
dN
π(N)

= α
∑
dns(d1,...,dN )(z1, . . . , zN ), (6)

where we just used definition (5) and simple manipulations.
Of interest in the context of shape representation are constants of

the type α = ejθ , since multiplying by such a factor corresponds to
a counter-clockwise rotation by an angle of θ radians. Considering
two differently orientated versions of the same shape, z1, . . . , zN
and w1, . . . , wN , with wn = zne

jθ , the corresponding monomial
symmetric polynomials are related by the homogeneity property (6)
for this particular case:

s(d1,...,dN )(w1, . . . , wN ) = ejθ
∑
dns(d1,...,dN )(z1, . . . , zN ). (7)

The homogeneity property enables using spectral invariants
when representing shape via symmetric polynomials. In fact, ex-
pression (7) is analogous to the one relating the coefficients of
the Fourier series of a signal with the ones of a shifted version
of it. Spectral invariants to signal shifts have been extensively
studied in the past. In particular, it has been shown that the bispec-
trum is not only shift-invariant, but also complete, in the sense of
determining the underlying signal (up to a shift), under mild con-
ditions [16, 17, 18]. Thus, a bispectrum computed from monomial
symmetric polynomials inherits the invariance/completness, now in
what respects to shape rotation. A shape representation using this
idea with a particular family of polynomials was proposed in [19],
where experimental results illustrate its applicability in practical
scenarios. Many other papers report experiments testifying the
good behavior of the bispectrum in recognition applications, e.g.,
[20, 21, 22]. We now see that, according to (7), the same type
of spectral invariants can be built from arbitrary sets of monomial
symmetric polynomials, such as the ones we focus in the sequel.

5. POWER SUMS

Power sums are the most widely known symmetric polynomials. The
power sum of order k > 0 is the polynomial pk : CN → C that sums
the k-th powers of all its variables, z1, . . . , zN :

pk(z1, . . . , zN ) =

N∑
n=1

zkn. (8)

Examples of symmetric polynomials (1) and (2) are power sums of
orders 1 and 3, respectively.

It is also easy to see that, in particular, the power sum of order k
is a monomial symmetric polynomial, with the indexing monomial
given by (k, 0, . . . , 0), i.e.,

pk(z1, . . . , zN ) = s(k,0,...,0)(z1, · · · , zN ).

For k = 0, we have p0(z1, . . . , zN ) = s(0,...,0)(z1, . . . , zN ) = 1.

6. ELEMENTARY SYMMETRIC POLYNOMIALS

The elementary symmetric polynomial ek : CN → C of order k ≥ 0
is defined as the sum of all different products of k variables, i.e., the
sum of all different monomials of order k involving each of the vari-
ables z1, . . . , zN zero or one times. Therefore, this sum is composed
by N -choose-k monomials, which can be formalized as

ek(z1, . . . , zN ) =
∑

(i1,...,iN )∈IN
k

zi11 . . . ziNN , (9)

where INk is the set of tuples (i1, . . . , iN ) verifying
∑N
n=1 in = k

and i1, . . . , iN ∈ {0, 1}. If k = 0, INk is a singleton, yielding
e0(·) = 1; if k > N , INk is empty, thus ek(·) = 0. Examples of ele-
mentary symmetric polynomials of orders 1 and 2 are, respectively,
(1), which is also a power sum, and (4).

As it happens for the power sums, the elementary symmetric
polynomials are also monomial symmetric polynomials – the index-
ing monomial for ek has the first k entries equal to one and the re-
maining N − k equal to zero:

ek(z1, . . . , zN ) = s(1,...,1,0,...0)(z1, . . . , zN ).



7. COMPLETENESS AND SHAPE REPRESENTATION

Remarkably, the polynomials introduced in Sections 5 and 6 are not
only invariant to permutations of the variables (as any symmetric
polynomial) but also complete, in the sense that both families unam-
biguously determine the values of those variables. The completeness
is easily proved for the family of elementary symmetric polynomi-
als by noting that these polynomials are straightforwardly related to
the coefficients of the monic polynomial with roots z1, . . . , zN , see,
e.g., [23]:

N∏
n=1

(t− zn) =

N∑
k=0

(−1)kek(z1, . . . , zN )tN−k. (10)

Since the coefficients of a polynomial uniquely identify its roots, the
values of the elementary symmetric polynomials ek(z1, . . . , zN ),
with k = 1, . . . , N , uniquely determine the variables z1, . . . , zN ,
up to a permutation.

The completeness for the family of power sums is obtained by
using Newton’s identities to relate them to the elementary symmetric
polynomials, see, e.g., [14]:

kek(·) +

k∑
r=1

(−1)r ek−r(·) pr(·) = 0.

This expression can be easily rearranged in a way that conveys
the recursive computation of pk(z1, . . . , zN ), k = 1, . . . , N , from
ek(z1, . . . , zN ), k = 1, . . . , N (or vice versa), proving that the
power sums and the elementary symmetric polynomials are equiva-
lent in what respects to completeness.

The completeness just proved is key for shape representation. In
fact, it guarantees that either the family of power sums or the one
of elementary symmetric polynomials, evaluated at the 2D shape
points, suffice to determine the point coordinates. Thus, besides
being invariant to permutations of the point labels, both families
preserve all shape information, as obviously desired for successful
recognition. Fig. 1 illustrates the invariance and completeness of the
elementary symmetric polynomials with a simple shape.

Fig. 1. Three shapes with points of coordinates −1, 1, j, differing
by permutations of the labels. They all yield the same values for the
elementary symmetric polynomials: e1(−1, 1, j) = e1(j,−1, 1) =
e1(1, j,−1) = j, e2(−1, 1, j) = e2(j,−1, 1) = e2(1, j,−1) =−1,
and e3(−1, 1, j) = e3(j,−1, 1) = e3(1, j,−1) =−j. Furthermore,
{−1, 1, j} is the only set of three points yielding this result.

8. EFFICIENT COMPUTATION

An apparent problem concerning the usage of the monomial sym-
metric polynomials in practice is their computation, since a direct
implementation of definition (5) may be computationally intractable,
even for moderate values ofN and k. To gain insight, note that eval-
uating the elementary symmetric polynomial ek(z1, . . . , zN ), for
N = 50 and k = 10, according to definition (9), requires comput-
ing and summing more than 10 billion monomials. Reference [24]

develops a dynamic programming approach by exploiting the fact
that the evaluation of any monomial symmetric polynomial can be
decomposed in overlapping subproblems. We now summarize this
recursive computation for the polynomials of Sections 5 and 6.

For the power sums, the recursive computation, for k > 0, is:

pk(z1, . . . , zN ) = pk(z1, . . . , zn−1, zn+1 . . . , zN ) + zkn, (11)

where n is arbitrary, between 1 and N . This expression, which is
actually immediate from (8), does not lead to computational gain,
since each polynomial evaluated along the recursion is used only
once, i.e., there is no gain in storing its value for later usage.

The case is distinct for the elementary symmetric polynomials,
for which a similar decomposition yields an enormous computa-
tional gain. For k > 0, it is shown in [24] that

ek(z1, . . . , zN ) = ek(z1, . . . , zn−1, zn+1 . . . , zN )

+ znek−1(z1, . . . , zn−1, zn+1 . . . , zN ). (12)

where, again, n is arbitrary. The computational gain comes from
storing the values of the polynomials evaluated along recursion (12),
which are used multiple times. To clarify this point, we consider
n = N and draw the attention of the reader to the array depicted
in Fig. 2, where entry (i, j) stores the value of ej(z1, . . . , zi). The
computation of ej(z1, . . . , zi) according to (12) is performed in con-
stant time after entries (i − 1, j − 1) and (i − 1, j) have been
previously computed (see the arrows indicating this dependency in
Fig. 2). Thus, decomposition (12) is recursively used until a posi-
tion whose content is known is reached, which eventually happens,
since e0(z1, . . . , zN ) = 1, for all N , and ek(z1, . . . , zN ) = 0,
for k > N (we did not even include in the array these known en-
tries, i.e., the column j = 0 and entries (i, j) with j > i). It is
simple to conclude that the evaluation of ek(z1, . . . , zN ) requires
computing k(N − k + 1) array entries (grey cells in the example
of Fig. 2). Using again the example of the beginning of the sec-
tion, N = 50, k = 10, for which definition (9) requires computing
more than 10 billion terms, the recursion just described uses only
410 array entries. When evaluating the entire set of polynomials
ek(z1, . . . , zN ), for k = 1, . . . , N , an additional computational gain
comes from reusing many times previously computed entries. In this
case, the total number of array entries involved is N(N + 1)/2.

Fig. 2. Array storing the values of elementary symmetric polynomi-
als for computational efficiency. Entry (i, j) stores ej(z1, . . . , zi).
The computation of e4(z1, . . . , z6) via decomposition (12) is rep-
resented by arrows relating to e3(z1, . . . , z5) and e4(z1, . . . , z5).
Starting from an empty array, the evaluation of e4(z1, . . . , z6)
through recursive usage of (12) only requires filling the 12 gray cells.

9. PERTURBATION ANALYSIS

Polynomials are sums of products, which makes nontrivial the task
of deriving how noise propagates. We study how the values of power



sums and elementary symmetric polynomials change with perturba-
tions of their arguments. To derive the first-order approximation of
the perturbed polynomials, let us denote the (assumed small) pertur-
bation affecting zn as ∆zn ∈ C and the perturbed version of zn as
z′n = zn + ∆zn, with n = 1, . . . , N .

For the power sums, the partial derivative of pk with respect
to zn is easily obtained from (11), being the gradient of pk given by

∇pk(z1, . . . , zN ) =

kz
k−1
1

...
kzk−1
N

 .
The first-order approximation of the perturbed power sum is

pk(z′1, . . . , z
′
N ) ≈ pk(z1, . . . , zN ) +∇pk(z1, . . . , zN )T∆z

≈ pk(z1, . . . , zN ) + kzk−1
1 ∆z1

+ · · ·

+ kzk−1
N ∆zN ,

where ∆z = [∆z1, . . . ,∆zN ]T . We can see that a perturbation
∆zn induces a perturbation on the power sum pk(z1, . . . , zN ) that
does not depend on any variable other than the perturbed one, zn.

For the elementary symmetric polynomials, decomposition (12)
enables obtaining the partial derivative of ek with respect to zn:

∂ek
∂zn

(z1, . . . , zN ) = ek−1(z1, . . . , zn−1, zn+1 . . . , zN ).

Consequently, the gradient of ek is given by

∇ek(z1, . . . , zN ) =


ek−1(z2, . . . , zN )

ek−1(z1, z3, . . . , zN )
...

ek−1(z1, . . . , zN−2, zN )
ek−1(z1, . . . , zN−1)

 .

and the first-order approximation of the perturbed polynomial is

ek(z′1, . . . , z
′
N ) ≈ ek(z1, . . . , zN ) +∇ek(z1, . . . , zN )T∆z

≈ ek(z1, . . . , zN ) + ek−1(z2, . . . , zN )∆z1

+ . . .

+ ek−1(z1, . . . , zN−1)∆zN .

It is curious that the perturbation on the elementary symmetric poly-
nomial ek(z1, . . . , zN ) induced by a perturbation on variable zn
does not depend on the perturbed variable (it depends on the poly-
nomial ek−1(z1, . . . , zn−1, zn+1 . . . , zN ) and, naturally, on ∆zn).

10. THE MEAN SHAPE

The comparison of shapes that are not aligned (due to distinct pose
and point labeling) is sometimes performed in the space of shape
point coordinates, after first aligning the shapes. However, not only
the alignment step is nontrivial, but also modern machine learning
algorithms require more than shape differences; they require each
shape to be represented by a simple point in a shape space, where
statistics can be easily computed. We now illustrate how the repre-
sentations discussed in the paper enable doing this.

Consider the problem of computing the mean of a set of shapes,
i.e., a set of sets of unlabeled points. Now, represent each shape
by the elementary symmetric polynomials evaluated at the shape

points, as discussed above. Since the representation is invariant to
point relabeling, it makes sense to compute the mean representa-
tion ēk. Since the representation is also complete, it makes sense to
invert ēk, i.e., to determine the mean shape, the one whose represen-
tation is ēk. This inversion can be performed by computing the roots
of a polynomial whose coefficients are easily related to ēk, see (10).

An illustrative example of the procedure just summarized is con-
veyed by Figs. 3 and 4. We emphasize that the mean shape in
Fig. 3 is computed in a way that avoids any kind of geometric group-
ing/clustering of shape points; it rather corresponds to a standard
average in the shape space, as represented in Fig. 4. This kind of
operation can be extended to shapes that also exhibit rigid geometric
distortions (as discussed in the paper, orientation is taken care of by
the homogeneity of monomial symmetric polynomials and the com-
pleteness of spectral invariants and position/scale via normalization).

Fig. 3. The small dots are 30 noisy samples of a 17-point shape (the
thin lines joining them represent the arbitrary order by which they
are stored). The obtained mean shape is represented by the larger
dots (joined by thick lines, used for better visualization).

Fig. 4. Real and imaginary parts (normalized for better visualization)
of the elementary symmetric polynomials representing the shapes in
Fig. 3. The thin lines are the representations of the noisy samples; the
thick one is their mean, which enables computing the mean shape.

11. CONCLUSION

We have discussed the usage of symmetric polynomials for the rep-
resentation of 2D shapes, seen as unordered sets of points. After
analytically showing properties of the representation, we illustrate
with a task that requires invariance and completeness: the computa-
tion the mean shape, i.e., the mean of a set of unordered point sets.
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