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ABSTRACT

We address the representation of two-dimensional shape in its most
general form, i.e., arbitrary sets of points, that may arise in multi-
ple situations, e.g., sparse sets of specific landmarks, or dense sets
of image edge points. Our goal are recognition tasks, where the key
is balancing two contradicting demands: shapes that differ by rigid
transformations or point re-labeling should have the same represen-
tation (invariance) but geometrically distinct shapes should have dif-
ferent representations (completeness). In the paper, we introduce a
new shape representation that marries properties of the elementary
symmetric polynomials and the bispectrum. Like the power spec-
trum, the bispectrum is insensitive to signal shifts; however, unlike
the power spectrum, the bispectrum is complete. The elementary
symmetric polynomials are complete and invariant to variable re-
labeling. We show that the elementary symmetric polynomials of
the shape points depend on the shape orientation in a way that en-
ables interpreting them in the frequency domain and building from
them a bispectrum. The result is a shape representation that is com-
plete and invariant to rigid transformations and point-relabeling. The
paper also reports experiments that illustrate the proved properties.

Index Terms— Shape representation, Complete invariant, Bis-
pectrum, Elementary symmetric polynomials, Shape recognition

1. INTRODUCTION

Representing two-dimensional shape remains a challenge. Although
connected regions can be represented by a one-dimensional contour,
which is easier to code, see, e.g., [1], this is not the case of gen-
eral shapes, i.e., arbitrary sets of points in the plane. The statistical
theory of shape [2] addresses this problem in situations where the
points are labeled (usually in small number, denoted by landmarks).
However, the problem remains for reasonably large sets of points
without labels or natural ordering, e.g., those arising from automatic
edge/corner/interest-point detection.

The motivation for representing shapes comes from the need to
compare them in recognition applications. Comparing two collec-
tions of points is difficult, since they are related by unknown geo-
metric transformations (due do different position, orientation, and
size) and permutation (due to the absence of labels for the points).
Although translation and scale are easily taken care of through nor-
malization, this is not the case of rotation and permutation, whose
simultaneous estimation leads to a non-convex problem. Iterative
methods such as the Iterative Closest Point (ICP) [3] or its proba-
bilistic versions based on Expectation-Maximization (EM), e.g., [4]
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tackle this problem but suffer from the usual sensitivity to the ini-
tialization, exhibiting uncertain convergence. When the relative ori-
entation of the shapes to compare is known, the estimation of the
permutation relating the point sets can be casted into a convex op-
timization problem [5]. However, normalizing a point set in what
respects to rotation is harder than it could seem at first sight. In fact,
although theoretically sustained moment-based methods have been
proposed (see [6] and the references therein), degenerate cases have
been successively identified, showing that these methods can be sen-
sitive to the noise and motivating subsequent research, e.g., [7].

The difficulties summarized in the previous paragraph but also
the fact that modern machine learning algorithms require more than
the capability of comparing pairs of shapes, motivates the search for
a representation that enable shapes to be treated as points in an ab-
stract space, where machine learning algorithms can be applied. Nat-
urally, the representation must be invariant to the geometric trans-
formations and point permutation but also complete, in the sense of
fully describing the underlying shape, i.e., shapes that only differ by
a rigid geometric transformation or point re-labeling are mapped to
the same point in the abstract shape space while really distinct shapes
are mapped to different points in that space. Reference [8] proposes
a permutation-invariant representation that is also complete but it is
not rotation-invariant, requiring pairwise alignment. Moment-based
representations of image patterns have been used since the sixties
due to their geometric invariance properties but their completeness
only recently have been focus of attention [6].

In this paper we introduce a new shape representation that is
complete and invariant with respect to (w.r.t.) geometric transforma-
tions. The representation is based on the so-called elementary sym-
metric polynomials of the shape points that are invariant w.r.t. shape
point permutation and unambiguously determine the shape. To ob-
tain complete invariance w.r.t. shape rotation, we draw inspiration
from the bispectrum. While the power spectrum of a signal is insen-
sitive to signal shifts but does not uniquely determine the underlying
signal, its bispectrum inherits the invariance and determines the sig-
nal, up to a shift. We show that shape rotation affects the elemen-
tary symmetric polynomials in a similar way as a signal shift affects
its Fourier transform. Based on this property, we propose a shape
representation that consists in a bispectrum computed from the ele-
mentary symmetric polynomials, being then complete and invariant
w.r.t. point permutation and shape orientation (translation and scale
are taken care off through normalization).

The complete invariance of the bispectrum w.r.t. shifts has been
used in image processing but, to the best of our knowledge, not to
represent arbitrary sets of points. For example, in [9] image rota-
tions are transformed into shifts in the polar domain and [10] uses
the bispectrum of one-dimensional image projections (Radon trans-
form). The completeness of bispectrum even inspired other authors
to extend its applicability beyond commutative groups [11, 12].



2. THE BISPECTRUM

The power spectrum of a finite-length discrete-time signal x(n),
0 ≤ n ≤ N − 1, is the discrete Fourier transform (DFT) of its
autocorrelation, which is related to X , the DFT of x, by [13]:

Px(k) = X(k)X∗(k) = |X(k)|2 , 0 ≤ k ≤ N − 1 .

If y is a circular shift of x, y(n) = x((n−m)modN), its DFT is

Y (k) = X(k)e−j
2π
N
km (1)

and its power spectrum is Py(k) = |Y (k)|2 = |X(k)|2 = Px(k).
The power spectrum is thus invariant to circular shifts. However, it
is not complete, i.e., signals that are not related by a shift may also
have the same power spectrum, as illustrated in Fig. 1.

Fig. 1. Top: signals x(n), y(n) = x((n − 5)mod20), and z(n).
Middle: Px, Py , and Pz , illustrate the invariance but also the in-
completeness of the power spectrum. Bottom: argBx, argBy , and
argBz , illustrate that the bispectrum is shift-invariant and complete.

The bispectrum of x is the two-dimensional DFT of its triple-
correlation, which, in terms of X , is given by

Bx(k, l) = X(k)X(l)X∗((k + l)modN) , 0 ≤ k, l ≤ N − 1 .

The shift-invariance of the bispectrum is established from the defini-
tion above and property (1) with simple manipulations:

By(k, l) = Y (k)Y (l)Y ∗((k + l)modN)

= X(k)e−j
2π
N
kmX(l)e−j

2π
N
lmX∗((k + l)modN)ej

2π
N

(k+l)m

= X(k)X(l)X∗((k + l)modN) = Bx(k, l) .

Unlike the power spectrum, the bispectrum is complete, i.e., it deter-
mines the underlying signal (obviously, up to a shift). Several proofs
of this property, for increasingly classes of signals, were published
since the eighties, e.g., [14]. That shifted versions of a signal share
a common bispectrum while distinct signals have different bispec-
trums, as desired in recognition, is also illustrated in Fig. 1, where,
for compactness, only the arguments of the bispectrums are shown.

3. THE ELEMENTARY SYMMETRIC POLYNOMIALS

Given a set of N complex variables, z1, z2, . . . , zN , the correspond-
ing elementary symmetric polynomial of degree k, Cz(k) is the sum
of all possible products of k of them [15]. Formally, we define
Ik={(i1, . . . , iN ) : in∈{0, 1}, 1≤ n≤ N,

∑N
n=1 in=k} and

Cz(k) =
∑

(i1,...,iN )∈Ik

zi11 z
i2
2 · · · z

iN
N , 0 ≤ k ≤ N . (2)

A key characteristic of Cz is that it specifies the coefficients of the
univariate monic polynomial p(t) with roots z1, . . . , zN :

p(t) =

N∏
n=1

(t− zn) =

N∑
k=0

(−1)kCz(k)t
N−k .

Obviously, the polynomial p(t) does not depend on the order of the
roots, which makes clear that Cz is invariant to permutations of the
variables z1, . . . , zN , motivating the designation of symmetric, and
that the set {Cz(k), 0 ≤ k ≤ N} determines those variables, up to
re-ordering.

4. THE PROPOSED SHAPE REPRESENTATION

Our goal is the representation of fully general two-dimensional
shapes, i.e., arbitrary collections of points in the plane. Two shapes
should have the same representation if and only if the correspond-
ing collections of points are related by arbitrary re-ordering and
geometric transformations (translation, rotation, and scaling factor).

4.1. Translation and scale invariance

Let the complex variables w1, . . . , wN collect the plane coordinates
of the shape points (wn = xn + jyn). Translation and scale in-
variance are easily obtained through normalization, i.e., by translat-
ing and scaling the original shape in order to produce a prototype
whose centroid is at the origin and “power” is unitary. Formally, we
obtain the normalized shape points, z1, . . . , zN , by pre-processing
w1, . . . , wN , according to

zn =
wn − w√
p(w)

,

where · ∈ C and p(·) ∈ R+ denote centroid and power, defined as

w =
1

N

N∑
n=1

wn , p(w) =
1

N

N∑
n=1

|wn − w|2 . (3)

It is trivial to verify that z = 0 and p(z) = 1. Is is also simple to
conclude that z represents w in the desired way, i.e., that an arbitrary
translation and scale of w leads to the same z and that z1, . . . , zN
unambiguously determine the original shape points w1, . . . , wN , up
to translation and scale.

4.2. Permutation invariance

To obtain invariance to the order by which the shape points are spec-
ified, we use the elementary symmetric polynomials of the normal-
ized shape. In fact, as referred above, {Cz(k), 0 ≤ k ≤ N}, given
by (2), forms a representation of the points z1, . . . , zN , which is in-
variant to point permutation and complete. This way, as desired, two
shapes will have the same {Cz(k), 0 ≤ k ≤ N} if and only if they
differ by a arbitrary re-ordering.



We compute the sum in (2) by using an efficient recursive pro-
cedure, where the elementary symmetric polynomials for N points,
{C(N)

z (k)}, are obtained from those for N − 1 points through

C(N)
z (k) = C(N−1)

z (k) + zNC
(N−1)
z (k − 1) .

This recursion is initialized with C
(1)
z (0) = 1, C

(1)
z (1) = z1

but note that, regardless of the number of points, we have always
Cz(0) = 1 and, for normalized shapes, Cz(1) = 0.

4.3. Rotation invariance

To deal with arbitrary orientations, we start by studying how the ro-
tation of a shape is propagated to its elementary symmetric polyno-
mials. Consider a shape z, with elementary symmetric polynomials
Cz , and another shape s that only differs from z through a rotation
of some angle θ, i.e., sn = zne

jθ, 1 ≤ n ≤ N . The elementary
symmetric polynomial of degree k for the rotated shape s is

Cs(k) =
∑

(i1,...,iN )∈Ik

si11 s
i2
2 · · · s

iN
N

=
∑

(i1,...,iN )∈Ik

zi11 e
jθi1zi22 e

jθi2 · · · ziNN ejθiN

=
∑

(i1,...,iN )∈Ik

zi11 · · · z
iN
N ejθ

∑N
n=1 in

= Cz(k)e
jkθ , (4)

where we used the fact that
∑N
n=1 in = k, from the definition of Ik.

Comparing expressions (1) and (4), we see that shape rota-
tions affect elementary symmetric polynomials in the same way
as signal shifts affect DFT coefficients. Thus, a rotation-invariant
complete shape representation may be derived in a similar way as
the bispectrum lead to a shift-invariant complete signal represen-
tation. In particular, if we only care with rotation angles integer
multiples of 2π/(N + 1), i.e., θ = m2π/(N + 1), m ∈ Z, we get
Cs(k)=Cz(k) exp(jkm2π/(N+1)), and the parallel with discrete-
time shifts renders exact. In this case, the shape z can thus be rep-
resented by a bispectrum computed from {Cz(k), 0 ≤ k ≤ N}
exactly as it was computed from {X(k), 0 ≤ k ≤ N − 1} in
Section 2. Naturally, the invariance of this representation does not
hold for other rotation angles. This is illustrated in Fig. 2 though the
evolution of the magnitude of the difference between the representa-
tion of a shape z and the one of its rotated version s, as a function of
the rotation angle θ: since N = 4, the error is zero for θ = m2π/5.

Fig. 2. Left: shape z. Middle: a rotated version s. Right: Frobenius
norm of the difference between the matrices containing the DFT-
based representations of z and s, as a function of the rotation angle.

The rotation-invariance just discussed may be adequate for par-
ticular cases, e.g., when dealing with tiles (from a panel) whose ori-
entation angles are restricted to integer multiples of a given angle.

However, we obtain a representation able to deal with arbitrary ori-
entations by using the two following facts: i) unlike for the DFT
analogy, expression (4) holds for an arbitrary rotation angle; and ii)
a subset of the bispectral coefficients is invariant to arbitrary rota-
tions. In summary, we propose to represent the shape z by the sub-
set of bispectral coefficients Bz(k, l) (of the elementary symmetric
polynomials Cz) whose indexes satisfy k + l ≤ N , which are

Bz(k, l) = Cz(k)Cz(l)C
∗
z (k + l) , 0 ≤ k, l ≤ N , k + l ≤ N .

It is simple to verify that this representation is rotation-invariant:

Bs(k, l) = Cs(k)Cs(l)C
∗
s (k + l)

= Cz(k)e
jkθCz(l)e

jlθC∗z (k + l)e−j(k+l)θ

= Cz(k)Cz(l)C
∗
z (k + l)

= Bz(k, l) .

Note that the condition k + l ≤ N is key to avoid the wrap-around
(i.e, the mod) of the DFT-based representation that restricted its in-
variance to angles θ = m2π/(N + 1), as illustrated in Fig. 2. The
reader may wonder if the completeness of the bispectrum is lost by
working only with a subset of its entries. However, it has been shown
that the complete bispectrum is highly redundant and it is in fact pos-
sible, by following a strategy similar to the one in [9], to recover the
underlying signal from the triangular subset Bz(k, l) : k + l ≤ N .
The example in Fig. 3 illustrates the invariance and completeness of
the proposed shape representation.

Fig. 3. Top: shapes z and s, related by a geometric transformation,
and a distinct shapew. Middle and bottom: the corresponding repre-
sentations (|Bz|, |Bs|, and |Bw| in the middle and argBz , argBs,
and argBw in the bottom), illustrating that the proposed representa-
tion is simultaneously invariant and complete (Bz = Bs 6= Bw).

5. ON THE NORMALIZATION OF THE POLYNOMIALS

The derivations of the previous section remain valid if the elementary
symmetric polynomials are normalized according to a fixed proce-
dure, i.e., if Cz(k) is multiplied by an arbitrary real positive num-
ber determined uniquely by k and N . Naturally, as in any pat-
tern classification task, several criteria for selecting these normal-
ization factors may be considered and a deep study of their im-
pact is out of the scope of this paper. However, it makes sense to



normalize Cz(k) by dividing by (N, k) (N choose k), the num-
ber of terms summed in (2), which is also recursively computed:
(N, k) = (N − 1, k)N/(N − k). This way, we gain some robust-
ness to deal with shapes described by different numbers of points.

The factor 1/N in the definition of shape power (3), which is
not necessary in what respects to translation and scale invariance,
also makes sense in what respects to dealing with different numbers
of shape points (intuition comes by noting that replicating points
will not change the defined power). Also, that factor is important
to avoid the products in the elementary symmetric polynomials (2)
to grow or decrease in prohibitively fast ways, due to points of very
large or very small magnitude in the normalized shape (note that the
mean of {|zn|2, 1 ≤ n ≤ N} is unitary, regardless of {wn}).

6. EXPERIMENTS

Since the subject of the paper is the generality of the properties of
the proposed representation, we use distinct scenarios to illustrate
the derived properties, rather than singling out a particular task to
compare the performance against possible competitors. In particu-
lar, we report experiments that illustrate how nearest neighbor shape
classification behaves in the presence of noise, the automatic cluster-
ing of binary images, and the capability of dealing with shapes that
are extracted from real images with simple edge detection.

In what respects to the noise, we used the four shapes in the
top row of the left side of Fig. 4 and performed 5000 tests that con-
sisted in classifying randomly disturbed (i.e., translated, rotated, and
scaled) noisy versions of them, by simply measuring dissimilarity as
the Frobenius norm of the difference of representations. The plot in
Fig. 4 shows the percentage of correct classifications as a function
of the noise level, showing 100% correct retrievals with noise stan-
dard deviation up to σ = 0.25, which is high enough to produce the
perceptually misleading shapes in the bottom row of the left side of
Fig. 4 (with the same size and orientation of the ones in the top).

Fig. 4. Left: noise-free shapes (top) and noisy versions of them
(bottom), with σ = 0.25, the approximate limit for 100% correct
classifications. Right: accuracy as a function of the noise level.

The task just described is based on the comparison of pairs of
shapes, thus it could be alternatively approached by attempting to
compute the transformation between them (a non-trivial problem,
as referred in Section 1). In opposition, most algorithms for tasks
such as clustering, demand data represented in a way that factors out
relevant transformations, so that statistics such as means, variances,
etc, can be computed. To illustrate that our representation is ade-
quate for this kind of tasks, we use 30×30 binary images obtained
by thresholding greylevel images of digits with random orientations.
The shapes extracted from these images are simply the sets of points
corresponding to image pixels of value 1, which are not exactly re-
lated by a geometric transformation, due to the coarse discretization
and binarization. Fig. 5 shows the result of a standard method used to
automatically cluster the representations of all images. Note that the
images corresponding to digits “6” and “9” are grouped in the same

cluster, which is not surprising, since they only differ by distinct ori-
entations of the same pattern, thus having similar representations.

Fig. 5. Automatic clustering of binary images.

Finally, we describe an experiment where the shapes to classify
are the edges of real images. Basically, we used (handheld) webcam
images of trademark logos. Besides the distinct positions, sizes, and
orientations of the logos, other disturbances come from the only ap-
proximate perpendicularity of the camera axis to the paper plane,
which originates geometrically distorted shapes, and the sensitivity
of the edge detection to illumination, resolution, etc. In spite of these
disturbances, we were able to successfully classify several of the im-
ages by simply comparing the representations or the shapes corre-
sponding to their edge points, as the examples in Fig. 6 illustrate.

Fig. 6. Examples of webcam images of logos correctly recognized.

7. CONCLUSION

We proposed a theoretically sound new representation scheme for
shapes described by arbitrary collections of points, which is com-
plete and invariant to arbitrary re-orderings of the shape points and
geometric transformations such as translation, rotation, and scale.
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