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ABSTRACT
Although global voting schemes, such as the Hough Transform
(HT), have been widely used to robustly detect lines in images,
they fail when the line segments at hand are short, particularly if
the underlying edge maps are cluttered. Line segment detection
in these scenarios has been addressed using local methods, which
lack robustness to missing data (interrupted lines) and typically fail
when line segments cross. We propose a new method that tackles
these problems: first, rough estimates of plural candidate direc-
tions at each edge point are obtained through a directional local
HT; then, the parameters determining the line segments are globally
estimated by maximizing a quality measure that depends on all the
edge points. Our experiments illustrate that the proposed method
outperforms current methods in challenging situations.

Index Terms— Line segment detection, Hough Transform

1. INTRODUCTION

Line segments are relevant features for image analysis. In fact, they
provide cues about the geometric content of the images and serve as
a basic primitive to infer more elaborate shapes (many shapes accept
an economic description in terms of line segments, particularly when
dealing with man-made objects, which are frequently composed of
flat surfaces). A review of the extensive literature on line segment
extraction is out of the scope of this paper (see, e.g., [1, 2] for that
purpose) but we start with a synthetic overview to motivate our work.
Overview of methods for line segment extraction The Hough
Transform (HT) [3, 4] is the most popular method for extracting
lines in images. Its success hinges on the fact that lines are selected
in a global way, i.e., using all the edge points in a voting scheme.
However, when dealing with short line segments, the sharpness of
the voting results is greatly reduced, particularly when textures and
noise contribute to the accumulation of spurious votes for several
line segment candidates [5, 6]. The requirement of a non-trivial
extra step for determining the start and end points of the line seg-
ments [7] and the sensibility of the results to the discretization of
the accumulator array further limits the usage of the HT in these
scenarios. Although the HT was extended in several ways using,
e.g., edge directions [1], hierarchical schemes [5, 8], or probabilistic
setups [9], none of these methods provide fundamental changes to
alleviate the key problems of extracting line segments.

Few papers have approached the problem of developing global
methods to extract line segments (including start and end points)
from images. Exceptions are the method in reference [10], where
the Helmholtz principle is proposed as a way to validate candidate
segments, and the common usage of Random Sample Consensus

Partially supported by FCT, under ISR/IST plurianual funding, through
the PIDDAC Program, and grants MODI-PTDC/EEA-ACR/72201/2006 and
SFRH/BD/48602/2008.

(RANSAC) [11, 12]. Due to their computational complexity, these
approaches are not adequate in many practical scenarios: the suc-
cess of RANSAC methods depends on the usage of a very large
number of samples and the method in [10] tests all possible line seg-
ments (i.e., all combinations of start and end coordinates) for the best
matches within the image edges.

For the reasons above, many approaches to line segment extrac-
tion proceed by chaining several local decisions, yielding compu-
tationally efficient methods. An example is the very recent Line
Segment Detector (LSD) algorithm [2], which outperforms several
of the previously proposed. Typically, these local methods perform
three separate steps: finding a region of connected edge points, ob-
taining a rough estimate of the segment defined by that region, and
refining and extending the line by including additional edge points.
The first step, usually an edge chaining algorithm, is sensitive to
the presence of clutter (arising from, e.g., noise and textures) and
missing edge points, failing to provide large connected regions and
producing many spurious edge chains that originate false line seg-
ment detections. The second step resorts to standard line fitting,
which is sensitive to the length of the underlying edge chain and,
naturally, fails to deal with edge points where line segments cross.
The third step often works by alternating the selection of additional
edge points with the refinement of the estimate of the line segment
parameters, in an Expectation-Maximization (EM) manner. As usual
with EM, a poor initial line model compromises the final result. Fur-
ther, the inevitable clutter in the image edges make very long line
segments particularly difficult to extract using these local methods,
as the experiments we report in this paper illustrate.
Proposed approach We propose an initial step that computes a set
of candidate line directions at each edge point and an optimization
step that estimates the complete line segments by accumulating the
votes of larger sets of points. Our method draws thus inspiration
from global voting schemes, such as the HT, but it is also tailored
to the detection of short line segments. The initialization procedure
provides (semi-local) rough estimates of the directions of the line
segments that go through each edge point. This is done by first com-
puting directional edge maps and building histograms of the angles
defined by each edge point and all the other (directionally coher-
ent) edge points that fall within a window, extending the usual Local
Hough Transform (LHT) [13]. The rough directions are obtained by
subsequent non-maxima suppression, which enables the detection of
intersecting segments, since multiple candidates are admitted. The
optimization step implements a robust and global approach to obtain
the complete line segments, i.e., it estimates the angles and the lo-
cations of the line segments that maximize a given quality measure
that takes into account all the relevant edge points. It works progres-
sively, by collecting edge points within neighborhoods of the candi-
date lines, leading to a computationally tractable algorithm, where
the number of pixels being tested is very small, even for wide an-
gle and location search ranges and long line segments. We call our



method the Incremental Local Hough Transform (ILHT).

2. SEMI-LOCAL DIRECTION INITIALIZATION

Directional edge maps We capture the local directional content of
an image I by computing its derivatives, through the convolution
with four oriented kernels,

∇θI = I ∗Kθ , θ ∈ {0◦, 45◦, 90◦, 135◦} .

Although kernels with large support would smooth the noise, we use
simple standard central difference kernels,

K0 =

 0 0 0
1 0 −1
0 0 0

, K45 =

 0 0 −1
0 0 0
1 0 0

, K90 =

 0 −1 0
0 0 0
0 1 0

, K135 =

−1 0 0
0 0 0
0 0 1

,

since they enable more precise edge localization and minimize the
dependence on the surrounding pixels (in our case, robustness to
noise comes from the global voting scheme presented in Section 3).

The directional edge maps Eθ , θ ∈ {0◦, 45◦, 90◦, 135◦} are
obtained by thresholding the derivatives and retaining their sign:

Eθ(x, y) =

 1 if ∇θI(x, y) ≥ T
−1 if ∇θI(x, y) ≤ −T

0 otherwise .

We call (x, y) an edge point when |Eθ(x, y)|=1 for at least one θ.
Directional LHT We extend the LHT to take into account the edge
directional content, i.e., our method builds local direction histograms
by counting only the neighboring edge points whose direction is co-
herent with their position. To clarify, when building the direction
histogram for the edge point (x0, y0), we first compute the direc-
tions of the segments passing through (x0, y0) and each neighboring
edge point (x, y),

θ(x0,y0) (x, y) = arctan

(
y − y0
x− x0

)
∈ [0◦, 180◦) .

Then, we accumulate in the direction histogram the entry of the di-
rectional edge map Eθ with the value of θ that best agrees with the
direction θ(x0,y0) (x, y) above, i.e., we use

E90(x, y) if θ(x0,y0) (x, y) ∈ [0, 22.5] ∪ (155.5, 180) ,

E135(x, y) if θ(x0,y0) (x, y) ∈ (22.5, 67.5] ,

E0(x, y) if θ(x0,y0) (x, y) ∈ (67.5, 112.5] ,

E45(x, y) if θ(x0,y0) (x, y) ∈ (112.5, 155.5] ,

which corresponds to the graphical representation in Fig. 1. For ex-
ample, if (x0, y0) = (0, 0) and (x, y) = (0, 3), we have a vertical
segment, θ(0,0)(0, 3) = 90◦, and the directional edge point that con-
tributes to the histogram is E0(0, 3), since K0 is kernel that best
responds to the horizontal transitions that define vertical edges.

Fig. 1. Selection of directional edge map Eθ in terms of the relative
positions between edge points.

The semi-local nature of the initialization comes from using a
relatively large neighborhood (7 pixels wide in our experiments) for

the local histograms to enable an adequate identification of candidate
line segment directions. As usually in the LHT, the number of his-
togram bins is fixed (32 is typical) and each edge point contributes to
the two bins whose centers approximate the angle θ(x0,y0) (x, y) by
excess and default (the contributions are weighted according to the
distances to the bin centers). The signs in the directional edge maps
are taken into account through positive or negative contributions to
the histogram bins. This way, we filter out conflicting contributions
that may occur due to noise and textures. Finally, before detecting
the larger peaks of the (magnitude) of the histogram, we perform
non-maxima suppression. Intersecting line segments are thus de-
tected, since multiple direction peaks are captured by the histogram.

3. INCREMENTAL LOCAL HOUGH TRANSFORM

Line segment extraction as a parameter search problem To accu-
rately detect a line segment whose candidate location p0 = (x0, y0)
and orientation θ0 was roughly computed as described in the previ-
ous section, it is necessary to refine the estimates of both parame-
ters simultaneously. This is done by accumulating information from
other edge points lying close to the candidate line and having a can-
didate direction angle similar to θ0 (we call this a candidate match).
Our ILHT estimates the pair (p̂, θ̂) that corresponds to the longest
linear alignment of candidate matches.

We consider a line segment search range centered it the initial
rough estimate (p0, θ0), i.e., the line segments that span the area de-
picted in Fig. 2. The segment location p is allowed to move along
what we call the location line (the line passing though p0 and or-
thogonal to the candidate line segment direction θ0) and the segment
direction is in [θ0 −∆θ, θ0 + ∆θ]. Parallels to the location line are
called equidistant lines. Our ILHT builds a two-dimensional length
map L : [−∆p,∆p]× [−∆θ,∆θ]→ N0, where the entry L(δp, δθ)
corresponds to the integer length of the linear alignment of candidate
matches defining a line with parameters (p0 + δp, θ0 + δθ).

Fig. 2. Location line and equidistant lines (each labeled by an integer
that represents the distance to the location line).

The direct implementation of an exhaustive search in the space
[−∆p,∆p]× [−∆θ,∆θ] would be computationally unbearable (the
discretization of this space must be very fine to yield accurate re-
sults). However, this approach would use redundant computations,
since each edge point would be visited several times because it may
belong to a large number of candidate line segments (imagine the
scenario with the help of Fig. 2). This motivates the usage of an edge
point centered approach (similar in spirit to the HT [3, 4]), where the
edge points are used to fill the length map L(·, ·) in an efficient way.



Incorporating uncertainty in the length map We consider that
each edge point carries uncertainty, thus the length map must take
into account the entire set of location/direction shifts (δp, δθ) that
define line segments crossing the uncertainty region. This set of
possible shifts is what we call the update region of the length map.
We model the uncertainty as a radius-r ball (r = 1 pixel in all our
experiments). Using basic planar geometry, omitted due to space
constraints, we obtain the update region for the pixel (x, y) as an
interval in δθ for each value of δp,

δθ ∈ [θp −∆θp, θp + ∆θp] ∩ [−∆θ,∆θ] ,

where θp and ∆θp depend on δp:

θp = arctan

(
y0 − y + δp cos θ0
x0 − x− δp sin θ0

)
− θ0 ,

∆θp = arcsin

(
r

‖p0 − p+ δp (− sin θ0, cos θ0) ‖2

)
.

This is illustrated in Fig. 3, where all direction shifts between θ1 and
θ2 produce line segments that cross the uncertainty ball, for δp = α.

Fig. 3. The uncertainty ball of an edge pixel (left) and the corre-
sponding update region in the length map domain (right).

From Fig. 3, it is also clear that the range of direction shifts that
define line segments crossing the uncertainty ball decreases with the
distance to the location line. Thus, to enable the extraction of long
line segments, in which some edge points are very far from the loca-
tion line, the length map L(·, ·) must be very densely discretized, as
anticipated above.
Incremental implementation Naturally, the starting pixel p may be
located anywhere in the candidate line segment. To fill the length
map, we scan in two separate steps the edge points in the two half-
planes defined by the location line and combine the results. In each
of these half-planes, to fill the length map in an incremental way, we
process each equidistant line at a time, starting with the equidistant
line closer to the location line (i.e., the one labeled with 1 in Fig. 2).
The process is illustrated in Fig. 4, which also describes the scanning
pattern within each equidistant line.

The incremental updating of the length map is straightforward:
when an edge point is a candidate match, the corresponding update
region of the length map is set to the value of the label of the equidis-
tant line containing this candidate match (remember that the value of
the label equals the distance between the equidistant line and the lo-
cation line). This indicates that there exists a line segment of length
greater or equal to this number at this location. To deal with missing
data, i.e., with non-detected edge points, we allow gaps of maxi-
mum length d in the line segments. This way, we only update re-
gions where the difference between the current value of the length

Fig. 4. Illustration of the scanning pattern for our ILHT algorithm.

map and the equidistant line label value is smaller or equal than d.
When the difference between the equidistant line label value and all
the values in the length map is larger than d, i.e., when there are not
updatable locations in the length map, the scanning stops. In the vast
majority of our experiments, we used d = 2 pixels.

After scanning both sides of the location line, our ILHT al-
gorithm extracts the largest line segment passing (close to) p0 by
simply picking the shift (δ̂p, δ̂θ) corresponding to the peak of the
length map and obtaining the estimates of the segment parameters
as (p̂, θ̂) = (p0 + δ̂p, θ0 + δ̂θ). Naturally, instead of the maximum
line segment length (or together with it), other quality measures are
easily accommodated by our ILHT algorithm, e.g., those based on
the `1-norm that favor sparsity, or the Helmholtz principle of [10].
Hierarchical processing Although the computational complex-
ity of the implementation just described is much smaller than the
one of an exhaustive search directly performed in the location-
orientation space, we further speedup the process by using a hierar-
chical (coarse-to-fine) scheme.

In fact, as the scanning of edge pixels proceeds (Fig. 4), and the
corresponding updates are incorporated in the length map L(·, ·),
the region of the map that remains updatable, {(δp, δθ)}, progres-
sively shrinks. Naturally, this updatable region contains the shift
(δ̂p, δ̂θ) that will correspond to the maximum entry of the length
map, L(δ̂p, δ̂θ). Thus, our hierarchical strategy progressively in-
creases the discretization density of the updatable region. The pro-
cess starts with a coarsely sampled depth map, represented by a two-
dimensional array of small size, and, every time a set of equidistant
lines is processed, the rectangular bounding box containing the up-
datable region {(δp, δθ)} (left image in Fig. 5) is upscaled so that it
will now be represented by an array of the same size the entire length
map was at the beginning (right image in Fig. 5).

Fig. 5. Left: length map L(·, ·), with the bounding box of the updat-
able region {(δp, δθ)}. Right: the same region, after upscaling.



Since the discretization density of the region containing the op-
timal shift (δ̂p, δ̂θ) progressively increases, keeping a small array
to represent the length map suffices to accurately extract even the
longer line segments. In practice, we used an array of size 21 × 21
and performed upscalings (using simple nearest neighbor interpola-
tion) after processing each set of 10 equidistant lines.

4. EXPERIMENTS

In the absence of an established database to evaluated the perfor-
mance of line segment extraction algorithms, after performing exper-
iments with several images, we single out in this paper two demon-
strative examples that compare the results of our ILHT with the ones
of the state-of-the-art LSD [2] (the superiority of LSD with respect to
several other methods, including the HT, is thoroughly demonstrated
in [2]).

The results in Fig. 6 were obtained with the synthetic binary im-
age used in the review paper [9] to evaluate the performance of sev-
eral line segment extraction methods. This image was constructed
to simulate an extreme but realist scenario, with many line segment
intersections and large amounts of clutter and missing data (simulat-
ing the presence of noise, textures and low-contrast boundaries). We
see that the local nature of the LSD [2] limits its performance, par-
ticularly in resolving the line segment intersections. In opposition,
our ILHT successfully extracts most of the line segments1.

Fig. 6. Left: synthetic image. Middle: LSD [2]. Right: our method.

Fig. 7 illustrates the results with a real image that is particularly
challenging, due to the net composed of very long line segments that
cross multiple times and occlude a complex scene. The result of the
LSD algorithm [2] shows the net broken into short line segments
(several sections of the net are not even extracted). On the other
hand, our method was able to obtain almost all the complete line
segments of the net, even in locations where background is complex
(exceptions are where the net has a very low contrast with respect to
the background). This is better illustrated in the bottom right image
of Fig. 7, which displays only the line segments extracted by our
method that have length greater than 50 pixels.

5. CONCLUSION

We have introduced a new method for line segment extraction, which
we call the incremental local Hough transform (ILHT). Our method
overcomes the limitations of current algorithms by avoiding prema-
ture local decisions, i.e., by using global information to recover the
line segments in an efficient way. This enables the automatic pro-
cessing of images that contain intersecting line segments with spuri-

1Note that, since we treat the binary image as any other, i.e., as a grey-
level one, both transitions light-to-dark and dark-to-light are detected, and a
pair of twin segments is extracted for each one in the original image.

Fig. 7. Top left: prison break image. Top right: LSD [2]. Bottom
left: our method. Bottom right: our method (longer line segments).

ous and missing edge points. The reported experiments illustrate the
good performance of the ILHT.
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