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ABSTRACT

The majority of the approaches to the automatic recovery of a
panoramic image from a set of partial views are suboptimal in the
sense that the input images are aligned, or registered, pair by pair,
e.g., consecutive frames of a video clip. These approaches lead
to propagation errors that may be very severe, particularly when
dealing with videos that show the same region at disjoint time in-
tervals. Although some authors have proposed a post-processing
step to reduce the registration errors in these situations, there have
not been attempts to compute the optimal solution, i.e., the regis-
trations leading to the panorama that best matches the entire set
of partial views. This is our goal. In this paper, we use a gener-
ative model for the partial views of the panorama and develop an
algorithm to compute in an efficient way the Maximum Likelihood
estimate of all the unknowns involved: the parameters describing
the alignment of all the images and the panorama itself.

1. INTRODUCTION

In this paper, we address the problem of recovering, in an auto-
matic way, a panoramic image, or a mosaic, from a set of uncal-
ibrated partial views, e.g., a set of video frames. Modern digital
video systems demand efficient solutions for this problem, e.g., for
image stabilization [1, 2] and content-based representations [3].
Other application fields include virtual reality and remote sensing.
The key step to the success of the automatic mosaic building is the
accurate registration, or alignment, of the input images.

1.1. Related work

Although some authors have approached the registration problem
using classical signal processing techniques, such as Fourier trans-
forms [4], or current image analysis tools, such as integral pro-
jections [5], the majority of the papers in the literature are mostly
distinguished by either requiring a low-level pre-processing step
(feature-based methods) or attempting to register the images di-
rectly from their intensity levels (featureless methods).

Feature-based methods, e.g., [6], align the images by first de-
tecting and matching a set of pointwise features. Since reliable fea-
ture points must correspond to sharp intensity corners [7, 8], this
first step is hard to accomplish in a fully automatic way when pro-
cessing real videos, particularly when the images are noisy, have
low texture, or exhibit a small overlap among them.

In opposition, featureless methods are optimal, in the sense
that they estimate the registration parameters by minimizing the
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difference between the image intensities in a large region, thus
leading to more robust solutions to the registration of a pair of
views, e.g., [9, 10]. However, when building a panorama from
a large set of images, practitioners usually register them sequen-
tially, one at a time. This leads to propagation errors that may
be become visually noticeable if non-consecutive images cover
the same region of the panorama, which is common in applica-
tions such as seabed mapping. Although some authors proposed
to post-process the registration parameters to deal with this prob-
lem [9, 11], there have not been attempts to generalize the highly
successful featureless methods to the multi-frame case.

1.2. Proposed approach: featureless global estimation

The robustness of the featureless approaches to the registration of
two views motivated us to develop a featureless method to align
a larger set of frames. However, it is not obvious how the two-
frame cost function, usually the sum of the image square differ-
ences [9, 10], should be generalized to the multi-frame case. We
were able to derive the appropriate cost function, which is an orig-
inal contribution of this paper, by including as unknown, jointly
with the registration parameters, the panoramic image itself.

Our approach in this paper is then to formulate the automatic
recovery of mosaics from a set partial views, as a classical pa-
rameter estimation problem. The input images are modelled as
noisy observations of limited regions of the unknown panorama.
Naturally, since the images are uncalibrated, the problem includes
as unknowns the parameters describing the registration, or align-
ment, of the entire set of input images. We then use Maximum
Likelihood (ML) estimation. To minimize the ML cost with re-
spect to the large set of unknowns, we propose an efficient method.
First, we derive the closed-form solution for the estimate of the
panorama in terms of the other unknowns (the registration param-
eters). Then, we plug-in the estimate of the panorama into the
ML cost, obtaining an error function that depends on the registra-
tion parameters alone. This error function is a weighted sum of the
square differences between all possible pairs of input images. We
derive a gradient-descent algorithm to minimize this cost.

Like in the current featureless approaches to the registration of
two images [9, 10], the derivatives involved in the gradient-descent
algorithm to minimize our ML cost, are computed in a simple way
in terms of the image gradients.
Paper organization In section 2, we formulate the registration of
multiple images as a classical estimation problem. Section 3 deals
with ML estimation for this problem. In section 4, we derive the
gradient-descent algorithm to minimize the ML cost. Section 5
describes experiments and section 6 concludes the paper.



2. PROBLEM FORMULATION

In this section, we develop a generative model for the partial views
of an unknown panorama, and use ML to derive the estimation
criterion that will allow us to recover the observed panorama, as
well as the registration parameters, i.e., the viewing positions.

2.1. Generative model

We model each pixel of each image Ii, as a noisy sample of the
panorama P. For simplicity, we consider the image domain to be
the entire plane R

2 and, to take care of the limited field of view,
we define a window H as H(x, y) = 1 in the region observed in
the images and H(x, y)=0 in the regions outside the camera field
of view. The observation model is then

Ii(xi) =
[
P(x0) + R (xi)

]
H(xi) , (1)

where R denotes the noise, assumed i.i.d. zero-mean Gaussian,
xi are the image coordinates (x, y), expressed in the coordinate
system of the generic image Ii, and x0 are the corresponding coor-
dinates of the panoramic image P, expressed in its own coordinate
system (which we will refer to as the reference coordinate system).
Image models related to (1) have been used in the context of seg-
menting and tracking moving objects in video sequences [12, 13].

The reference coordinate system and the coordinate system of
any of the images are related by a generic parametric mapping

xi = m(θi;x0) . (2)

The parameter vector θi in (2) determines thus the mapping be-
tween each pixel of the panorama, with coordinates x0, expressed
in the reference coordinate system, with the corresponding pixel of
image Ii, with coordinates xi. Common parameterizations include
translation (2 degrees of freedom (dof)), rotation (1 dof), rigid mo-
tion (3 dof), translation+rotation+zoom (4 dof), affine (6 dof), and
the projective, or homography (8 dof), see, e.g., [9, 14]. Although
our derivations are intentionally left fully generic, in the experi-
ments, we have used the affine mapping.

2.2. Estimation criterion

Given a set of n images, {I1, . . . , In}, our goal is to recover all the
unknowns involved: the panorama P and the set of parameter vec-
tors {θ1, . . . , θn} that define the viewing positions. We use ML.
From the observation model (1), after simple manipulations, we
express the symmetric of the log-likelihood function as

L (P, θ1, . . . , θn) =
nN

2
ln

(
2πσ

2
)

+
(
2σ

2
)−1

· (3)

·
∑

x0∈R2

n∑

i=1

[
Ii (m(θi;x0))−P (x0)

]
2

H (m(θi;x0)) ,

where N is the number of pixels in each image and σ2 is the vari-
ance of the observation noise.

3. MAXIMUM LIKELIHOOD ESTIMATE

To compute the ML estimate of all the unknowns, i.e., to carry
out the minimization of the ML cost, given by the symmetric log-
likelihood (3), with respect to (wrt) {P, θ1, . . . , θn}, we start by
noticing that the estimate of the panorama P can be expressed in
closed-form as a function of the remaining unknowns.

3.1. Estimate of the panorama P

We derive the expression for the ML estimate P̂ of the panorama
by minimizing (3) wrt a generic pixel value P(x0). By making
zero the derivative of (3) wrt P(x0), the estimate P̂ at pixel x0 is
easily obtained as a function of the set of unknown registration pa-
rameters, which we will compactly denote by Θ = {θ1, . . . , θn}:

P̂ (x0,Θ) =

∑n

i=1
Ii (m(θi;x0)) H (m(θi;x0))∑n

i=1
H (m(θi;x0))

. (4)

This expression shows that the estimate of the intensity of each
pixel x0 of P̂ is given by the average of the intensities of the cor-
responding pixels of all the input images that captured x0, i.e., all
the images Ii for which H (m(θi;x0))=1.

3.2. Estimate of the registration parameters {θ1, . . . , θn}

Replacing the ML estimate P̂ of the panorama, given by (4), in
the symmetric log-likelihood (3), we express this ML cost L as a
function of the unknown registration parameters Θ alone. After
algebraic manipulations, we get:

L (Θ) =
nN

2
ln

(
2πσ

2
)

+
(
4σ

2
)−1

∑

x0∈R2

W
−1(x0,Θ) · (5)

·

n∑

i,j=1

E
2

ij (x0, θi, θj) H (m(θi;x0)) H (m(θj ;x0)) ,

where Eij is the error between the co-registered images Ii and Ij ,

Eij (x0, θi, θj) = Ii (m(θi;x0)) − Ij (m(θj ;x0)) , (6)

and W (x0,Θ) is a weight that counts the number of images that
have captured the pixel x0 of the panorama, according to the reg-
istration parameters in Θ, i.e.,

W (x0,Θ) =

n∑

k=1

H (m(θk;x0)) . (7)

By discarding from (5) the constant terms, i.e., the terms that
do not depend on the unknown registration parameters Θ, we con-
clude that the ML estimate for the problem of global multi-frame
registration, is equivalent to the following minimization:

Θ̂ = arg min
Θ

n∑

i,j=1

∑

x0∈Rij

E
2

ij (x0, θi, θj)

W (x0,Θ)
. (8)

For simplicity, when deriving (8) from (5), the sums were inter-
changed and the spatial region of summation was re-defined to
take care of the windows H(·) in (5), i.e., Rij in (8) is the region
where the images Ii and Ij overlap,

Rij = {x : H (m(θi;x)) H (m(θj ;x)) = 1} . (9)

Expressions (7) and (8) condense one the contributions of this
paper—they show that the ML estimate Θ̂ of the registration pa-
rameters Θ is given by the minimum of a particular weighted sum
of the square differences between all possible pairs of co-registered
input images.



4. MINIMIZATION ALGORITHM

Our algorithm to the minimization of the ML cost (8) uses an iter-
ative scheme inspired in the common approaches to the two-frame
problem [9, 10]. In each step, the algorithm updates a current esti-
mate that we denote by Θ

0 =
{
θ0

1, . . . , θ
0

n

}
.

4.1. Iterative minimization of the ML cost

Instead of updating the entire set of parameters Θ in a single step,
which would be computationally complex, we propose a coordi-
natewise minimization: we update each vector θq at a time, keep-
ing fixed the remaining registration parameters

{
θi = θ0

i , i 6= q
}

.
The update is θq = θ0

q + δ̂, where δ̂ is obtained from (8), after
discarding the terms that do not depend on θq:

δ̂ = arg min
δ

n∑

i=1

∑

x0∈Riq

E
2

iq(x0, θ
0

i , θ
0

q + δ)

W (x0,Θ0)
(10)

To obtain a closed-form solution for the update δ̂, we approx-
imate the error Eiq by its first-order Taylor series expansion,

Eiq(x0, θ
0

i , θ
0

q+δ) ≈ Eiq(x0, θ
0

i , θ
0

q)+δ
T ·∇θq

Eiq(x0, θ
0

i , θ
0

q) .

From the definition of Eiq in (6), the gradient in the Taylor series
expansion is easily computed in terms of the spatial gradient of
image Iq . Furthermore, that gradient does not depend on θ0

i , thus
we will denote it more compactly by ∇(x0, θ

0

q),

∇(x0, θ
0

q) = ∇θq
Eiq(x0, θ

0

i , θ
0

q) (12)

= −∇θq
m(θ0

q;x0) · ∇xIq(m(θ0

q;x0)) . (13)

By inserting the Taylor series approximation in (10) and mak-
ing zero the derivative wrt δ, we get the update δ̂ as the solution
of a linear system

Γ
(
Θ

0
)
· δ̂ + γ

(
Θ

0
)

= 0 . (14)

The matrix Γ
(
Θ

0
)

and the vector γ
(
Θ

0
)

are obtained as

Γ
(
Θ

0
)

=
∑

x0∈Rq

∇(x0, θ
0

q) · ∇
T (x0, θ

0

q) , (15)

γ
(
Θ

0
)

=
∑

x0∈Rq

∇(x0, θ
0

q)
[
P̂

(
x0,Θ

0
)
−Iq(m(θ0

q;x0))
]
, (16)

where we used expression (4) for P̂. The sums in (15,16) are over
the region observed by image Iq , Rq =

{
x : H

(
m(θ0

q;x)
)
=1

}
.

4.2. Interpretation in terms of current algorithms

Since the iterations in standard featureless two-frame alignment
algorithms [9, 10] also lead to a system like (14), we now interpret
our solution (14,15,16) in terms of those approaches. Define E0q

as the difference between image Iq and the previous estimate of
the panorama, obtained with the registration parameters Θ

0,

E0q

(
x0,Θ

0
)

= P̂
(
x0,Θ

0
)
− Iq(m(θ0

q;x0)) . (17)

Since the gradient of this error wrt θq is equal to the one defined
in (12), we can re-write expressions (15,16) in terms of E0q ,

Γ
(
Θ

0
)

=
∑

x0∈Rq

∇θq
E0q

(
x0,Θ

0
)
· ∇T

θq
E0q

(
x0,Θ

0
)

, (18)

γ
(
Θ

0
)

=
∑

x0∈Rq

∇θq
E0q

(
x0,Θ

0
)

E0q

(
x0,Θ

0
)

. (19)

Expressions (18,19) are equal to the ones that arise from align-
ing the previous estimate P̂ of the panorama with image Iq , by us-
ing standard featureless methods, see e.g., [9, 10] or [8]. We thus
conclude that our global approach lead to an algorithm that refines
the estimate of the registration parameters of each image by using
the methodology developed to register a single pair of images.

4.3. Convergence—initialization and multiresolution

Our algorithm starts by aligning the images sequentially, using the
standard two-frame approach [9, 10]. Then, we compute an initial
estimate of the panorama by using (4). After this, we cyclically
refine the registrations parameters of each image. The stopping
criterion may either be the error below a small threshold or reach-
ing a maximum number of iterations.

Since the truncated Taylor series is a good approximation only
when the vector θq is close to its initial value θ0

q , estimating the up-
date δ from (14,15,16) leads to the convergence to the globally op-
timal ML estimate, only when the initial estimate is close enough
to it. However, in practice, e.g., in the first experiment described
below, it is common that the initial estimate of the panorama is
very rough, due to the propagation of (two-frame based) registra-
tion errors. To cope with these situations, we use a coarse-to-fine
approach similar to the one proposed in [15, 9]: the parameters
are first estimated in the coarsest resolution level, then used as an
initialization to the next finer level, until the full image resolu-
tion is attained. As illustrated in the following section, this multi-
resolution approach succeeds in correcting large miss-registrations.

5. EXPERIMENTS

We describe two experiments. The first experiment compares our
global approach with the current sequential registration methods.
In the second experiment, we illustrate with automatic mosaic build-
ing in a seabed mapping context.

5.1. Sequential alignment versus proposed method

To have an exact knowledge of the ground truth, we “synthesized”
the input images by cropping a real photo and adding noise. In
Fig. 1, we represent the evolution of the standard two-frame fea-
tureless sequential alignment (e.g., [9, 10]) of those images. Note
that the fourth image is miss-aligned and how that error propagates
to the alignment of the remaining images. The (highly incorrect)
panorama this way obtained, see the bottom right image of Fig. 1,
was then used as the initialization for the global method we pro-
pose in this paper. After few iterations, our algorithm converged
to the panoramic image shown in Fig. 2, which is visually indis-
tinguishable from the ground truth image.

5.2. Underwater mosaic for seabed mapping

As a final example, we illustrate our method with automatic mo-
saic construction from video images, captured by an underwater



Fig. 1. Sequential registration. Note how the miss-alignment of
the fourth image (middle left) propagates to the remaining ones.

camera in the sea. Although underwater images are particularly
difficult to align, due to the absence of salient features, the mosaic
recovered by our algorithm is visually correct, see Fig. 3.

6. CONCLUSION

We proposed a new method to build a panoramic image from a set
of partial views. Rather than composing the input images in an
incremental way, our approach seeks the global solution to the es-
timation problem, i.e., it computes the panorama that best matches
all the partial observations. To minimize the global cost, we de-
rived an efficient gradient descent algorithm that generalizes the
current most robust two-frame featureless registration approaches.
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