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ABSTRACT

We address the automatic recovery of complete 3-D object mod-
els from video streams. Usually, complete 3-D models are built
by fusing several depth maps, each computed from a small set of
consecutive video frames, using structure from motion techniques.
However, since from a small number of similar views, it is very
difficult to obtain accurate depth maps, their fusion becomes non-
trivial and human interaction is in general required to assemble the
complete 3-D model. Instead of using intermediate depth maps,
we propose a method to recover complete 3-D models directly
from the 2-D motions in the entire set of available video frames.
The difficulty that arises when processing long videos is that dif-
ferent regions of the object are seen at different time instants. Our
method decides wether a region that has become visible is a region
that was seen before, or a previously unseen region, by seeking
the simplest rigid object that describes well the observed 2-D mo-
tions. This global approach increases significantly the accuracy
of the estimates of the 3-D shape of the object and the 3-D mo-
tion of the camera. Experiments with artificial data and real video
demonstrate the good performance of our method.

1. INTRODUCTION

In areas ranging from virtual reality and digital video to robotics,
an increasing number of applications need three-dimensional (3-
D) models of real-world objects. Although expensive active sen-
sors, e.g., laser rangefinders, have been frequently used to acquire
3-D data, in many relevant situations only two-dimensional (2-D)
video data is available and the 3-D object models have to be re-
covered from their 2-D projections. In this paper, we address the
automatic recovery of complete 3-D models from video sequences.
Related work Since the strongest cue to infer 3-D shape from
video is the 2-D motion of the image brightness pattern, our prob-
lem has been often referred to as structure from motion (SFM).
Since using a large number of views, rather than simply two con-
secutive frames, leads to more constrained problems, thus to more
accurate 3-D models, current research has been focused on multi-
frame SFM. The factorization method of Tomasi and Kanade [1]
overcomes the difficulties of multi-frame SFM—nonlinearity and
large number of unknowns—by using matrix subspace projections.
In [1], the trajectories of feature points are collected into an obser-
vation matrix that, due to the rigidity of the 3-D object, is highly
rank deficient in a noiseless situation. The 3-D shape of the object
and the 3-D motion of the camera are recovered from the rank de-
ficient matrix that best matches the observation matrix. The work
of [1] was extended in several ways, e.g., geometric projection
models [2], parametric surface models [3].
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References [1, 2, 3] assume that any object region that is being
modelled is visible during the entire video sequence, thus leading
to a complete observation matrix. Clearly, this is not the case when
processing videos that show views all around (non-transparent)
3-D objects. Object self-occlusion, as well as limited field of
view and tracking failures, motivated researchers to extend the
factorization method to cope with incomplete observation matri-
ces [4, 5, 6]. However, none of the methods above deal with “self-
inclusion”, i.e., with the fact that a region that disappears due to
self-occlusion may appear again later. When this happens, the re-
appearing region is usually treated as a new region, i.e., as a region
that was never seen before. This procedure has two drawbacks:
i) the problem becomes less constrained than it should, thus lead-
ing to less accurate estimates of 3-D structure; and ii) further 3-D
processing is needed to fuse the recovered multiple versions of the
same real-world regions.
Proposed approach We propose a global approach to recover com-
plete 3-D models from video. Global in the sense that our method
computes the simplest 3-D rigid object that best matches the entire
set of 2-D image projections. This way we avoid having to post-
process several partial 3-D models, each obtained from a smaller
set of frames, or an inaccurate 3-D model obtained from the entire
set of frames without detecting re-appearing regions. We develop
a global cost function that balances two terms—model fidelity and
complexity penalization. The model fidelity term measures the
error between the model—a 3-D shape and a set of re-appearing
regions—and the observations, as in Maximum Likelihood esti-
mation. This error is simply given by the distance of a re-arranged
observation matrix to the appropriate space of rank deficient matri-
ces. The penalty term measures the complexity of the 3-D model,
which is easily coded by the number of feature points used to de-
scribe the observations. By minimizing this global cost, we get
what statisticians usually call a Penalized Likelihood (PL) [7] es-
timate of the 3-D structure. Through PL estimation, re-appearing
regions are then detected when the increase of the complexity of
the 3-D model does not compensate a slightly better fit to the ob-
servations, meaning that a more complex 3-D model would fit the
observation noise rather than the 3-D real-world object.

2. 3-D STRUCTURE FROM VIDEO WITH OCCLUSION

The majority of the approaches to the recovery of SFM start by
estimating the 2-D motion in the image plane. This is usually done
by tracking the image projections of distinctive feature points of
the 3-D object. When the 3-D object is rigid and not too close
to the camera, the observations, i.e., the trajectories of N feature
projections along F frames, are modelled by

W2F×N = M2F×4S4×N + noise, (1)



where W collects the coordinates of the feature projections, M
depends on the camera-object 3-D motion, and S describes the
object shape, i.e., it contains the 3-D coordinates of the feature
points, see [1]. The problem of recovering SFM amounts then to
estimating matrices M and S from the observation matrix W.
Matrix factorization method In the early nineties, Tomasi and
Kanade introduced model (1) and proposed the now widely known
factorization method [1], a computationally simple approach to the
recovery of rigid SFM. They noted that although the observation
matrix W in (1) may be huge—dimension 2F ×N (x− and y−
coordinates of each feature projection)—, it is well approximated
by a rank 4 matrix because it is a noisy version of the product of a
2F×4 motion matrix M by a 4×N shape matrix S, see (1). The
factorization method of [1] exploits this by computing the motion
and shape matrices M and S from the factors of the rank 4 ma-
trix Ŵ that best matches the observation matrix W. The rank 4
matrix Ŵ is easily obtained from the Singular Value Decompo-
sition (SVD) of W, W = UΣV, after selecting the 4 largest
eigenvalues and the associated eigenvectors,

Ŵ = arg min
W̃∈S4

‖W − W̃‖F ⇒ Ŵ = U2F×4Σ4×4V4×N .

(2)
Here, ‖.‖F represents the Frobenius norm and S4 denotes the space
of the 2F×N rank 4 matrices.
Factorization with missing data It is often the case in practice
that, due to occlusion and tracking failures, the trajectories of the
projections of the feature points in the observation matrix W are
incomplete. In this case, the SVD of W can not be computed and,
unlike (2), there is not known closed-form solution to the problem
of finding the rank 4 matrix Ŵ that best matches W. Naturally,
the cost function in (2) is generalized to this missing data case by
summing only the errors of the known entries of W, i.e.,

Ŵ = arg min
W̃∈S4

‖(W − W̃) � M‖F , (3)

where � represents the elementwise product and the binary ma-
trix M is such that mij =1 if wij is known and mij =0 otherwise.

In [5], the authors used the Expectation-Maximization (EM)
approach to missing data problems [8] to minimize the missing
data cost function (3). They also derived an extension of the power
method [9] that estimates in alternate steps the column and row
spaces of the solution of (3). Both algorithms are computationally
simple and have good convergent behavior when adequately ini-
tialized. In [5], the initialization is computed by composing the
column and row spaces of known sub-matrices of W.

3. COMPLETE MODELS — RE-APPEARING FEATURES

To build complete a complete model of a 3-D object, we must use a
video stream containing views that completely “cover” the object,
typically, a video obtained by rotating the camera around the ob-
ject. Obviously, as the camera moves, some feature points disap-
pear, due to object self-occlusion, remain invisible during certain
period and then re-appear. In general, each feature point has thus
several tracking periods. Although this is always the case when
constructing complete 3-D models, it also happens very frequently
when processing real-life videos in general.

Current tracking algorithms, as well as the factorization meth-
ods that deal with occlusion, e.g., [4, 6], or the method [5], outlined

in section 2, do not consider a re-appearing feature as another ob-
servation of a previously seen point. They rather consider as many
feature points as tracking periods. To illustrate this point, we rep-
resent on the left image of Fig. 1 the typical shape of the known
entries of the observation matrix W. Each feature trajectory is
represented by a column of W. The three last columns (in gray)
correspond to re-appearing features, i.e., they are second tracking
periods of the features that were first tracked and collected in the
three first columns. Our goal in this paper is to re-arrange the ob-
servation matrix W into a smaller matrix WR that merges all the
tracking periods of the same feature in the same column. For W
shown on the left side of Fig. 1, the re-arranged matrix WR would
be as shown on its right. Finding matrix WR is equivalent to de-
tecting the re-appearing features. Note that the statements of sec-
tion 2 remain valid for the re-arranged matrix WR; in particular,
WR is rank 4 in a noiseless situation, just like the original observa-
tion matrix W. As pointed out before, the advantage of using WR

rather than W is that the SFM problem becomes more constrained,
thus leading to more accurate estimates of the 3-D structure.

Fig. 1. Left: Original observation matrix W. Right: Re-arranged
observation matrix WR, after detecting re-appearing features.

Local approach When a given feature has two tracking periods,
current factorization methods [4, 5, 6], return a 3-D shape contain-
ing two 3-D feature points that correspond to the same 3-D point
of the real-world object. Although these two 3-D feature points
would coincide in a noiseless situation, in practice they are just
close to each other. To demonstrate this, we represent on the left
plot of Fig. 2, the 3-D shape recovered from a set of synthesized
trajectories of 40 features, by using the factorization of [5]. To
simulate occlusion, three of the trajectories were artificially “in-
terrupted”, leading to three pairs of recovered 3-D points, marked
with small circles in the left plot of Fig. 2.

−60
−30

0
30

60

−60

−30

0

30

60

−60

−30

0

30

60

−60
−30

0
30

60

−60

−30

0

30

60

−60

−30

0

30

60

Fig. 2. 3-D shape recovered from the original matrix W, i.e., with-
out detecting re-appearing features (left) and from the re-arranged
matrix WR, i.e., after detecting re-appearing features (right).



A simple way to detect re-appearing features is based on a
local analysis of the distance between recovered 3-D points. How-
ever, this procedure fails in practice due to the sensibility to the
threshold below which the features would be considered to cor-
respond to the same 3-D point. In fact, the distance between the
features that correspond to the same 3-D point, depends not only
on the noise level but also on the camera-object distance, which
is very difficult to estimate accurately enough. The detection of
re-appearing features must then be based on a global approach.

4. GLOBAL APPROACH

We formulate the detection of re-appearing features as a model se-
lection problem, where a model is represented by a re-arranged
observation matrix WR. Matrix WR codes the number of feature
points PR and the correspondences between columns of the origi-
nal observation matrix W and points of the 3-D real-world object.
To select the best model, we develop a global PL cost function.
PL cost PL estimation balances the accuracy of the model with its
complexity. The PL estimate WR leads then to the minimization

WR = arg min
Wr

{ES4 (Wr) + αPr} , (4)

where ES4 (Wr) measures the error of the model Wr as its dis-
tance to the space of rank 4 matrices, i.e., it is a likelihood term,
and Pr is the number of feature points of the model, i.e., it codes
the model complexity. The parameter α balances the two terms.

We evaluate the likelihood term

ES4(Wr) = min
W̃∈S4

‖(Wr − W̃) � Mr‖F , (5)

where the binary matrix Mr accounts for the known entries of the
model Wr , by using the algorithm outlined in section 2, see (3).

We performed several experiences in order to find a valid range
for the weight parameter α. By testing pertinent values for the
noise level, % of missing data, number of features, number of im-
ages, and number of re-appearing features, we concluded that

α ∈ [
1 × 10−4, 4 × 10−4] (6)

leads to a good balance between maximizing the number of correct
detections of re-appearing features (probability of detection) and
minimizing the number of incorrect detections (probability of false
alarm). Obviously, the parameter α could also be chosen by using
principles as the Minimum Description Length (MDL) or Akaike’s
information criteria (AIC).
Minimization algorithm To minimize the cost (4), our algorithm
starts by selecting from the original observation matrix W, pairs of
columns that can be merged with each other. Naturally, these pairs
correspond to disjoint tracking periods. For example, for the ma-
trix W in the right side of Fig. 1, each one of the six last columns
could be merged with the first column, therefore, in what respects
to the feature corresponding to the first column, there are seven
possible situations: it could either have re-appeared, generating
one of the trajectories of the six last columns, or remain occluded
for the remaining of the video.

To obtain a computationally feasible algorithm, we prune the
search—our algorithm decides by comparing the costs of merg-
ing each selected pair of columns with the one of considering that
there are not re-appearing features, i.e., of model WR = W. The
process is then repeated until the cost (4) does not decrease by

merging any selected pair of columns. The search could be fur-
ther pruned by using the local approach outline in the previous
section to guide the process, thus testing only pairs of columns
corresponding to feature points that are close in the 3-D space.

The iterative algorithm of [5], used to compute the likelihood
term (5), converges in very few iterations when adequately ini-
tialized. Although the initialization procedure described in [5] is
computationally expensive due to several SVD’s, we reduce the
computational complexity of our method by performing this ini-
tialization step only once, when testing the model that corresponds
to the original observation matrix, WR = W, and using the re-
sulting initial guess also when testing the other models.

5. EXPERIMENTS

Illustrative behavior To illustrate our method, we processed the
observation matrix that lead to the left plot of Fig. 2. The 3-D
shape recovered by our global method is shown in the right plot,
where each of the pairs of re-appearing features have been cor-
rectly detected as representing the same 3-D point.
Error analysis We quantified the gain of using our method to re-
cover SFM by measuring the 3-D reconstruction error. We syn-
thesized noisy trajectories of 40 features on the surface of a cube,
15 of them being “interrupted” to simulate object self-occlusion,
leading to a 60×55 observation matrix W with 53.9% known en-
tries (x− and y− coordinates in [0, 120]×[0, 160], noise standard
deviation σ=3). Our method generated a 60×40 re-arranged ma-
trix WR with 74.2% known entries. By using WR rather then W
to recover SFM, we reduced the 3-D shape estimation error by ap-
proximately 50% and the 3-D motion error by approximately 70%.
Sensitivity to the noise In order evaluate the sensitivity of our
method to the observation noise, we plotted in Fig. 3 the proba-
bilities of correctly detecting re-appearing features and the prob-
ability of incorrect detections (false alarms) as functions of the
noise level, for the experimental setup described above, now with
5 re-appearing features. These probabilities were estimated from
100 runs for each level of noise. Although re-appearing features
become harder to detect as the noise level increases, our method
correctly detects more than 90% of them when the noise level is
below σ = 5. The plot of Fig. 3 also shows that our method has
approximately zero false alarms for noise levels below σ = 7.
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Fig. 3. Probability of detection and probability of false alarm.

Synthetic video We used an artificially generated video with 37
frames of a cube. We tracked 17 features points in the cube sur-
face. Due to the camera-object rotation, several features become
occluded along the video sequence and one of them re-appears in



the last frames. The resulting 74×19 observation matrix W has
77.5% known entries. Fig. 4 shows representative frames of the
synthetic video. The top-left and bottom right images also repre-
sent, superimposed with the video frame, the re-appearing feature.

FEATURE

RE−APPEARING FEATURE

Fig. 4. Synthetic video. Top-left: frame 1 with superimposed
features. Bottom-right: frame 26 and one re-appearing feature.

On the left side of Fig. 5, we show the 3-D shape recovered
by processing matrix W, i.e., without detecting the re-appearing
feature. This shape is particularly inaccurate (note the rightmost
feature point) because the video of Fig. 4 does not provide views
that cover the entire object. On the right, we show the result of
using our global method to detect re-appearing features, i.e., the
result of processing the re-arranged matrix WR. The 3-D shapes
in Fig. 5 clearly show that our method leads to a more accurate
estimate of the 3-D shape of the object.
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Fig. 5. 3-D shape recovered from the video in Fig. 4. Left: without
detecting re-appearing features. Right: using our method.

Real video We used a video obtained by rotating a hand-held cam-
era around a table with a pile of CD’s. Fig. 6 shows several frames
of the video sequence. We tracked 20 feature points, located on
corners of the CD boxes. Along the video sequence, all features
disappear and several of them re-appear because the camera per-
forms a complete turn around the CD pile.

On the left image of Fig. 7, we show the 3-D shape recovered
from the video of Fig. 6 without detecting re-appearing features—
the circles indicate examples of pairs of features that corresponds
to the same 3-D point. On the right, we show the result of applying
our global method to detect re-appearing features. Note that each
of the above mentioned pairs was correctly identified as represent-
ing the same point of the 3-D object.

6. CONCLUSION

We proposed a global approach to build complete 3-D models from
video. The 3-D model is inferred as the simplest rigid object that

Fig. 6. Real video sequence.

Fig. 7. 3-D shape recovered from the video in Fig. 6. Left: without
detecting re-appearing features. Right: using our method.

agrees with all the observed data, i.e., with the entire set of video
frames. Our experiments show that this method leads to more ac-
curate estimates of 3-D shape than those obtained by either pro-
cessing several smaller subsets of views or processing the entire
video without taking into account re-appearing regions.
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