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Lisboa, Portugal

aguiar@isr.ist.utl.pt

Mário A. T. Figueiredo†
†Instituto de Telecomunicações

Instituto Superior Técnico
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Abstract

We present a unified view of two state-of-the-
art non-projective dependency parsers, both
approximate: the loopy belief propagation
parser of Smith and Eisner (2008) and the re-
laxed linear program of Martins et al. (2009).
By representing the model assumptions with
a factor graph, we shed light on the optimiza-
tion problems tackled in each method. We also
propose a new aggressive online algorithm to
learn the model parameters, which makes use
of the underlying variational representation.
The algorithm does not require a learning rate
parameter and provides a single framework for
a wide family of convex loss functions, includ-
ing CRFs and structured SVMs. Experiments
show state-of-the-art performance for 14 lan-
guages.

1 Introduction

Feature-rich discriminative models that break local-
ity/independence assumptions can boost a parser’s
performance (McDonald et al., 2006; Huang, 2008;
Finkel et al., 2008; Smith and Eisner, 2008; Martins
et al., 2009; Koo and Collins, 2010). Often, infer-
ence with such models becomes computationally in-
tractable, causing a demand for understanding and
improving approximate parsing algorithms.

In this paper, we show a formal connection be-
tween two recently-proposed approximate inference
techniques for non-projective dependency parsing:
loopy belief propagation (Smith and Eisner, 2008)
and linear programming relaxation (Martins et al.,
2009). While those two parsers are differently moti-
vated, we show that both correspond to inference in

a factor graph, and both optimize objective functions
over local approximations of the marginal polytope.
The connection is made clear by writing the explicit
declarative optimization problem underlying Smith
and Eisner (2008) and by showing the factor graph
underlying Martins et al. (2009). The success of
both approaches parallels similar approximations in
other fields, such as statistical image processing and
error-correcting coding. Throughtout, we call these
turbo parsers.1

Our contributions are not limited to dependency
parsing: we present a general method for inference
in factor graphs with hard constraints (§2), which
extends some combinatorial factors considered by
Smith and Eisner (2008). After presenting a geo-
metric view of the variational approximations un-
derlying message-passing algorithms (§3), and clos-
ing the gap between the two aforementioned parsers
(§4), we consider the problem of learning the model
parameters (§5). To this end, we propose an ag-
gressive online algorithm that generalizes MIRA
(Crammer et al., 2006) to arbitrary loss functions.
We adopt a family of losses subsuming CRFs (Laf-
ferty et al., 2001) and structured SVMs (Taskar et
al., 2003; Tsochantaridis et al., 2004). Finally, we
present a technique for including features not at-
tested in the training data, allowing for richer mod-
els without substantial runtime costs. Our experi-
ments (§6) show state-of-the-art performance on de-
pendency parsing benchmarks.

1The name stems from “turbo codes,” a class of high-
performance error-correcting codes introduced by Berrou et al.
(1993) for which decoding algorithms are equivalent to running
belief propagation in a graph with loops (McEliece et al., 1998).



2 Structured Inference and Factor Graphs

Denote by X a set of input objects from which we
want to infer some hidden structure conveyed in an
output set Y. Each input x ∈ X (e.g., a sentence)
is associated with a set of candidate outputs Y(x) ⊆
Y (e.g., parse trees); we are interested in the case
where Y(x) is a large structured set.

Choices about the representation of elements of
Y(x) play a major role in algorithm design. In
many problems, the elements of Y(x) can be rep-
resented as discrete-valued vectors of the form y =
〈y1, . . . , yI〉, each yi taking values in a label set Yi.
For example, in unlabeled dependency parsing, I is
the number of candidate dependency arcs (quadratic
in the sentence length), and each Yi = {0, 1}. Of
course, the yi are highly interdependent.

Factor Graphs. Probabilistic models like CRFs
(Lafferty et al., 2001) assume a factorization of the
conditional distribution of Y ,

Pr(Y = y | X = x) ∝
∏
C∈C ΨC(x,yC), (1)

where each C ⊆ {1, . . . , I} is a factor, C is the set
of factors, each yC , 〈yi〉i∈C denotes a partial out-
put assignment, and each ΨC is a nonnegative po-
tential function that depends on the output only via
its restriction to C. A factor graph (Kschischang
et al., 2001) is a convenient representation for the
factorization in Eq. 1: it is a bipartite graph Gx com-
prised of variable nodes {1, . . . , I} and factor nodes
C ∈ C, with an edge connecting the ith variable
node and a factor node C iff i ∈ C. Hence, the fac-
tor graph Gx makes explicit the direct dependencies
among the variables {y1, . . . , yI}.

Factor graphs have been used for several NLP
tasks, such as dependency parsing, segmentation,
and co-reference resolution (Sutton et al., 2007;
Smith and Eisner, 2008; McCallum et al., 2009).

Hard and Soft Constraint Factors. It may be
the case that valid outputs are a proper subset of
Y1 × · · · × YI—for example, in dependency pars-
ing, the entries of the output vector y must jointly
define a spanning tree. This requires hard constraint
factors that rule out forbidden partial assignments
by mapping them to zero potential values. See Ta-
ble 1 for an inventory of hard constraint factors used
in this paper. Factors that are not of this special kind

are called soft factors, and have strictly positive po-
tentials. We thus have a partition C = Chard ∪ Csoft.

We let the soft factor potentials take the form
ΨC(x,yC) , exp(θ>φC(x,yC)), where θ ∈ Rd

is a vector of parameters (shared across factors) and
φC(x,yC) is a local feature vector. The conditional
distribution of Y (Eq. 1) thus becomes log-linear:

Prθ(y|x) = Zx(θ)−1 exp(θ>φ(x,y)), (2)

where Zx(θ) ,
∑

y′∈Y(x) exp(θ>φ(x,y′)) is the
partition function, and the features decompose as:

φ(x,y) ,
∑

C∈Csoft
φC(x,yC). (3)

Dependency Parsing. Smith and Eisner (2008)
proposed a factor graph representation for depen-
dency parsing (Fig. 1). The graph has O(n2) vari-
able nodes (n is the sentence length), one per candi-
date arc a , 〈h,m〉 linking a head h and modifier
m. Outputs are binary, with ya = 1 iff arc a belongs
to the dependency tree. There is a hard factor TREE

connected to all variables, that constrains the overall
arc configurations to form a spanning tree. There is a
unary soft factor per arc, whose log-potential reflects
the score of that arc. There are also O(n3) pair-
wise factors; their log-potentials reflect the scores
of sibling and grandparent arcs. These factors cre-
ate loops, thus calling for approximate inference.
Without them, the model is arc-factored, and ex-
act inference in it is well studied: finding the most
probable parse tree takes O(n3) time with the Chu-
Liu-Edmonds algorithm (McDonald et al., 2005),2

and computing posterior marginals for all arcs takes
O(n3) time via the matrix-tree theorem (Smith and
Smith, 2007; Koo et al., 2007).

Message-passing algorithms. In general
factor graphs, both inference problems—
obtaining the most probable output (the MAP)
argmaxy∈Y(x) Prθ(y|x), and computing the
marginals Prθ(Yi = yi|x)—can be addressed
with the belief propagation (BP) algorithm (Pearl,
1988), which iteratively passes messages between
variables and factors reflecting their local “beliefs.”

2There is a faster but more involvedO(n2) algorithm due to
Tarjan (1977).



A general binary factor: ΨC(v1, . . . , vn) =


1 v1, . . . , vn ∈ SC
0 otherwise, where SC ⊆ {0, 1}n.

•Message-induced distribution: ω , 〈mj→C〉j=1,...,n • Partition function: ZC(ω) ,
P
〈v1,...,vn〉∈SC

Qn
i=1m

vi
i→C

•Marginals: MARGi(ω) , Prω{Vi = 1|〈V1, . . . , Vn〉 ∈ SC} •Max-marginals: MAX-MARGi,b(ω) , maxv∈SC
Prω(v|vi = b)

• Sum-prod.: mC→i = m−1
i→C · MARGi(ω)/(1− MARGi(ω)) •Max-prod.: mC→i = m−1

i→C · MAX-MARGi,1(ω)/MAX-MARGi,0(ω)
• Local agreem. constr.: z ∈ conv SC , where z = 〈τi(1)〉ni=1 • Entropy: HC = logZC(ω)−

Pn
i=1 MARGi(ω) logmi→C

TREE ΨTREE(〈ya〉a∈A) =


1 y ∈ Ytree (i.e., {a ∈ A | ya = 1} is a directed spanning tree)
0 otherwise, where A is the set of candidate arcs.

• Partition function Ztree(ω) and marginals 〈MARGa(ω)〉a∈A computed via the matrix-tree theorem, with ω , 〈ma→TREE〉a∈A
• Sum-prod.: mTREE→a = m−1

a→TREE · MARGa(ω)/(1− MARGa(ω))

•Max-prod.: mTREE→a = m−1
a→TREE · MAX-MARGa,1(ω)/MAX-MARGa,0(ω), where MAX-MARGa,b(ω) , maxy∈Ytree Prω(y|ya = b)

• Local agreem. constr.: z ∈ Ztree, where Ztree , conv Ytree is the arborescence polytope
• Entropy: Htree = logZtree(ω)−

P
a∈A MARGa(ω) logma→TREE

XOR (“one-hot”) ΨXOR(v1, . . . , vn) =


1

Pn
i=1 vi = 1

0 otherwise.

• Sum-prod.: mXOR→i =
“P

j 6=imj→XOR

”−1
•Max-prod.: mXOR→i =

`
maxj 6=imj→XOR

´−1

• Local agreem. constr.:
P
i zi = 1, zi ∈ [0, 1],∀i •HXOR = −

P
i(mi→XOR/

P
j mj→XOR) log(mi→XOR/

P
j mj→XOR)

OR ΨOR(v1, . . . , vn) =


1

Pn
i=1 vi ≥ 1

0 otherwise.

• Sum-prod.: mOR→i =
“

1−
Q
j 6=i(1 +mj→OR)−1

”−1
•Max-prod.: mOR→i = max{1,minj 6=im

−1
j→OR}

• Local agreem. constr.:
P
i zi ≥ 1, zi ∈ [0, 1],∀i

OR-WITH-OUTPUT ΨOR-OUT(v1, . . . , vn) =


1 vn =

Wn−1
i=1 vi

0 otherwise.

• Sum-prod.: mOR-OUT→i =

( “
1− (1−m−1

n→OR-OUT)
Q
j 6=i,n(1 +mj→OR-OUT)−1

”−1
i < nQ

j 6=n(1 +mj→OR-OUT)− 1 i = n.

•Max-prod.: mOR-OUT→i =

(
min

n
mn→OR-OUT

Q
j 6=i,n max{1,mj→OR-OUT},max{1,minj 6=i,nm

−1
j→OR-OUT}

o
i < nQ

j 6=n max{1,mj→OR-OUT}min{1,maxj 6=nmj→OR-OUT} i = n.

Table 1: Hard constraint factors, their potentials, messages, and entropies. The top row shows expressions for a
general binary factor: each outgoing message is computed from incoming marginals (in the sum-product case), or
max-marginals (in the max-product case); the entropy of the factor (see §3) is computed from these marginals and the
partition function; the local agreement constraints (§4) involve the convex hull of the set SC of allowed configurations
(see footnote 5). The TREE, XOR, OR and OR-WITH-OUTPUT factors allow tractable computation of all these quantities
(rows 2–5). Two of these factors (TREE and XOR) had been proposed by Smith and Eisner (2008); we provide further
information (max-product messages, entropies, and local agreement constraints). Factors OR and OR-WITH-OUTPUT
are novel to the best of our knowledge. This inventory covers many cases, since the above formulae can be extended
to the case where some inputs are negated: just replace the corresponding messages by their reciprocal, vi by 1− vi,
etc. This allows building factors NAND (an OR factor with negated inputs), IMPLY (a 2-input OR with the first input
negated), and XOR-WITH-OUTPUT (an XOR factor with the last input negated).

In sum-product BP, the messages take the form:3

Mi→C(yi) ∝
∏
D 6=CMD→i(yi) (4)

MC→i(yi) ∝
∑

yC∼yiΨC(yC)
∏
j 6=iMj→C(yj). (5)

In max-product BP, the summation in Eq. 5 is re-
placed by a maximization. Upon convergence, vari-
able and factor beliefs are computed as:

τi(yi) ∝
∏
CMC→i(yi) (6)

τC(yC) ∝ ΨC(yC)
∏
iMi→C(yi). (7)

BP is exact when the factor graph is a tree: in the
sum-product case, the beliefs in Eqs. 6–7 correspond

3We employ the standard ∼ notation, where a summa-
tion/maximization indexed by yC ∼ yi means that it is over
all yC with the i-th component held fixed and set to yi.

to the true marginals, and in the max-product case,
maximizing each τi(yi) yields the MAP output. In
graphs with loops, BP is an approximate method, not
guaranteed to converge, nicknamed loopy BP. We
highlight a variational perspective of loopy BP in §3;
for now we consider algorithmic issues. Note that
computing the factor-to-variable messages for each
factorC (Eq. 5) requires a summation/maximization
over exponentially many configurations. Fortu-
nately, for all the hard constraint factors in rows 3–5
of Table 1, this computation can be done in linear
time (and polynomial for the TREE factor)—this ex-
tends results presented in Smith and Eisner (2008).4

4The insight behind these speed-ups is that messages on
binary-valued potentials can be expressed as MC→i(yi) ∝
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Figure 1: Factor graph corresponding to the dependency
parsing model of Smith and Eisner (2008) with sibling
and grandparent features. Circles denote variable nodes,
and squares denote factor nodes. Note the loops created
by the inclusion of pairwise factors (GRAND and SIB).

In Table 1 we present closed-form expressions
for the factor-to-variable message ratios mC→i ,
MC→i(1)/MC→i(0) in terms of their variable-to-
factor counterparts mi→C , Mi→C(1)/Mi→C(0);
these ratios are all that is necessary when the vari-
ables are binary. Detailed derivations are presented
in an extended version of this paper (Martins et al.,
2010b).

3 Variational Representations

Let Px , {Prθ(.|x) | θ ∈ Rd} be the family of all
distributions of the form in Eq. 2. We next present
an alternative parametrization for the distributions in
Px in terms of factor marginals. We will see that
each distribution can be seen as a point in the so-
called marginal polytope (Wainwright and Jordan,
2008); this will pave the way for the variational rep-
resentations to be derived next.

Parts and Output Indicators. A part is a pair
〈C,yC〉, where C is a soft factor and yC a partial
output assignment. We let R = {〈C,yC〉 | C ∈
Csoft,yC ∈

∏
i∈C Yi} be the set of all parts. Given

an output y′ ∈ Y(x), a part 〈C,yC〉 is said to be ac-
tive if it locally matches the output, i.e., if yC = y′C .
Any output y′ ∈ Y(x) can be mapped to a |R|-
dimensional binary vector χ(y′) indicating which
parts are active, i.e., [χ(y′)]〈C,yC〉 = 1 if yC = y′C

Pr{ΨC(YC) = 1|Yi = yi} and MC→i(yi) ∝
maxΨC(yC)=1 Pr{YC = yC |Yi = yi}, respectively for the
sum-product and max-product cases; these probabilities are in-
duced by the messages in Eq. 4: for an event A ⊆

Q
i∈C Yi,

Pr{YC ∈ A} ,
P

yC
I(yC ∈ A)

Q
i∈CMi→C(yi).

and 0 otherwise; χ(y′) is called the output indicator
vector. This mapping allows decoupling the feature
vector in Eq. 3 as the product of an input matrix and
an output vector:

φ(x,y) =
∑

C∈Csoft

φC(x,yC) = F(x)χ(y), (8)

where F(x) is a d-by-|R| matrix whose columns
contain the part-local feature vectors φC(x,yC).
Observe, however, that not every vector in {0, 1}|R|
corresponds necessarily to a valid output in Y(x).

Marginal Polytope. Moving to vector representa-
tions of outputs leads naturally to a geometric view
of the problem. The marginal polytope is the convex
hull5 of all the “valid” output indicator vectors:

M(Gx) , conv{χ(y) | y ∈ Y(x)}.

Note that M(Gx) only depends on the factor graph
Gx and the hard constraints (i.e., it is independent of
the parameters θ). The importance of the marginal
polytope stems from two facts: (i) each vertex of
M(Gx) corresponds to an output in Y(x); (ii) each
point in M(Gx) corresponds to a vector of marginal
probabilities that is realizable by some distribution
(not necessarily in Px) that factors according to Gx.

Variational Representations. We now describe
formally how the points in M(Gx) are linked to the
distributions in Px. We extend the “canonical over-
complete parametrization” case, studied by Wain-
wright and Jordan (2008), to our scenario (common
in NLP), where arbitrary features are allowed and
the parameters are tied (shared by all factors). Let
H(Prθ(.|x)) , −

∑
y∈Y(x) Prθ(y|x) log Prθ(y|x)

denote the entropy of Prθ(.|x), and Eθ[.] the ex-
pectation under Prθ(.|x). The component of µ ∈
M(Gx) indexed by part 〈C,yC〉 is denoted µC(yC).
Proposition 1. There is a map coupling each distri-
bution Prθ(.|x) ∈ Px to a unique µ ∈ M(Gx) such
that Eθ[χ(Y )] = µ. Define H(µ) , H(Prθ(.|x))
if some Prθ(.|x) is coupled to µ, and H(µ) = −∞
if no such Prθ(.|x) exists. Then:

1. The following variational representation for the
log-partition function (mentioned in Eq. 2) holds:

logZx(θ) = max
µ∈M(Gx)

θ>F(x)µ +H(µ). (9)

5The convex hull of {z1, . . . , zk} is the set of points that can
be written as

Pk
i=1 λizi, where

Pk
i=1 λi = 1 and each λi ≥ 0.
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Figure 2: Dual parametrization of the distributions in
Px. Our parameter space (left) is first linearly mapped to
the space of factor log-potentials (middle). The latter is
mapped to the marginal polytope M(Gx) (right). In gen-
eral only a subset of M(Gx) is reachable from our param-
eter space. Any distribution in Px can be parametrized by
a vector θ ∈ Rd or by a point µ ∈M(Gx).

2. The problem in Eq. 9 is convex and its solution
is attained at the factor marginals, i.e., there is a
maximizer µ̄ s.t. µ̄C(yC) = Prθ(YC = yC |x)
for each C ∈ C. The gradient of the log-partition
function is∇ logZx(θ) = F(x)µ̄.

3. The MAP ŷ , argmaxy∈Y(x) Prθ(y|x) can be
obtained by solving the linear program

µ̂ , χ(ŷ) = argmax
µ∈M(Gx)

θ>F(x)µ. (10)

A proof of this proposition can be found in Mar-
tins et al. (2010a). Fig. 2 provides an illustration of
the dual parametrization implied by Prop. 1.

4 Approximate Inference & Turbo Parsing

We now show how the variational machinery just
described relates to message-passing algorithms and
provides a common framework for analyzing two re-
cent dependency parsers. Later (§5), Prop. 1 is used
constructively for learning the model parameters.

4.1 Loopy BP as a Variational Approximation
For general factor graphs with loops, the marginal
polytope M(Gx) cannot be compactly specified and
the entropy term H(µ) lacks a closed form, render-
ing exact optimizations in Eqs. 9–10 intractable. A
popular approximate algorithm for marginal infer-
ence is sum-product loopy BP, which passes mes-
sages as described in §2 and, upon convergence,
computes beliefs via Eqs. 6–7. Were loopy BP exact,
these beliefs would be the true marginals and hence
a point in the marginal polytope M(Gx). However,
this need not be the case, as elucidated by Yedidia et

al. (2001) and others, who first analyzed loopy BP
from a variational perspective. The following two
approximations underlie loopy BP:

• The marginal polytope M(Gx) is approximated by
the local polytope L(Gx). This is an outer bound;
its name derives from the fact that it only imposes
local agreement constraints ∀i, yi ∈ Yi, C ∈ C:∑

yi
τi(yi) = 1,

∑
yC∼yi τC(yC) = τi(yi). (11)

Namely, it is characterized by L(Gx) , {τ ∈
R|R|+ | Eq. 11 holds ∀i, yi ∈ Yi, C ∈ C}. The
elements of L(Gx) are called pseudo-marginals.
Clearly, the true marginals satisfy Eq. 11, and
therefore M(Gx) ⊆ L(Gx).

• The entropy H is replaced by its Bethe approx-
imation HBethe(τ ) ,

∑I
i=1(1 − di)H(τ i) +∑

C∈CH(τC), where di = |{C | i ∈ C}| is the
number of factors connected to the ith variable,
H(τ i) , −

∑
yi
τi(yi) log τi(yi) and H(τC) ,

−
∑

yC
τC(yC) log τC(yC).

Any stationary point of sum-product BP is a lo-
cal optimum of the variational problem in Eq. 9
with M(Gx) replaced by L(Gx) and H replaced by
HBethe (Yedidia et al., 2001). Note however that
multiple optima may exist, since HBethe is not nec-
essarily concave, and that BP may not converge.

Table 1 shows closed form expressions for the
local agreement constraints and entropies of some
hard-constraint factors, obtained by invoking Eq. 7
and observing that τC(yC) must be zero if configu-
ration yC is forbidden. See Martins et al. (2010b).

4.2 Two Dependency Turbo Parsers
We next present our main contribution: a formal
connection between two recent approximate depen-
dency parsers, which at first sight appear unrelated.
Recall that (i) Smith and Eisner (2008) proposed a
factor graph (Fig. 1) in which they run loopy BP,
and that (ii) Martins et al. (2009) approximate pars-
ing as the solution of a linear program. Here, we
fill the blanks in the two approaches: we derive ex-
plicitly the variational problem addressed in (i) and
we provide the underlying factor graph in (ii). This
puts the two approaches side-by-side as approximate
methods for marginal and MAP inference. Since
both rely on “local” approximations (in the sense



of Eq. 11) that ignore the loops in their graphical
models, we dub them turbo parsers by analogy with
error-correcting turbo decoders (see footnote 1).

Turbo Parser #1: Sum-Product Loopy BP. The
factor graph depicted in Fig. 1—call it Gx—includes
pairwise soft factors connecting sibling and grand-
parent arcs.6 We next characterize the local polytope
L(Gx) and the Bethe approximationHBethe inherent
in Smith and Eisner’s loopy BP algorithm.

Let A be the set of candidate arcs, and P ⊆
A2 the set of pairs of arcs that have factors. Let
τ = 〈τA, τP 〉 with τA = 〈τa〉a∈A and τP =
〈τab〉〈a,b〉∈P . Since all variables are binary, we may
write, for each a ∈ A, τa(1) = za and τa(0) =
1 − za, where za is a variable constrained to [0, 1].
Let zA , 〈za〉a∈A; the local agreement constraints
at the TREE factor (see Table 1) are written as zA ∈
Ztree(x), where Ztree(x) is the arborescence poly-
tope, i.e., the convex hull of all incidence vectors
of dependency trees (Martins et al., 2009). It is
straightforward to write a contingency table and ob-
tain the following local agreement constraints at the
pairwise factors:

τab(1, 1) = zab, τab(0, 0) = 1− za − zb + zab
τab(1, 0) = za − zab, τab(0, 1) = zb − zab.

Noting that all these pseudo-marginals are con-
strained to the unit interval, one can get rid of all
variables τab and write everything as

za ∈ [0, 1], zb ∈ [0, 1], zab ∈ [0, 1],
zab ≤ za, zab ≤ zb, zab ≥ za + zb − 1,

(12)
inequalities which, along with zA ∈ Ztree(x), de-
fine the local polytope L(Gx). As for the factor en-
tropies, start by noting that the TREE-factor entropy
Htree can be obtained in closed form by computing
the marginals z̄A and the partition function Zx(θ)
(via the matrix-tree theorem) and recalling the vari-
ational representation in Eq. 9, yielding Htree =
logZx(θ)− θ>F(x)z̄A. Some algebra allows writ-
ing the overall Bethe entropy approximation as:

HBethe(τ ) = Htree(zA)−
∑
〈a,b〉∈P

Ia;b(za, zb, zab), (13)

where we introduced the mutual information asso-
ciated with each pairwise factor, Ia;b(za, zb, zab) =

6Smith and Eisner (2008) also proposed other variants with
more factors, which we omit for brevity.
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Figure 3: Details of the factor graph underlying the parser
of Martins et al. (2009). Dashed circles represent auxil-
iary variables. See text and Table 1.∑

ya,yb
τab(ya, yb) log τab(ya,yb)

τa(ya)τb(yb)
. The approximate

variational expression becomes logZx(θ) ≈

maxz θ>F(x)z +Htree(zA)−
∑

〈a,b〉∈P

Ia;b(za, zb, zab)

s.t. zab ≤ za, zab ≤ zb,
zab ≥ za + zb − 1, ∀〈a, b〉 ∈ P,
zA ∈ Ztree,

(14)
whose maximizer corresponds to the beliefs re-
turned by the Smith and Eisner’s loopy BP algorithm
(if it converges).

Turbo Parser #2: LP-Relaxed MAP. We now
turn to the concise integer LP formulation of Mar-
tins et al. (2009). The formulation is exact but NP-
hard, and so an LP relaxation is made there by drop-
ping the integer constraints. We next construct a fac-
tor graph G′x and show that the LP relaxation corre-
sponds to an optimization of the form in Eq. 10, with
the marginal polytope M(G′x) replaced by L(G′x).

G′x includes the following auxiliary variable
nodes: path variables 〈pij〉i=0,...,n,j=1,...,n, which
indicate whether word j descends from i in the de-
pendency tree, and flow variables 〈fka 〉a∈A,k=1,...,n,
which evaluate to 1 iff arc a “carries flow” to k,
i.e., iff there is a path from the root to k that passes
through a. We need to seed these variables imposing

p0k = pkk = 1,∀k, fh〈h,m〉 = 0, ∀h,m; (15)

i.e., any word descends from the root and from it-
self, and arcs leaving a word carry no flow to that



word. This can be done with unary hard constraint
factors. We then replace the TREE factor in Fig. 1 by
the factors shown in Fig. 3:

• O(n) XOR factors, each connecting all arc vari-
ables of the form {〈h,m〉}h=0,...,n. These ensure
that each word has exactly one parent. Each factor
yields a local agreement constraint (see Table 1):∑n

h=0 z〈h,m〉 = 1, m ∈ {1, . . . , n} (16)

• O(n3) IMPLY factors, each expressing that if an
arc carries flow, then that arc must be active. Such
factors are OR factors with the first input negated,
hence, the local agreement constraints are:

fka ≤ za, a ∈ A, k ∈ {1, . . . , n}. (17)

• O(n2) XOR-WITH-OUTPUT factors, which im-
pose the constraint that each path variable pmk is
active if and only if exactly one incoming arc in
{〈h,m〉}h=0,...,n carries flow to k. Such factors
are XOR factors with the last input negated, and
hence their local constraints are:

pmk =
∑n

h=0 f
k
〈h,m〉, m, k ∈ {1, . . . , n} (18)

• O(n2) XOR-WITH-OUTPUT factors to impose the
constraint that words don’t consume other words’
commodities; i.e., if h 6= k and k 6= 0, then there
is a path from h to k iff exactly one outgoing arc
in {〈h,m〉}m=1,...,n carries flow to k:

phk =
∑n

m=1 f
k
〈h,m〉, h, k ∈ {0, . . . , n}, k /∈ {0, h}.

(19)

L(G′x) is thus defined by the constraints in Eq. 12
and 15–19. The approximate MAP problem, that
replaces M(G′x) by L(G′x) in Eq. 10, thus becomes:

maxz,f ,p θ>F(x)z
s.t. Eqs. 12 and 15–19 are satisfied.

(20)

This is exactly the LP relaxation considered by Mar-
tins et al. (2009) in their multi-commodity flow
model, for the configuration with siblings and grand-
parent features.7 They also considered a config-
uration with non-projectivity features—which fire
if an arc is non-projective.8 That configuration
can also be obtained here if variables {n〈h,m〉} are

7To be precise, the constraints of Martins et al. (2009) are
recovered after eliminating the path variables, via Eqs. 18–19.

8An arc 〈h,m〉 is non-projective if there is some word in its
span not descending from h (Kahane et al., 1998).

added to indicate non-projective arcs and OR-WITH-
OUTPUT hard constraint factors are inserted to en-
force n〈h,m〉 = z〈h,m〉∧

∨
min(h,m)<j<min(h,m) ¬phj .

Details are omitted for space.
In sum, although the approaches of Smith and Eis-

ner (2008) and Martins et al. (2009) look very dif-
ferent, in reality both are variational approximations
emanating from Prop. 1, respectively for marginal
and MAP inference. However, they operate on dis-
tinct factor graphs, respectively Figs. 1 and 3.9

5 Online Learning

Our learning algorithm is presented in Alg. 1. It is a
generalized online learner that tackles `2-regularized
empirical risk minimization of the form

minθ∈Rd
λ
2‖θ‖

2 + 1
m

∑m
i=1 L(θ;xi,yi), (21)

where each 〈xi,yi〉 is a training example, λ ≥ 0 is
the regularization constant, and L(θ;x,y) is a non-
negative convex loss. Examples include the logistic
loss used in CRFs (− log Prθ(y|x)) and the hinge
loss of structured SVMs (maxy′∈Y(x) θ>(φ(x,y′)−
φ(x,y)) + `(y′,y) for some cost function `). These
are both special cases of the family defined in Fig. 4,
which also includes the structured perceptron’s loss
(β → ∞, γ = 0) and the softmax-margin loss of
Gimpel and Smith (2010; β = γ = 1).

Alg. 1 is closely related to stochastic or online
gradient descent methods, but with the key advan-
tage of not needing a learning rate hyperparameter.
We sketch the derivation of Alg. 1; full details can
be found in Martins et al. (2010a). On the tth round,
one example 〈xt,yt〉 is considered. We seek to solve

minθ,ξ λm
2 ‖θ − θt‖2 + ξ

s.t. L(θ;xt,yt) ≤ ξ, ξ ≥ 0,
(23)

9Given what was just exposed, it seems appealing to try
max-product loopy BP on the factor graph of Fig. 1, or sum-
product loopy BP on the one in Fig. 3. Both attempts present se-
rious challenges: the former requires computing messages sent
by the tree factor, which requires O(n2) calls to the Chu-Liu-
Edmonds algorithm and hence O(n5) time. No obvious strat-
egy seems to exist for simultaneous computation of all mes-
sages, unlike in the sum-product case. The latter is even more
challenging, as standard sum-product loopy BP has serious is-
sues in the factor graph of Fig. 3; we construct in Martins et al.
(2010b) a simple example with a very poor Bethe approxima-
tion. This might be fixed by using other variants of sum-product
BP, e.g., ones in which the entropy approximation is concave.



Lβ,γ(θ;x,y) , 1
β log

∑
y′∈Y(x) exp

[
β
(
θ>
(
φ(x,y′)− φ(x,y)

)
+ γ`(y′,y)

)]
(22)

Figure 4: A family of loss functions including as particular cases the ones used in CRFs, structured SVMs, and the
structured perceptron. The hyperparameter β is the analogue of the inverse temperature in a Gibbs distribution, while
γ scales the cost. For any choice of β > 0 and γ ≥ 0, the resulting loss function is convex in θ, since, up to a scale
factor, it is the composition of the (convex) log-sum-exp function with an affine map.

Algorithm 1 Aggressive Online Learning
1: Input: {〈xi,yi〉}mi=1, λ, number of epochs K
2: Initialize θ1 ← 0; set T = mK
3: for t = 1 to T do
4: Receive instance 〈xt, yt〉 and set µt = χ(yt)
5: Solve Eq. 24 to obtain µ̄t and Lβ,γ(θt, xt,yt)
6: Compute∇Lβ,γ(θt, xt,yt)=F(xt)(µ̄t−µt)

7: Compute ηt = min
{

1
λm ,

Lβ,γ(θt;xt,yt)

‖∇Lβ,γ(θt;xt,yt)‖2

}
8: Return θt+1 = θt − ηt∇Lβ,γ(θt;xt,yt)
9: end for

10: Return the averaged model θ̄ ← 1
T

∑T
t=1 θt.

which trades off conservativeness (stay close to the
most recent solution θt) and correctness (keep the
loss small). Alg. 1’s lines 7–8 are the result of tak-
ing the first-order Taylor approximation of L around
θt, which yields the lower bound L(θ;xt,yt) ≥
L(θt;xt,yt) + (θ − θt)>∇L(θt;xt,yt), and plug-
ging that linear approximation into the constraint of
Eq. 23, which gives a simple Euclidean projection
problem (with slack) with a closed-form solution.

The online updating requires evaluating the loss
and computing its gradient. Both quantities can
be computed using the variational expression in
Prop. 1, for any loss Lβ,γ(θ;x,y) in Fig. 4.10 Our
only assumption is that the cost function `(y′,y)
can be written as a sum over factor-local costs; let-
ting µ = χ(y) and µ′ = χ(y′), this implies
`(y′,y) = p>µ′ + q for some p and q which are
constant with respect to µ′.11 Under this assump-
tion, Lβ,γ(θ;x,y) becomes expressible in terms of
the log-partition function of a distribution whose
log-potentials are set to β(F(x)>θ + γp). From
Eq. 9 and after some algebra, we finally obtain
Lβ,γ(θ;x,y) =

10Our description also applies to the (non-differentiable)
hinge loss case, when β → ∞, if we replace all instances of
“the gradient” in the text by “a subgradient.”

11For the Hamming cost, this holds with p = 1 − 2µ and
q = 1>µ. See Taskar et al. (2006) for other examples.

max
µ′∈M(Gx)

θ>F(x)(µ′−µ)+
1
β
H(µ′)+γ(p>µ′+q).

(24)
Let µ̄ be a maximizer in Eq. 24; from the second
statement of Prop. 1 we obtain ∇Lβ,γ(θ;x,y) =
F(x)(µ̄−µ). When the inference problem in Eq. 24
is intractable, approximate message-passing algo-
rithms like loopy BP still allow us to obtain approx-
imations of the loss Lβ,γ and its gradient.

For the hinge loss, we arrive precisely at the max-
loss variant of 1-best MIRA (Crammer et al., 2006).
For the logistic loss, we arrive at a new online learn-
ing algorithm for CRFs that resembles stochastic
gradient descent but with an automatic step size that
follows from our variational representation.

Unsupported Features. As datasets grow, so do
the sets of features, creating further computational
challenges. Often only “supported” features—those
observed in the training data—are included, and
even those are commonly eliminated when their fre-
quencies fall below a threshold. Important infor-
mation may be lost as a result of these expedi-
ent choices. Formally, the supported feature set
is Fsupp ,

⋃m
i=1 supp φ(xi,yi), where supp u ,

{j |uj 6= 0} denotes the support of vector u. Fsupp

is a subset of the complete feature set, comprised of
those features that occur in some candidate output,
Fcomp ,

⋃m
i=1

⋃
y′i∈Y(xi)

supp φ(xi,y′i). Features
in Fcomp\Fsupp are called unsupported.

Sha and Pereira (2003) have shown that training a
CRF-based shallow parser with the complete feature
set may improve performance (over the supported
one), at the cost of 4.6 times more features. De-
pendency parsing has a much higher ratio (around
20 for bilexical word-word features, as estimated in
the Penn Treebank), due to the quadratic or faster
growth of the number of parts, of which only a few
are active in a legal output. We propose a simple
strategy for handling Fcomp efficiently, which can
be applied for those losses in Fig. 4 where β = ∞.
(e.g., the structured SVM and perceptron). Our pro-
cedure is the following: keep an active set F contain-



CRF (TURBO PARS. #1) SVM (TURBO PARS. #2) SVM (TURBO #2)
ARC-FACT. SEC. ORD. ARC-FACT. SEC. ORD. |F| |F|

|Fsupp|
+NONPROJ., COMPL.

ARABIC 78.28 79.12 79.04 79.42 6,643,191 2.8 80.02 (-0.14)
BULGARIAN 91.02 91.78 90.84 92.30 13,018,431 2.1 92.88 (+0.34) (†)
CHINESE 90.58 90.87 91.09 91.77 28,271,086 2.1 91.89 (+0.26)
CZECH 86.18 87.72 86.78 88.52 83,264,645 2.3 88.78 (+0.44) (†)
DANISH 89.58 90.08 89.78 90.78 7,900,061 2.3 91.50 (+0.68)
DUTCH 82.91 84.31 82.73 84.17 15,652,800 2.1 84.91 (-0.08)
GERMAN 89.34 90.58 89.04 91.19 49,934,403 2.5 91.49 (+0.32) (†)
JAPANESE 92.90 93.22 93.18 93.38 4,256,857 2.2 93.42 (+0.32)
PORTUGUESE 90.64 91.00 90.56 91.50 16,067,150 2.1 91.87 (-0.04)
SLOVENE 83.03 83.17 83.49 84.35 4,603,295 2.7 85.53 (+0.80)
SPANISH 83.83 85.07 84.19 85.95 11,629,964 2.6 87.04 (+0.50) (†)
SWEDISH 87.81 89.01 88.55 88.99 18,374,160 2.8 89.80 (+0.42)
TURKISH 76.86 76.28 74.79 76.10 6,688,373 2.2 76.62 (+0.62)
ENGLISH NON-PROJ. 90.15 91.08 90.66 91.79 57,615,709 2.5 92.13 (+0.12)
ENGLISH PROJ. 91.23 91.94 91.65 92.91 55,247,093 2.4 93.26 (+0.41) (†)

Table 2: Unlabeled attachment scores, ignoring punctuation. The leftmost columns show the performance of arc-
factored and second-order models for the CRF and SVM losses, after 10 epochs with 1/(λm) = 0.001 (tuned on the
English Non-Proj. dev.-set). The rightmost columns refer to a model to which non-projectivity features were added,
trained under the SVM loss, that handles the complete feature set. Shown is the total number of features instantiated,
the multiplicative factor w.r.t. the number of supported features, and the accuracies (in parenthesis, we display the
difference w.r.t. a model trained with the supported features only). Entries marked with † are the highest reported in
the literature, to the best of our knowledge, beating (sometimes slightly) McDonald et al. (2006), Martins et al. (2008),
Martins et al. (2009), and, in the case of English Proj., also the third-order parser of Koo and Collins (2010), which
achieves 93.04% on that dataset (their experiments in Czech are not comparable, since the datasets are different).

ing all features that have been instantiated in Alg. 1.
At each round, run lines 4–5 as usual, using only
features in F. Since the other features have not been
used before, they have a zero weight, hence can be
ignored. When β = ∞, the variational problem in
Eq. 24 consists of a MAP computation and the solu-
tion corresponds to one output ŷt ∈ Y(xt). Only the
parts that are active in ŷt but not in yt, or vice-versa,
will have features that might receive a nonzero up-
date. Those parts are reexamined for new features
and the active set F is updated accordingly.

6 Experiments

We trained non-projective dependency parsers for
14 languages, using datasets from the CoNLL-X
shared task (Buchholz and Marsi, 2006) and two
datasets for English: one from the CoNLL-2008
shared task (Surdeanu et al., 2008), which contains
non-projective arcs, and another derived from the
Penn Treebank applying the standard head rules of
Yamada and Matsumoto (2003), in which all parse
trees are projective.12 We implemented Alg. 1,

12We used the provided train/test splits for all datasets. For
English, we used the standard test partitions (section 23 of the
Wall Street Journal). We did not exploit the fact that some
datasets only contain projective trees and have unique roots.

which handles any loss function Lβ,γ .13 When β <
∞, Turbo Parser #1 and the loopy BP algorithm of
Smith and Eisner (2008) is used; otherwise, Turbo
Parser #2 is used and the LP relaxation is solved with
CPLEX. In both cases, we employed the same prun-
ing strategy as Martins et al. (2009).

Two different feature configurations were first
tried: an arc-factored model and a model with
second-order features (siblings and grandparents).
We used the same arc-factored features as McDon-
ald et al. (2005) and second-order features that con-
join words and lemmas (at most two), parts-of-
speech tags, and (if available) morphological infor-
mation; this was the same set of features as in Mar-
tins et al. (2009). Table 2 shows the results obtained
in both configurations, for CRF and SVM loss func-
tions. While in the arc-factored case performance is
similar, in second-order models there seems to be a
consistent gain when the SVM loss is used. There
are two possible reasons: first, SVMs take the cost
function into consideration; second, Turbo Parser #2
is less approximate than Turbo Parser #1, since only
the marginal polytope is approximated (the entropy
function is not involved).

13The code is available at http://www.ark.cs.cmu.edu/
TurboParser.



β 1 1 1 1 3 5 ∞
γ 0 (CRF) 1 3 5 1 1 1 (SVM)
ARC-F. 90.15 90.41 90.38 90.53 90.80 90.83 90.66
2 ORD. 91.08 91.85 91.89 91.51 92.04 91.98 91.79

Table 3: Varying β and γ: neither the CRF nor the
SVM is optimal. Results are UAS on the English Non-
Projective dataset, with λ tuned with dev.-set validation.

The loopy BP algorithm managed to converge for
nearly all sentences (with message damping). The
last three columns show the beneficial effect of un-
supported features for the SVM case (with a more
powerful model with non-projectivity features). For
most languages, unsupported features convey help-
ful information, which can be used with little extra
cost (on average, 2.5 times more features are instan-
tiated). A combination of the techniques discussed
here yields parsers that are in line with very strong
competitors—for example, the parser of Koo and
Collins (2010), which is exact, third-order, and con-
strains the outputs to be projective, does not outper-
form ours on the projective English dataset.14

Finally, Table 3 shows results obtained for differ-
ent settings of β and γ. Interestingly, we observe
that higher scores are obtained for loss functions that
are “between” SVMs and CRFs.

7 Related Work

There has been recent work studying efficient com-
putation of messages in combinatorial factors: bi-
partite matchings (Duchi et al., 2007), projective
and non-projective arborescences (Smith and Eis-
ner, 2008), as well as high order factors with count-
based potentials (Tarlow et al., 2010), among others.
Some of our combinatorial factors (OR, OR-WITH-
OUTPUT) and the analogous entropy computations
were never considered, to the best of our knowledge.

Prop. 1 appears in Wainwright and Jordan (2008)
for canonical overcomplete models; we adapt it here
for models with shared features. We rely on the vari-
ational interpretation of loopy BP, due to Yedidia et
al. (2001), to derive the objective being optimized
by Smith and Eisner’s loopy BP parser.

Independently of our work, Koo et al. (2010)

14This might be due to the fact that Koo and Collins (2010)
trained with the perceptron algorithm and did not use unsup-
ported features. Experiments plugging the perceptron loss
(β → ∞, γ → 0) into Alg. 1 yielded worse performance than
with the hinge loss.

recently proposed an efficient dual decomposition
method to solve an LP problem similar (but not
equal) to the one in Eq. 20,15 with excellent pars-
ing performance. Their parser is also an instance
of a turbo parser since it relies on a local approxi-
mation of a marginal polytope. While one can also
use dual decomposition to address our MAP prob-
lem, the fact that our model does not decompose as
nicely as the one in Koo et al. (2010) would likely
result in slower convergence.

8 Conclusion

We presented a unified view of two recent approxi-
mate dependency parsers, by stating their underlying
factor graphs and by deriving the variational prob-
lems that they address. We introduced new hard con-
straint factors, along with formulae for their mes-
sages, local belief constraints, and entropies. We
provided an aggressive online algorithm for training
the models with a broad family of losses.

There are several possible directions for future
work. Recent progress in message-passing algo-
rithms yield “convexified” Bethe approximations
that can be used for marginal inference (Wainwright
et al., 2005), and provably convergent max-product
variants that solve the relaxed LP (Globerson and
Jaakkola, 2008). Other parsing formalisms can be
handled with the inventory of factors shown here—
among them, phrase-structure parsing.
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