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ABSTRACT

We address general optimization problems formulated onorés.
Each node in the network has a function, and the goal is to fird-a

tor z € R"™ that minimizes the sum of all the functions. We assume

that each function depends on a set of components obt neces-
sarily on all of them. This creates additional structurehia prob-
lem, which can be captured by the classification scheme walalev
This scheme not only to enables us to design an algorithnstiegts
very general distributed optimization problems, but alémas us to
categorize prior algorithms and applications. Our gerpuapose
algorithm shows a performance superior to prior algorithimdud-

ing algorithms that are application-specific.

Index Terms— Distributed optimization, sensor networks

1. INTRODUCTION
Optimization algorithms are a fundamental tool in inforimatpro-
cessing. As information becomes more frequently geneiiatadt-
works, processing it will require distributed optimizatialgorithms.
We address a general class of optimization problems foreullen
a network. Specifically, given a network wifh nodes, we solve
aneigljze fl(x51)+f2(x52)+"'+fP(:CSP)7 (N
where the functiory, : R"» — RU {+o0} is known only at node
(see Fig. 1). Each functiofi, depends on a subset of components
of the variablex € R", S, C {1,...,n}. We usezs, to de-
note those components. Fig. 1(a) shows a network With= 6
nodes where all the sets, are specified. For example, the func-
tion at noded, f4, depends oy andzs; therefore,S» = {1, 3}
and fi(zs,) = fa(z1,z3). We assume that if nodge depends
on components:s,,, then it is interested in computing the optimal
value for those components only, and not for any of the otber-c
ponents. Nodd in Fig. 1(a) then computes the optimal valuexaf
andzs, but not the optimal value af,. Most of the literature on
distributed optimization addresses the very particulaea (1) that
is illustrated in Fig. 1(b): namely, each functigh depends orall
the components of the variable € R", i.e., S, = {1,...,n},
forall p = 1,..., P. We will say that problem (1), in this case,
has aglobal variable While several applications can be written
as (1) with a global variable, many others are instances )ofvith
a non-global variable. Examples include network utilityxinaiza-
tion (NUM) [1, 2, 3], network flows [4], distributed model gietive
control (D-MPC) [5], and state estimation in power netwdf{ssee
also [7]. These applications have motivated the designstfiduted
algorithms that solve (1) with a variable that is non-gloleit star-
shaped We will define a star-shaped variable when we introduce ou
classification scheme for problem (1). This scheme, shovrign2,
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Fig. 1. Instance of (1) with (a) a non-connected variable, and (dphay
variable. In (b), each function depends on all the companefit. In both
cases, the variable has three components: = (z1, z2,x3).
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Fig. 2. Our classification scheme far, which is either connected or non-
connected. Global and star-shaped variables are partiostances of a con-
nected variable, and a mixed variable can be connected ecaommected.

will help us achieve our goal: to design a distributed aliponi that
solves (1) in full generality. The algorithm is distributiecdthe sense
that no central node is allowed, and each node communicatgs o
with its neighbors. This implies that all-to-all commurticas are
forbidden. We also enforce local processing by requiring e
eration involving functionf, to take place at nodg. Despite the
generality of our algorithm, it surprisingly can outperfoin terms
of communication-efficiency prior methods that were destyfor
particular instances of (1), or even for specific applicagio This
is illustrated in our experimental results for the averagesensus
problem and for D-MPC. Next, we formally state our problend an
then present our classification scheme. This scheme wiil ltedp
us review prior work.

Problem statement. We definecommunication networks the
network through which the nodes communicate directly. We re
resent it withG = (V, &), whereV = {1,..., P} is the set of
nodes (with cardinality?) and€ C V x V is the set of edges (with
cardinality F). If (z,) € &, then nodes andj can exchange mes-
sages directly. We assungeis connected and time-invariant. Each
hodep € V has associated a functiohy : R™» — R U {+o0},

1 < n, < n, which we assume closed, proper, and convex.

We solve the following problemgiven an arbitrary communi-
cation network withP nodes andP arbitrary setsS, C {1, ..., P},
design an algorithm that solves probl€f) in a distributed wayAs



said before, distributed means central nodes or all-toemfimunica-
tions are forbidden. Also, each functighp is known only at node.

Classification scheme.We solve problem (1) in a divide-and-
conquer manner by using the classification scheme showrgir2Fi
This classification scheme will also help us organize priorkaand
applications. Essential to our classification is the cohoémduced
subgraph. Letr; € R be thelth component ofc € R™. Thesub-
graph induced by:; is G, = (W1, &) C G, whereV), is the set of
nodes whose functions depend on and an edg€i, j) € £ be-
longs to&; only if both 4,5 € V,. For example, the subgraph in-
duced byz; in Fig. 1(a) consists of the nodes that dependzon
Vi = {1,3,4,5}, and contains the edg€3, 4) and(4,5). We say
thatz; is connectedf G; is connected, and ison-connectether-
wise. The component; in Fig. 1(a) is hon-connected, becauge
is a non-connected subgraph (nades “isolated”). In contrastg:

variable. In [7], we noticed that that algorithm can be gatieed

to a generic connected variable, and even to a non-connecid
The algorithm in [6] thus solves (1) in full generality, a®thlgo-

rithm we propose here. Our experimental results, howevewws
that it requires systematically more communications toveage to
a solution of (1) than the algorithm we propose.

Finally, we mention that [3] proposed a gradient algorittaivs
ing an instance of (1) with a mixed variable: a NUM with couple
objectives. We are unaware of other algorithms in the fitgsathat
consider a mixed variable. In the next section, we introductass
of problems that can be recast as (1) with a mixed variablethod,
solved with the algorithm we propose.

Contributions. This paper builds on our previous work [12, 7]
to design an algorithm that solves (1) in full generality. eTdgo-
rithm in [12] solves (1) only with a global variable, and [&lges

andzs are connected components, because their induced subgraphavith variables that have no global components. In thisgpape

are connected. We also say that a componestasshapedf its
induced subgraph is a star, i.e., if it consists of one ckmiwde
to which all the other nodes in the subgraph, not being naighb
between themselves, are connected. For example, compopent
in Fig. 1(a) is star-shaped, because na2lemd4 are neighbors of
node3, but not between themselves. Finally, a componegtdbal

if it appears in all the functions of the network.

Using this component-wise classification, we now classify-v
ablex of problem (1) according to Fig. 2. Namely, we say that
is connectedif all its components are connected, and itnisn-
connectedf it has at least one non-connected component. Henc
the variable in Fig. 1(a) is non-connected, because conmpanes
non-connected. We say that a variablesiar-shapedwvhen all its
components are star-shaped, which implies that it is cdededs
we had seen before, a variableg®bal if all its components are
global, i.e., they appear in every function of the networlacg we
assume a connected communication network, a global variabl
always connected. Finally, a variablensxedif it has both global
and non-global components. Since the induced subgrapHhseof t
non-global components can be either connected or non-ctethea
mixed variable can also be either connected or non-conthecte

Related work. To our best knowledge, (1) has been solved only
with the following types of variable: global, mixed (whosem
global components are star-shaped), and star-shaped bAl glari-
able is actually the most popular instance of (1) and has belead,
for example, with subgradient- and gradient-based metf®dg].
These algorithms are well characterized theoretically, ebdnibit
slow convergence. This contrasts with algorithms baseti®Alter-
nating Direction Method of Multipliers (ADMM) [10, 11, 12}yhich
converge faster, but have less theoretical guaranteesal@bgthm

we propose here is based on an extended version of ADMM ang

generalizes the algorithm in [12], currently the most comioation-
efficient algorithm for (1) with a global variable.

Distributed algorithms for (1) with a star-shaped variahéve
been motivated by several applications, for example, D-M¥IC
network flows [4], NUM [1, 2, 3], and state estimation in povggs-
tems [6]. We mention that, with a star-shaped variable, tb&/M-
based algorithm in [13, §7.2], which generally requires atreg
node, becomes distributed. Indeed, [5] has applied it to Pe\and
compared its performance against fast gradient methodboédh
D-MPC has only been solved with a star-shaped variable sityea
extends to a generic connected, or even non-connectedbigras
we will see. Distributed Newton methods have also been et
solve (1) with a star-shaped variable, for example, in NUai2d
in network flows [4]. All the algorithms mentioned so far omlgply
when the variable is star-shaped and cannot be easily diezeerto
a generic connected variable. The exception is the algorith[6],
which is based on ADMM. It was proposed for estimating théesta
of power systems, a problem formulated as (1) with a stapestha

notice that the derivation of algorithm [7] does not requhe as-
sumption that forbids global components and, thus, we oldai
algorithm more generic that both [12] and [7]. However, her
only focus on the case of a connected variable, since thetatdap
to a non-connected variable is exactly as described in [@}elthat
the classification scheme in [7] differs from the one we peaploere.

2. APPLICATION PROBLEMS

This section presents some applications that can be wiattefl).

e will focus on distributed model predictive control (D-IgPfor
two reasons: it arises naturally with a generic variabke, ieither
connected or non-connected, and we will use it in our expamim

Global variable. Several problems can be formulated as (1)
with a global variable. For example, estimating a parameterR™
using measurements of a sensor network can be formulatel),as (

if each f, measures the error between the estimated value and the

measurements at noge An example is average consensus [10, 11,
12, 14], wheref,(z) (z — 0,)%, and6, € R represents the
measurement at nogle Another example is support vector machines
where the databases are distributed over the nodes of anketi/2).

Mixed variable. To our best knowledge, [3] is the only ref-
erence proposing an algorithm for (1) with a mixed variablde
problem addressed there is a particular case of:

minimize g1 (z) + g2(z) + - - + gpr(x) @
subjectto hi(z) + ho(z)+---+ hp(z) <0,

whereg, : R" — R U {+o0} andh, : R® — R™ are closed,
proper, and convex functions, known only at ngdeTo recast (2)
s (1), create’ copies of the variable € R™ and denote by, €
R"™ the copy at node. This enables writing it as

minirrgize g1(z1) + g2(z2) + -+ gp(zp)

Tp

subjectto hi(z1) + ha(x2) + -+ hp(zp) <0
Ty = Tj, (7‘7.])687

(©)

where the last constraint enforces equality of the copiesadhg,
is strictly convex and strong duality holds, then solvinyi§3equiv-
alent to solving its dual problem, which can be written asaith

o e e | L CORTNES

+ (D7 sign — p)Ap) "wp| +ism(n) (4)

JEN,

as the function of nodg, where sigifa) = 1 if > 0 and sigrfa) =
1if @ < 0. Also, is is the indicator function of the sef, i.e.,



(a) Connected star-shaped variable

(b) Non-connected variable

Fig. 3. Two D-MPC scenarios that yield (a) a connected variable whos
induced subgraphs are stars, and (b) a non-connected learigblid lines
are communication network links and dotted arrows are sysgtgeractions.

is(z) =0ifxz € S,and k(z) = +ooif x ¢ S. In this case,
S = R’ is the set of nonnegative numbersRfi'. The variable has
global components € R™, which is the dual variable associated to
the first constraint of (3), and the componefits; }(; j)ce, Where

each); is a dual variable associated to the second constraint. Not&0:

that the subgraph induced by eaxh is star-shaped.

Generic variable: D-MPC. In D-MPC, each node represents
a system described by a time-dependent state vegtf and is
controlled by an input vectot,[t]. The current state:,[¢t] can
be influenced, not only by the past state and input of nadeut
also by states and inputs of other nodes in the network, ddnot
with Q, C V. Hence,z,[t + 1] = O} ({z;[t],u;[t]}jeq, ). for
some function®’. The goal in D-MPC is to drive each state to a
given target using minimum input energy, that is, to solve

im0 [on(@lT 4 1) + S B ()]
st mplt+1] = Oy ({z;[t] ust]}yien,) , t=1,..., T,

zp[l] =z,
p=1,..., P,
®)

wherez,, (resp.u,) is the set of states (resp. inputs) of ngdigom
t=1tot =T+ 1 (resp. fromt = 1tot = T) andT is the time-
horizon. While the functiorp, penalizes deviations from the goal
of the final stater, [T + 1] of nodep, ®}, measures the energy con-
sumed by the input,[t] at timet. Each node in D-MPC performs
the following actions: first, it measures its current stai;ethen, it
cooperates with the other nodes to solve (5); finally, it &spl, [1],
and repeats the process. Problem (5) can be written as (EXtiygs

fp({fjvﬂj}jeﬂpwp}) = ¢p(xp[T + 1]) + iacp[l]:acll7 (fp)

2

t=1

(@ (uplt]) +iry ({75, T }sen,)) - (©)

as the function of nodg, wherel', = {{Z;, W} cq, : zplt+1] =
Oy, ({z;[t], u;[t]}je,) }- Itis then clear that, if no node influences
all the other nodes, (5) is an instance of (1) with a geneniaite.
Fig. 3 illustrates two cases. In both plots, we representongmuni-
cation network with solid lines and the interactions, itlee, set<2,,,
with dotted arrows. In Fig. 3(a), each node is influenced dmyly
the states/inputs of its neighbors and itself. That is, titmysaph
induced byz,[t], for anyt = 2,...,T + 1, is star-shaped, with

influenced by nod&, there is an indirect communication between
nodesl and3. In other words, the subgraph induced (@, us)
is connected. A different case is the influence of ndde node5.
Here, since nod€ does not influence neither nodenor nodes,
there is not a path (of nodes influenced by n@jibetween nodes
and5. That is, the subgraph induced B, w2 ) is non-connected.

Algorithm 1 Algorithm for a connected variable

Initialization: forp € V,1 € Sy, sety!")! = 2P — 0k =1
1: repeat

2: forc=1,...,Cdo
3: for all p € C. [can be in parallelHo
4: forall I € S, do
Ul(p),k _ ,yl(p),k —p Z xl(j),kﬂ —p Z xl(j),k
FENNV; FENNV;
C(i)<C(p) C(5)>C(p)
5: end for
6: Semcgpp)”“r1 as the solution of
arg min fp(x(si))-i-z vl(p),kal(p)+§ Z Dp,l(:cl(p))2
z(sp;:{wl(p)hesp leSp leSy
7: For each componette S, sendacl(p)’l€+1 toNp NV
8: end for
9: end for

forall p € V andl € S), [can be in parallelHo

k41 & 1 i), k+1
,Yl<p) _ 'Yz(p) + PZjeanvl (xl(p) _ xlm )
11: end for
12: k+—k+1

13: until some stopping criterion is met

3. ALGORITHM AND EXPERIMENTAL RESULTS

The algorithm we propose is outlined in Algorithm 1. The eliff
ence with respect to the algorithm in [7] is that here we agsum
that the variable can have global components. ConsequeXitly
gorithm 1 applies to all the classes in Fig. 2 and is, indeeakem
general than [7]. For simplicity, and due to space conssaive
only present the algorithm for a connected variable. Thegqutare
described in [7] can be easily extended to Algorithm 1 witfoa-n
connected variable. We notice that when the variable isay@dgo-
rithm 1 becomes D-ADMM [12], which is currently the statetb-
art for a global variable in terms of the number of commurniizat.
Brief description. Before executing Algorithm 1, each node is
assigned a numbe; called color, such that no neighbors have the
same color. These colors, which we assumed given, are nechber
asc = 1,...,C and synchronize the nodes in the same way as the
TDMA protocol does: the nodes work sequentially, but nodék w
the same color can work in parallel. This makes Algorithmté-in
grate naturally with TDMA. Most of the algorithms for didirited
optimization assume all the nodes work in parallel. In a ethar
medium access such as wireless communications, that isaset p
sible without using collision avoidance protocols, e.doMA. The
algorithm works as follows. Consider a given nadeiith color c,
and assume it has received, from the neighbors with smailers;
estimates of their common components. That is, noldas received
estimates oftF*' from all j € A, such thatC(j) < C(p) and
l € §; NS, whereC(i) is the color of node. Nodep can then

computevfp) as shown in step 4. Ther@f”)’k is a (dual) variable
internal to the node, angd > 0 is the augmented Lagrangian pa-
rameter, known by all the nodes. Next, ngdepdates the estimates

of the components it depends on, as in step 6. ThByg, is the

nodep in the center. This is the case for which D-MPC algorithmsnhumber of neighbors of nodethat also depend om;. After that,

have been designed. In contrast, in Fig. 3(b), nbde influenced
by node3, which is not its neighbor. However, since ndzlés also

nodep sends its new estimates selectively to its neighbors,it.e.,

sendsml(p)’“1 toj € N, only if that node also depends an. Af-
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Fig. 4. Results for (a) an average consensus problem, which habal glariable, and (b) an D-MPC problem with a star-shapeicvie.

ter the neighbors of nodehave updated their estimates in a similar though our algorithm is very general, in the sense that iesol

way and sent the relevant ones to nad@odep can update its dual

problems in all the classes, it shows an excellent commtioiea

variablesy; as in step 10. All nodes perform the described procedurefficiency. In fact, our experimental results show that dgoathm
and then they move to the next iteration. It can be checkedtiea performs better in this sense than other general-purpgseitiims

proofs for the convergence results in [7] also hold for Altjon 1,
i.e., when the variable is allowed to have global components

Some experimental results.Fig. 4 shows the performance of
Algorithm 1, measured as the relative error in the solutidti ne-
spect to the number of communication steps. We say thatranu-
nication stephas occurred when all the nodes in the network have g
updated their estimates and broadcast them to the neighbors
Fig. 4(a), Algorithm 1 is applied to average consensus, lwlaia 2l
instance of (1) with a global variable. We used a geometrie ne
work with P = 2000 nodes and parametgylog(P)/P =~ 0.06.
That plot also shows the performance of the ADMM-based algo-
rithms [10, 11] and [14], the fastest consensus algorithmtehat
while [10, 11] solve problems in the entire global class,][d@dly
solves consensus. We used= 1.1 for the augmented Lagrangian
parameter in Algorithm 1 ang = 0.6 for [10, 11]; these values
are known to be withire% from the optimalp. The plot shows that
Algorithm 1 was the one that required the least amount of comm
nications to achieve #)~* relative error. The line of [14], however,
shows an offset. This is because the nodes using that digohad
to be initialized with a special value, whereas in the othgo@dthms
they were initialized with). For this particular instance, that offset
was unfavorable to [14]. However, it can be noticed that thpes
of the error lines of Algorithm 1 and [14] are roughly the sariés
indicates that both algorithms have about the same perfaeaf
the nodes are initialized the same way. This is indeed the, @as
confirmed by other experiments [12].

Fig. 4(b) shows the results for an D-MPC problem with a star-
shaped variable (so that we could run other algorithms besid-
gorithm 1 and [6]). The network hath41 nodes and represents the (0]
US power grid (see [7] for more details). We compared Aldponitl
with the ADMM-based algorithms [13, 6] and with a Nesteroa-gr

(3]

[4]

5]

(6]
[7]

(8]

9]

dient algorithm. The augmented Lagrangian parameteas25 for [11]

Algorithm 1 and30 for the other two ADMM-based algorithms. In

both casesy is within 0.5 from the optimal one. Again, Algorithm 1

was the one requiring less communications to converge. [12]
4. CONCLUSIONS [13]

We proposed a distributed algorithm that solves generahigtion

problems formulated on networks. To accomplish this, wasgela  [14]

scheme for classifying distributed optimization problersd used
it to categorize existing application problems and aldgwonis. Al-

and, for some specific applications, it performs as well ashibst
algorithms available.
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