
A UNIFIED ALGORITHMIC APPROACH TO DISTRIBUTED OPTIMIZATIO N

João F. C. Mota1,2, João M. F. Xavier2, Pedro M. Q. Aguiar2, and Markus Püschel3

1 Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, USA
2 Institute of Systems and Robotics, Instituto Superior Técnico, Technical University of Lisbon, Portugal

3 Department of Computer Science, ETH Zurich, Switzerland

ABSTRACT

We address general optimization problems formulated on networks.
Each node in the network has a function, and the goal is to find avec-
tor x ∈ R

n that minimizes the sum of all the functions. We assume
that each function depends on a set of components ofx, not neces-
sarily on all of them. This creates additional structure in the prob-
lem, which can be captured by the classification scheme we develop.
This scheme not only to enables us to design an algorithm thatsolves
very general distributed optimization problems, but also allows us to
categorize prior algorithms and applications. Our general-purpose
algorithm shows a performance superior to prior algorithms, includ-
ing algorithms that are application-specific.

Index Terms— Distributed optimization, sensor networks

1. INTRODUCTION

Optimization algorithms are a fundamental tool in information pro-
cessing. As information becomes more frequently generatedin net-
works, processing it will require distributed optimization algorithms.
We address a general class of optimization problems formulated on
a network. Specifically, given a network withP nodes, we solve

minimize
x∈Rn

f1(xS1) + f2(xS2) + · · ·+ fP (xSP
) , (1)

where the functionfp : Rnp −→ R∪{+∞} is known only at nodep
(see Fig. 1). Each functionfp depends on a subset of components
of the variablex ∈ R

n, Sp ⊆ {1, . . . , n}. We usexSp to de-
note those components. Fig. 1(a) shows a network withP = 6
nodes where all the setsSp are specified. For example, the func-
tion at node4, f4, depends onx1 andx3; therefore,S4 = {1, 3}
and f4(xS4) = f4(x1, x3). We assume that if nodep depends
on componentsxSp , then it is interested in computing the optimal
value for those components only, and not for any of the other com-
ponents. Node4 in Fig. 1(a) then computes the optimal value ofx1

andx3, but not the optimal value ofx2. Most of the literature on
distributed optimization addresses the very particular case of (1) that
is illustrated in Fig. 1(b): namely, each functionfp depends onall
the components of the variablex ∈ R

n, i.e., Sp = {1, . . . , n},
for all p = 1, . . . , P . We will say that problem (1), in this case,
has aglobal variable. While several applications can be written
as (1) with a global variable, many others are instances of (1) with
a non-global variable. Examples include network utility maximiza-
tion (NUM) [1, 2, 3], network flows [4], distributed model predictive
control (D-MPC) [5], and state estimation in power networks[6]; see
also [7]. These applications have motivated the design of distributed
algorithms that solve (1) with a variable that is non-global, butstar-
shaped. We will define a star-shaped variable when we introduce our
classification scheme for problem (1). This scheme, shown inFig. 2,

Work supported by the grants CMU-PT/SIA/0026/2009, PTDC/EEA-
ACR/73749/2006, SFRH/BD/33520/2008 (Carnegie Mellon/Portugal Pro-
gram by ICTI), and by PEst-OE/EEI/LA0009/2013 from FCT.

1

2

3
4

5

6

f1(x1, x2)

f2(x2, x3)

f3(x1, x2, x3)
f4(x1, x3)

f5(x1, x2)

f6(x2)

(a) Non-connected variable

1

2

3
4

5

6

f1(x1, x2, x3)

f2(x1, x2, x3)

f3(x1, x2, x3)
f4(x1, x2, x3)

f5(x1, x2, x3)

f6(x1, x2, x3)

(b) Global variable

Fig. 1. Instance of (1) with (a) a non-connected variable, and (b) a global
variable. In (b), each function depends on all the components ofx. In both
cases, the variablex has three components:x = (x1, x2, x3).

connected non-connected

global

star-shaped

mixed

Fig. 2. Our classification scheme forx, which is either connected or non-
connected. Global and star-shaped variables are particular instances of a con-
nected variable, and a mixed variable can be connected or non-connected.

will help us achieve our goal: to design a distributed algorithm that
solves (1) in full generality. The algorithm is distributedin the sense
that no central node is allowed, and each node communicates only
with its neighbors. This implies that all-to-all communications are
forbidden. We also enforce local processing by requiring any op-
eration involving functionfp to take place at nodep. Despite the
generality of our algorithm, it surprisingly can outperform in terms
of communication-efficiency prior methods that were designed for
particular instances of (1), or even for specific applications. This
is illustrated in our experimental results for the average consensus
problem and for D-MPC. Next, we formally state our problem and
then present our classification scheme. This scheme will then help
us review prior work.

Problem statement. We definecommunication networkas the
network through which the nodes communicate directly. We rep-
resent it withG = (V, E), whereV = {1, . . . , P} is the set of
nodes (with cardinalityP ) andE ⊆ V × V is the set of edges (with
cardinalityE). If (i, j) ∈ E , then nodesi andj can exchange mes-
sages directly. We assumeG is connected and time-invariant. Each
nodep ∈ V has associated a functionfp : R

np −→ R ∪ {+∞},
1 ≤ np ≤ n, which we assume closed, proper, and convex.

We solve the following problem:given an arbitrary communi-
cation network withP nodes andP arbitrary setsSp ⊆ {1, . . . , P},
design an algorithm that solves problem(1) in a distributed way.As



said before, distributed means central nodes or all-to-allcommunica-
tions are forbidden. Also, each functionfp is known only at nodep.

Classification scheme.We solve problem (1) in a divide-and-
conquer manner by using the classification scheme shown in Fig. 2.
This classification scheme will also help us organize prior work and
applications. Essential to our classification is the concept of induced
subgraph. Letxl ∈ R be thelth component ofx ∈ R

n. Thesub-
graph induced byxl is Gl = (Vl, El) ⊆ G, whereVl is the set of
nodes whose functions depend onxl, and an edge(i, j) ∈ E be-
longs toEl only if both i, j ∈ Vl. For example, the subgraph in-
duced byx1 in Fig. 1(a) consists of the nodes that depend onx1,
V1 = {1, 3, 4, 5}, and contains the edges(3, 4) and(4, 5). We say
thatxl is connectedif Gl is connected, and isnon-connectedother-
wise. The componentx1 in Fig. 1(a) is non-connected, becauseG1

is a non-connected subgraph (node1 is “isolated”). In contrast,x2

andx3 are connected components, because their induced subgraphs
are connected. We also say that a component isstar-shapedif its
induced subgraph is a star, i.e., if it consists of one central node
to which all the other nodes in the subgraph, not being neighbors
between themselves, are connected. For example, componentx3

in Fig. 1(a) is star-shaped, because nodes2 and4 are neighbors of
node3, but not between themselves. Finally, a component isglobal
if it appears in all the functions of the network.

Using this component-wise classification, we now classify vari-
ablex of problem (1) according to Fig. 2. Namely, we say thatx
is connectedif all its components are connected, and it isnon-
connectedif it has at least one non-connected component. Hence,
the variable in Fig. 1(a) is non-connected, because component x1 is
non-connected. We say that a variable isstar-shapedwhen all its
components are star-shaped, which implies that it is connected. As
we had seen before, a variable isglobal if all its components are
global, i.e., they appear in every function of the network. Since we
assume a connected communication network, a global variable is
always connected. Finally, a variable ismixedif it has both global
and non-global components. Since the induced subgraphs of the
non-global components can be either connected or non-connected, a
mixed variable can also be either connected or non-connected.

Related work. To our best knowledge, (1) has been solved only
with the following types of variable: global, mixed (whose non-
global components are star-shaped), and star-shaped. A global vari-
able is actually the most popular instance of (1) and has beensolved,
for example, with subgradient- and gradient-based methods[8, 9].
These algorithms are well characterized theoretically, but exhibit
slow convergence. This contrasts with algorithms based on the Alter-
nating Direction Method of Multipliers (ADMM) [10, 11, 12],which
converge faster, but have less theoretical guarantees. Thealgorithm
we propose here is based on an extended version of ADMM and
generalizes the algorithm in [12], currently the most communication-
efficient algorithm for (1) with a global variable.

Distributed algorithms for (1) with a star-shaped variablehave
been motivated by several applications, for example, D-MPC[5],
network flows [4], NUM [1, 2, 3], and state estimation in powersys-
tems [6]. We mention that, with a star-shaped variable, the ADMM-
based algorithm in [13, §7.2], which generally requires a central
node, becomes distributed. Indeed, [5] has applied it to D-MPC and
compared its performance against fast gradient methods. Although
D-MPC has only been solved with a star-shaped variable, it easily
extends to a generic connected, or even non-connected, variable, as
we will see. Distributed Newton methods have also been proposed to
solve (1) with a star-shaped variable, for example, in NUM [2] and
in network flows [4]. All the algorithms mentioned so far onlyapply
when the variable is star-shaped and cannot be easily generalized to
a generic connected variable. The exception is the algorithm in [6],
which is based on ADMM. It was proposed for estimating the state
of power systems, a problem formulated as (1) with a star-shaped

variable. In [7], we noticed that that algorithm can be generalized
to a generic connected variable, and even to a non-connectedone.
The algorithm in [6] thus solves (1) in full generality, as the algo-
rithm we propose here. Our experimental results, however, show
that it requires systematically more communications to converge to
a solution of (1) than the algorithm we propose.

Finally, we mention that [3] proposed a gradient algorithm solv-
ing an instance of (1) with a mixed variable: a NUM with coupled
objectives. We are unaware of other algorithms in the literature that
consider a mixed variable. In the next section, we introducea class
of problems that can be recast as (1) with a mixed variable and, thus,
solved with the algorithm we propose.

Contributions. This paper builds on our previous work [12, 7]
to design an algorithm that solves (1) in full generality. The algo-
rithm in [12] solves (1) only with a global variable, and [7] solves
it with variables that have no global components. In this paper, we
notice that the derivation of algorithm [7] does not requirethe as-
sumption that forbids global components and, thus, we obtain an
algorithm more generic that both [12] and [7]. However, herewe
only focus on the case of a connected variable, since the adaptation
to a non-connected variable is exactly as described in [7]. Note that
the classification scheme in [7] differs from the one we propose here.

2. APPLICATION PROBLEMS

This section presents some applications that can be writtenas (1).
We will focus on distributed model predictive control (D-MPC) for
two reasons: it arises naturally with a generic variable, i.e., either
connected or non-connected, and we will use it in our experiments.

Global variable. Several problems can be formulated as (1)
with a global variable. For example, estimating a parameterθ ∈ R

n

using measurements of a sensor network can be formulated as (1),
if eachfp measures the error between the estimated value and the
measurements at nodep. An example is average consensus [10, 11,
12, 14], wherefp(x) = (x − θp)

2, and θp ∈ R represents the
measurement at nodep. Another example is support vector machines
where the databases are distributed over the nodes of a network [12].

Mixed variable. To our best knowledge, [3] is the only ref-
erence proposing an algorithm for (1) with a mixed variable.The
problem addressed there is a particular case of:

minimize
x

g1(x) + g2(x) + · · ·+ gP (x)

subject to h1(x) + h2(x) + · · ·+ hP (x) ≤ 0 ,
(2)

wheregp : R
n −→ R ∪ {+∞} andhp : R

n −→ R
m are closed,

proper, and convex functions, known only at nodep. To recast (2)
as (1), createP copies of the variablex ∈ R

n and denote byxp ∈
R

n the copy at nodep. This enables writing it as

minimize
{xp}

g1(x1) + g2(x2) + · · ·+ gP (xP )

subject to h1(x1) + h2(x2) + · · ·+ hP (xP ) ≤ 0
xi = xj , (i, j) ∈ E ,

(3)

where the last constraint enforces equality of the copies. If eachgp
is strictly convex and strong duality holds, then solving (3) is equiv-
alent to solving its dual problem, which can be written as (1)with

fp(µ, {λpj}j∈Np ) = − inf
xp

[

fp(xp) + µ⊤hp(xp)

+
(

∑

j∈Np

sign(j − p)λpj

)⊤
xp

]

+ iRm
+
(µ) (4)

as the function of nodep, where sign(a) = 1 if a ≥ 0 and sign(a) =
1 if a < 0. Also, iS is the indicator function of the setS, i.e.,



1

2

3
4

5

6

(a) Connected star-shaped variable

1

2

3
4

5

6

(b) Non-connected variable

Fig. 3. Two D-MPC scenarios that yield (a) a connected variable whose
induced subgraphs are stars, and (b) a non-connected variable. Solid lines
are communication network links and dotted arrows are system interactions.

iS(x) = 0 if x ∈ S, and iS(x) = +∞ if x 6∈ S. In this case,
S = R

m
+ is the set of nonnegative numbers inRm. The variable has

global componentsµ ∈ R
m, which is the dual variable associated to

the first constraint of (3), and the components{λij}(i,j)∈E , where
eachλij is a dual variable associated to the second constraint. Note
that the subgraph induced by eachλij is star-shaped.

Generic variable: D-MPC. In D-MPC, each nodep represents
a system described by a time-dependent state vectorxp[t] and is
controlled by an input vectorup[t]. The current statexp[t] can
be influenced, not only by the past state and input of nodep, but
also by states and inputs of other nodes in the network, denoted
with Ωp ⊆ V. Hence,xp[t + 1] = Θt

p

(

{xj [t], uj [t]}j∈Ωp

)

, for
some functionΘt

p. The goal in D-MPC is to drive each state to a
given target using minimum input energy, that is, to solve

min
{xp,up}

∑P

p=1

[

φp(xp[T + 1]) +
∑T

t=1 Φ
t
p(up[t])

]

s.t. xp[t+ 1] = Θt
p

(

{xj [t], uj [t]}j∈Ωp

)

, t = 1, . . . , T,
xp[1] = x1

p ,
p = 1, . . . , P ,

(5)
wherexp (resp.up) is the set of states (resp. inputs) of nodep from
t = 1 to t = T + 1 (resp. fromt = 1 to t = T ) andT is the time-
horizon. While the functionφp penalizes deviations from the goal
of the final statexp[T + 1] of nodep, Φt

p measures the energy con-
sumed by the inputup[t] at timet. Each nodep in D-MPC performs
the following actions: first, it measures its current statex1

p; then, it
cooperates with the other nodes to solve (5); finally, it appliesup[1],
and repeats the process. Problem (5) can be written as (1) by setting

fp({xj , uj}j∈Ωp∪{p}) = φp(xp[T + 1]) + ixp[1]=x1
p
(xp)

+
T
∑

t=1

(

Φt
p(up[t]) + iΓt

p
({xj , uj}j∈Ωp)

)

(6)

as the function of nodep, whereΓt
p =

{

{xj , uj}j∈Ωp : xp[t+1] =

Θt
p

(

{xj [t], uj [t]}j∈Ωp

)}

. It is then clear that, if no node influences
all the other nodes, (5) is an instance of (1) with a generic variable.
Fig. 3 illustrates two cases. In both plots, we represent thecommuni-
cation network with solid lines and the interactions, i.e.,the setsΩp,
with dotted arrows. In Fig. 3(a), each node is influenced onlyby
the states/inputs of its neighbors and itself. That is, the subgraph
induced byxp[t], for any t = 2, . . . , T + 1, is star-shaped, with
nodep in the center. This is the case for which D-MPC algorithms
have been designed. In contrast, in Fig. 3(b), node1 is influenced
by node3, which is not its neighbor. However, since node2 is also

influenced by node3, there is an indirect communication between
nodes1 and3. In other words, the subgraph induced by(x3, u3)
is connected. A different case is the influence of node2 in node5.
Here, since node2 does not influence neither node4 nor node6,
there is not a path (of nodes influenced by node2) between nodes2
and5. That is, the subgraph induced by(x2, u2) is non-connected.

Algorithm 1 Algorithm for a connected variable

Initialization: for p ∈ V , l ∈ Sp, setγ(p),1
l

= x
(p),1
l

= 0; k = 1
1: repeat
2: for c = 1, . . . , C do
3: for all p ∈ Cc [can be in parallel]do
4: for all l ∈ Sp do

v
(p),k
l

= γ
(p),k
l

− ρ
∑

j∈Np∩Vl

C(j)<C(p)

x
(j),k+1
l

− ρ
∑

j∈Np∩Vl

C(j)>C(p)

x
(j),k
l

5: end for
6: Setx(p),k+1

Sp
as the solution of

argmin
x
(p)
Sp

={x
(p)
l

}l∈Sp

fp(x
(p)
Sp

)+
∑

l∈Sp

v
(p),k
l

⊤
x
(p)
l

+
ρ

2

∑

l∈Sp

Dp,l

(

x
(p)
l

)2

7: For each componentl ∈ Sp, sendx(p),k+1
l

toNp ∩ Vl
8: end for
9: end for

10: for all p ∈ V andl ∈ Sp [can be in parallel]do

γ
(p),k+1
l

= γ
(p),k
l

+ ρ
∑

j∈Np∩Vl
(x

(p),k+1
l

− x
(j),k+1
l

)

11: end for
12: k ← k + 1
13: until some stopping criterion is met

3. ALGORITHM AND EXPERIMENTAL RESULTS

The algorithm we propose is outlined in Algorithm 1. The differ-
ence with respect to the algorithm in [7] is that here we assume
that the variable can have global components. Consequently, Al-
gorithm 1 applies to all the classes in Fig. 2 and is, indeed, more
general than [7]. For simplicity, and due to space constraints, we
only present the algorithm for a connected variable. The procedure
described in [7] can be easily extended to Algorithm 1 with a non-
connected variable. We notice that when the variable is global, Algo-
rithm 1 becomes D-ADMM [12], which is currently the state-of-the-
art for a global variable in terms of the number of communications.

Brief description. Before executing Algorithm 1, each node is
assigned a numberc, called color, such that no neighbors have the
same color. These colors, which we assumed given, are numbered
asc = 1, . . . , C and synchronize the nodes in the same way as the
TDMA protocol does: the nodes work sequentially, but nodes with
the same color can work in parallel. This makes Algorithm 1 inte-
grate naturally with TDMA. Most of the algorithms for distributed
optimization assume all the nodes work in parallel. In a shared
medium access such as wireless communications, that is not pos-
sible without using collision avoidance protocols, e.g., TDMA. The
algorithm works as follows. Consider a given nodep with color c,
and assume it has received, from the neighbors with smaller colors,
estimates of their common components. That is, nodep has received
estimates ofxk+1

l from all j ∈ Np such thatC(j) < C(p) and
l ∈ Sj ∩ Sp, whereC(i) is the color of nodei. Nodep can then
computev(p)l as shown in step 4. There,γ(p),k

l is a (dual) variable
internal to the node, andρ > 0 is the augmented Lagrangian pa-
rameter, known by all the nodes. Next, nodep updates the estimates
of the components it depends on, as in step 6. There,Dp,l is the
number of neighbors of nodep that also depend onxl. After that,
nodep sends its new estimates selectively to its neighbors, i.e.,it
sendsx(p),k+1

l to j ∈ Np only if that node also depends onxl. Af-



Communication steps

Relative error

10
1

10
0

10
−1

10
−2

10
−3

10
−4

0 50 100 150 200 250

Alg.1

[14]

[10]

[11]

(a) Average consensus, geometric network,2000 nodes

Communication steps

Relative error

10
1

10
0

10
−1

10
−2

10
−3

10
−4

0 200 400 600 800 1000

Alg.1

[13]

[6]

Nesterov

(b) D-MPC, power grid network,4941 nodes

Fig. 4. Results for (a) an average consensus problem, which has a global variable, and (b) an D-MPC problem with a star-shaped variable.

ter the neighbors of nodep have updated their estimates in a similar
way and sent the relevant ones to nodep, nodep can update its dual
variablesγl as in step 10. All nodes perform the described procedure
and then they move to the next iteration. It can be checked that the
proofs for the convergence results in [7] also hold for Algorithm 1,
i.e., when the variable is allowed to have global components.

Some experimental results.Fig. 4 shows the performance of
Algorithm 1, measured as the relative error in the solution with re-
spect to the number of communication steps. We say that acommu-
nication stephas occurred when all the nodes in the network have
updated their estimates and broadcast them to the neighbors. In
Fig. 4(a), Algorithm 1 is applied to average consensus, which an
instance of (1) with a global variable. We used a geometric net-
work with P = 2000 nodes and parameter

√

log(P )/P ≃ 0.06.
That plot also shows the performance of the ADMM-based algo-
rithms [10, 11] and [14], the fastest consensus algorithm. Note that
while [10, 11] solve problems in the entire global class, [14] only
solves consensus. We usedρ = 1.1 for the augmented Lagrangian
parameter in Algorithm 1 andρ = 0.6 for [10, 11]; these values
are known to be within2% from the optimalρ. The plot shows that
Algorithm 1 was the one that required the least amount of commu-
nications to achieve a10−4 relative error. The line of [14], however,
shows an offset. This is because the nodes using that algorithm had
to be initialized with a special value, whereas in the other algorithms
they were initialized with0. For this particular instance, that offset
was unfavorable to [14]. However, it can be noticed that the slopes
of the error lines of Algorithm 1 and [14] are roughly the same; this
indicates that both algorithms have about the same performance, if
the nodes are initialized the same way. This is indeed the case, as
confirmed by other experiments [12].

Fig. 4(b) shows the results for an D-MPC problem with a star-
shaped variable (so that we could run other algorithms besides Al-
gorithm 1 and [6]). The network had4941 nodes and represents the
US power grid (see [7] for more details). We compared Algorithm 1
with the ADMM-based algorithms [13, 6] and with a Nesterov gra-
dient algorithm. The augmented Lagrangian parameterρ was25 for
Algorithm 1 and30 for the other two ADMM-based algorithms. In
both cases,ρ is within0.5 from the optimal one. Again, Algorithm 1
was the one requiring less communications to converge.

4. CONCLUSIONS

We proposed a distributed algorithm that solves general optimization
problems formulated on networks. To accomplish this, we devised a
scheme for classifying distributed optimization problems, and used
it to categorize existing application problems and algorithms. Al-

though our algorithm is very general, in the sense that it solves
problems in all the classes, it shows an excellent communication-
efficiency. In fact, our experimental results show that our algorithm
performs better in this sense than other general-purpose algorithms
and, for some specific applications, it performs as well as the best
algorithms available.

5. REFERENCES

[1] S. Low, L. Peterson, and L. Wang, “Understanding Vegas: aduality
model,” Journal of the ACM, vol. 49, no. 2, pp. 207–235, 2002.

[2] E. Wei, A. Ozdaglar, and A. Jadbabaie, “A distributed Newton method
for network utility maximization, I: Algorithm,” Tech. Rep., LIDS -
2832, 2011.

[3] C. Tan, D. Palomar, and M. Chiang, “Distributed optimization of cou-
pled systems with applications to network utility maximization,” in
IEEE Inter. Conf. Acoust., Speech, Signal Process., 2006, pp. 981–984.

[4] M. Zargham, A. Ribeiro, A. Jadbabaie, and A. Ozdaglar, “Acceler-
ated dual descent for network optimization,”http://arxiv.org/
abs/1104.1157, 2012.

[5] C. Conte, T. Summers, M. Zeilinger, M. Morari, and C. Jones, “Com-
putational aspects of distributed optimization in model predictive con-
trol,” in IEEE Conf. Decision and Contr., 2012, pp. 6819–6824.

[6] V. Kekatos and G. Giannakis, “Distributed robust power system state
estimation,” IEEE Trans. P. Sys., vol. 28, no. 2, pp. 1617–1626, 2012.

[7] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “Distributed optimization
with local domains: Applications in MPC and network flows,”http:
//arxiv.org/abs/1305.1885, 2013.

[8] A. Nedíc and Ozdaglar, Convex Optimization in Signal Processing
and Communications, chapter Cooperative distributed multi-agent op-
timization, Cambridge University Press, 2010.

[9] J. Chen and A. Sayed, “Diffusion adaptation strategies for distributed
optimization and learning over networks,”IEEE Trans. Sig. Proc., vol.
60, no. 8, pp. 4289–4305, 2012.

[10] H. Zhu, G. Giannakis, and A. Cano, “Distributed in-network channel
decoding,” IEEE Trans. Sig. Proc., vol. 57, no. 10, pp. 3970–3983,
2009.

[11] I. Schizas, A. Ribeiro, and G. Giannakis, “Consensus inad hocwsns
with noisy links - Part I: Distributed estimation of deterministic sig-
nals,” IEEE Trans. Sig. Proc., vol. 56, no. 1, pp. 350–364, 2008.

[12] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, “D-ADMM: A
communication-efficient distributed algorithm for separable optimiza-
tion,” IEEE Trans. Sig. Proc., vol. 61, no. 10, pp. 2718–2723, 2013.

[13] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternatingmethod of mul-
tipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, 2011.

[14] B. Oreshkin, M. Coates, and M. Rabbat, “Optimization and analysis
of distributed averaging with short node memory,”IEEE Trans. Sig.
Proc., vol. 58, no. 5, pp. 2850–2865, 2010.


