DISTRIBUTED COMPRESSED SENSING ALGORITHMS: COMPLETING THE PUZZLE

João F. C. Mota^{1,2}, João M. F. Xavier², Pedro M. Q. Aguiar², and Markus Püschel³

¹ Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, USA ² Institute of Systems and Robotics, Instituto Superior Técnico, Technical University of Lisbon, Portugal ³ Department of Computer Science, ETH Zurich, Switzerland

ABSTRACT

Reconstructing compressed sensing signals involves solving an optimization problem. An example is Basis Pursuit (BP) [1], which is applicable only in noise-free scenarios. In noisy scenarios, either the Basis Pursuit Denoising (BPDN) [1] or the Noise-Aware BP (NABP) [2] can be used. Consider a distributed scenario where the dictionary matrix and the vector of observations are spread over the nodes of a network. We solve the following open problem: design distributed algorithms that solve BPDN with a column partition, i.e., when each node knows only some columns of the dictionary matrix, and that solve NABP with a row partition, i.e., when each node knows only some rows of the dictionary matrix and the corresponding observations. Our approach manipulates these problems so that a recent general-purpose algorithm for distributed optimization can be applied.

Index Terms— Distributed algorithms, compressed sensing

1. INTRODUCTION AND PROBLEM STATEMENT

The optimization problems BPDN and NABP are, respectively,

BPDN: minimize
$$||Ax - b||^2 + \beta ||x||_1$$
, (1)
NABP: minimize $||x||_1$ (2)

 $\begin{array}{ll} \mathop{\rm minimize}\limits_{x} & \|x\|_1 \\ {\rm subject \ to} & \|Ax-b\| \leq \sigma \,, \end{array}$ (2)

where the dictionary matrix $A \in \mathbb{R}^{m \times n}$, the vector of observations $b \in \mathbb{R}^m$, and the parameters $\beta, \sigma > 0$ are given. We consider a connected network of P nodes, where each node knows only part of the data. Namely, we consider the two cases visualized in Fig. 1: row partition (resp. column partition), where node p stores a block A_p of m_p rows (resp. n_p columns) of the matrix A. Of course, $m_1 + \cdots + m_P = m$ and $n_1 + \cdots + n_P = n$. Also, in the row partition, the vector b is partitioned the same way as A but, in the column partition, all the nodes know the entire vector b.

Problem statement. While there exist distributed algorithms that solve BPDN with a row partition and NABP with a column partition [3], to the best of our knowledge, there are no algorithms solving the reverse cases, i.e., BPDN with a column partition and NABP with a row partition. Our goal is then to design a distributed algorithm that solves BPDN with a column partition and NABP with a row partition. Distributed means that no central node is allowed, no node has access to more than its local data, and each node can communicate only with its neighbors.

Fig. 1. Row and column partitioning of the dictionary matrix A.

2. OUR APPROACH

We recast (1) (resp. (2)) with a column (resp. row) partition as

minimize
$$g_1(x) + g_2(x) + \dots + g_P(x)$$

subject to $h_1(x) + h_2(x) + \dots + h_P(x) \le 0$, (3)

where $g_p : \mathbb{R}^n \to \mathbb{R}$ and $h_p : \mathbb{R}^n \to \mathbb{R}^m$ are convex functions, known only by node p. To recover a primal solution, however, we have to assume that each g_p is strictly convex. Reformulating our problems as (3) will enable the use of the recent distributed algorithm proposed in [4], which can solve problems with the format of (3).

Manipulations. BPDN with a column partition is written as the minimization of $(1/2) \|A_1 x_1 + \dots + A_P x_P - b\|^2 + \beta \sum_{p=1}^{P} \|x_p\|_1$, where $x = (x_1, \ldots, x_P)$ is partitioned according to the columns of A. Introducing a variable $u \in \mathbb{R}^m$, this is equivalent to

$$\begin{array}{l} \underset{x,u}{\text{minimize}} \quad \frac{1}{2} \|u\|^2 + \beta \sum_{p=1}^{P} \|x_p\|_1 \\ \text{subject to} \quad \sum_{p=1}^{P} (A_p x_p - \frac{1}{P} (u+b)) = 0 \end{array}$$

SI

which can readily be written as (3). Regarding NABP with a row partition, it can be written as (3) by setting $g_p(x) = (1/P) ||x||_1$ and $h_p(x) = ||A_px - b_p||^2 - \sigma^2/P$. To make the objectives of these problems strictly convex, we can add to them a small perturbation quadratic term, which still allows obtaining good approximations of the solutions of the original problem.

Conclusions. The proposed manipulations enable using the algorithm in [4] to solve the open problem of designing distributed algorithms for BPDN (resp. NABP) with a column (resp. row) partition. Experimental results show the effectiveness of our approach.

3. REFERENCES

- [1] S. Chen, D. Donoho, and M. Saunders, "Atomic decomposition by basis pursuit," SIAM J. Sci. Comp., vol. 20, no. 1, pp. 33-61, 1998.
- [2] E. Candès and M. Wakin, "An introduction to compressive sampling," IEEE Sig. Proc. Magazine, vol. 25, no. 2, 2008.
- [3] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, "D-ADMM: A communication-efficient distributed algorithm for separable optimization," IEEE Trans. Sig. Proc., vol. 61, no. 10, 2013.
- [4] J. Mota, J. Xavier, P. Aguiar, and M. Püschel, "A unified algorithmic approach to distributed optimization," submitted to GlobalSIP, 2013.

Work supported by the grants CMU-PT/SIA/0026/2009, PTDC/EEA-ACR/73749/2006, SFRH/BD/33520/2008 (Carnegie Mellon/Portugal Program by ICTI), and by PEst-OE/EEI/LA0009/2013 from FCT.