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Resumo

Detecção de bordas, extracção de segmentos de recta e discriminação de múltiplas texturas são

métodos de baixo nível usados frequentemente em análise de imagem. Contudo, os métodos

actuais não são robustos ou e�cientes a lidar com as imagens complexas de cenários realistas.

Detectores de borda não conseguem simultaneamente lidar com ruído ou detalhes e ter boa

localização. Esquemas de votação global baseados na Transformada de Hough são amplamente

usados para extrair linhas, mas não lidam bem com imagens detalhadas. Em oposição, os

chamados métodos locais carecem de robustez para extrair segmentos de recta em situações

realistas desa�antes, por exemplo, quando os segmentos cruzam-se. Os métodos de discriminação

de texturas são complexos ou pouco discriminantes. Nesta tese, abordamos as limitações críticas

desses métodos. Detecção de bordas e extracção de segmentos de recta combinam informação

contextual, que lida com o ruído e detalhes, com informação local, que tem boa localização,

tendo em conta a conectividade. Os métodos resultam computacionalmente viáveis e precisos,

com resultados sem intervalos. Discriminação de texturas usa aprendizagem supervisionada

para aprender a extrair dados esparsos mas altamente discriminantes de texturas, resultando

num método simples e preciso. Ilustramos com imagens sintéticas e reais o bom desempenho

dos métodos propostos.

Palavras-chave: Processamento de imagem, detecção de bordas, extracção de segmentos

de recta, discriminação de múltiplas texturas, conectividade, imagens complexas, testes duas-

amostras, Transformada de Hough, momentos estatísticos, Algoritmos Genéticos
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Abstract

Edge detection, line segment extraction and multiple texture discrimination are low-level

methods that are widely used in image understanding. However, current methods are not

robust or e�cient in dealing with the complex images of realistic scenarios. Edge detectors

cannot simultaneously cope with noise or image clutter and have good localization. Global

voting schemes based on the Hough Transform have been widely used to extract lines but these

methods do not deal well with cluttered images. In opposition, the so-called local methods lack

robustness to extract line segments in challenging realistic situations, e.g., when segments cross.

Multiple texture discrimination methods are either very complex or not very discriminant. In

this thesis, we address the critical limitations of these methods. Edge detection and line segment

extraction methods combine contextual information, which can deal with noise and clutter,

with local information, which has good localization, taking connectivity into account. The

methods result computationally feasible and accurate, with gap-free results. Multiple texture

discrimination uses supervised learning to learn how to extract sparse but highly discriminant

data from textures, resulting in a simple and accurate method. We present experiments that

illustrate, with synthetic and real images, the good performance of the proposed methods.

Keywords: Image processing, edge detection, line segment extraction, multiple texture dis-

crimination, connectivity, complex images, two-sample tests, Hough Transform, statistical mo-

ments, Genetic Algorithms
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Chapter 1

Introduction

1.1 Motivation

Despite powerful advances in computer vision such as deep learning [Bengio 2009],

many real-world applications in areas such as automotive (e.g., autonomous vehi-

cles [Urmson 2007]) and surveillance [Thida 2013] rely on low-level methods such as,

e.g., edge detection, line segment extraction, and multiple texture discrimination.

These applications require robust methods that deal with complex images.

The information contained in a complex image such as the one in Fig. 1.1 is so

large and diverse that it is useful to describe it in a way that is: concise, drastically

reducing the amount of data to be processed; explicit, preserving useful structural

information about object boundaries; and reliable. This information is then used

by image understanding methods to interpret the image. This may include �guring

out which objects are in the image, their spatial relationships, what they are doing,

etc. It may ultimately include making some decision for further action.

Figure 1.1: Complex image containing edges, line segments and textures.

To obtain a concise, explicit and reliable description of a complex image, im-

age analysis methods extract low-level features such as edges, contours, line seg-
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ments and textures. Experiments with the human visual system show that ob-

ject boundaries are extremely important and often su�cient for object recogni-

tion [Attneave 1954]. It has been shown [Lindeberg 1996] that, under rather general

assumptions about the image formation process, discontinuities in image brightness

can be assumed to correspond to a discontinuity in either depth, surface orienta-

tion, re�ectance or illumination. Given the key role of these low-level features, it is

important that they are extracted accurately.

This thesis introduces novel low-level image analysis methods for edge detection,

line segment extraction and multi-texture discrimination. Although such methods

have been the focus of many researchers roughly since the start of the image

processing discipline, it will be shown that the current state-of-the-art methods are

not suitable for dealing with the complex images taken from unconstrained real life

scenarios and that new solutions are needed. In particular:

• Edge detection � The Canny edge detector [Canny 1986] is a very popular

method for edge detection but, by not having a suitable strategy for dealing

with noise or clutter (i.e., densely concentrated details on the image), it can

miss the detection of many real edges and return false edges due to noise. This is

illustrated in Fig. 1.2, where many edges of the challenging image are not captured.

Figure 1.2: Complex image with dense clutter and the poor response of the Canny
edge detector. Left: image; right: the detected edges (note the many missing edges)

• Line segment extraction � The Hough transform (HT) [Hough 1962, Duda 1972]

is arguably the most popular method to detect lines in images. Its success comes

from its global nature, since all points in a line contribute to its detection, which

makes it a statistically robust estimator [Goldenshluger 2004]. However, when the

image has many edge points, as is often the case for images taken from uncon-

strained real life scenarios, the HT no longer detects lines reliably. On the other

hand, local methods for line segment extraction such as the popular Line Segment

Detector (LSD) [von Gioi 2010] lack robustness to deal with challenging situations

such as, e.g., crossing line segments, originating many interrupted segments. The
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limitations of the HT and LSD methods, both considered state-of-the-art, in dealing

with complex images are illustrated in Fig. 1.3.

Figure 1.3: Limitation of the HT and LSD in detecting line segments in a complex
image. Left to right: image and line segments detected by the HT and the LSD
methods, respectively

• Multi-texture discrimination � The popular Gabor Filter Banks ap-

proaches [Jain 1991, Malik 2001] have high classi�cation rates but, in practice,

use �lter banks made up of about ten to �fty relatively large two-dimensional

�lters, computed at every pixel. Another popular method is the Gray-Level Co-

occurrence Matrices [Haralick 1973], which, according to the comparative study in

[Partio 2007], has a low discrimination rate of about 66.7%. Local Binary Pat-

terns [Ojala 2002] has high discrimination rate (about 90.7% [Partio 2007]) but is

not simple to compute. This illustrates that current methods for multi-texture dis-

crimination are either not very discriminant or are computationally too complex for

several real-life applications.

1.2 Contributions

The main focus of this thesis is the development and testing of novel low-level

image analysis methods for edge detection, line segment extraction and multi-

texture discrimination of complex images. For each method, we review the

related work, in general and in the context of complex images. The methods

are then presented and, for each one, an experimental section with synthetic and

real images shows their good performance in dealing with complex images. In detail:

• Edge detection � We propose two statistical edge detectors using elongated

oriented footprints. These edge detectors combine what we denote as contextual

edges, obtained with large footprints and that deal well with noise; and local edges,

obtained with very small footprints and with good localization, to achieve an edge

detector with both qualities, as idealized by Canny [Canny 1986]. The connectivity

between edge points is handled explicitly inside the edge detector, originating edge

maps that are connected, as desired by the methods that follow. The methods are:
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1. Non-paired Total Variation (TV) parametric test � it computes the paramet-

ric parameters, sample mean and variance, of (assumed underlying Normal) pixel

intensity values along oriented elongated footprints using a computationally simple

running average approach. Then, the TV distance between the two distributions

is computed, to test the existence of a contextual edge. The contextual edge

transition type (i.e., if the edge is a light-to-dark or dark-to-light transition) is used

to select and mark local edges of the same type and that are connected, i.e., close

to each other;

2. Paired nonparametric sign test � it computes image derivatives and their

sign, i.e, determines local light-to-dark and dark-to-light transition. Then, by

adding the transition signs along elongated and oriented footprints, e�ectively

counting the number of positive minus the number of negative transitions around

each local edge pixel, it determines if there is a predominance of a positive or

negative transition, as is expected around an edge. This is known as the sign

test [Sheskin 2007]. Contextual and local edges are then combined using connectiv-

ity, as above.

• Line segment extraction � We propose two line segment extraction methods:

1. Connectivity-enforcing Hough Transform � Presented in [Guerreiro 2012,

Guerreiro 2011], it incorporates connectivity into the Hough Transform (HT) voting

process. Connectivity is enforced in the HT by imposing that edge points only vote

for lines in which they are spatially connected to other points. As a consequence,

the vast majority of spurious votes are eliminated and peaks in the accumulator

array become prominent and truly correspondent to line segments of maximum

length. Simultaneously, the method integrates into the voting process the usually

separate step of determining the extremes of the line segments. Illustrative results

of experiments that use synthetic and real images are presented to compare it

with the standard HT [Duda 1972] and the state-of-the-art local method LSD

[von Gioi 2010];

2. Combining contextual and local edges for line segment extraction in cluttered

images � Presented in [Guerreiro 2013a], it uses the novel TV parametric test

edge detector to obtain edge points that are connected, despite noise and/or

clutter. This enables the use of a computationally simple region growing method

to obtain connected areas of all lengths and widths, as in typical local methods.

Each connected area is then �t into a rectangle and tested for straightness.

Illustrative results using synthetic and real images to compare our method with

other methods: the standard HT [Duda 1972], the state-of-the-art of local methods

LSD [von Gioi 2010], and our HT-based method above.

• Multi-texture discrimination � Presented in [Guerreiro 2013b, Guerreiro 2010],

we propose optimal FIR �lters made up of a �lter bank with adjustable coe�cients
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obtained through supervised learning. Rather than the two-dimensional large foot-

print �lters of typical �lter banks, we use: a) one-dimensional �lters, applied hori-

zontally and vertically, to perform orientation-dependent discrimination; or b) ring-

shaped �lters, to perform rotationally-invariant discrimination of textures. These

�lters are simple to compute and we show that they su�ce to extract the relevant

textural features. In the local energy function, we compute the �rst four moments

of each �lter output and weight their contribution to the overall classi�cation. This

results computationally very simple and we show that it approximates typical lo-

cal energy functions, including the computationally complex and exceptionally dis-

criminant clustering and histogram matching approach of [Malik 2001]. We use

a Maximum-Likelihood classi�er with normalized Euclidean distance to obtain the

class of a texture sample. To learn the �lter bank coe�cients, we de�ne an objective

function to minimize, which, due to the use of moments, results non-convex. Su-

pervised learning is then performed by using a Genetic Algorithm, whose properties

enable an apt solution. We conduct an experimental analysis of our method using

the publicly available Brodatz [Brodatz 1966] and VisTex [vis 2002] albums. We

conclude that our method outperforms state-of-the-art methods, such as Gabor Fil-

ter Banks, and Local Binary Patterns, both in terms of accuracy and computational

simplicity.

1.3 Organization

The organization of the remaining of this thesis is as follows. Section 2 discusses the

relevant prior art and section 3 introduces the two novel statistical edge detectors

using elongated �lters. The novel line segment extractors are introduced in section 4

and section 5. The novel multi-texture discrimination method is detailed in section 6.

Section 7 provides a brief illustration that the combination of low level methods

enable better image understanding of complex images. Finally, section 8 concludes

the thesis and discusses ideas that can be part of future work.
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Chapter 2

Related work

2.1 Edge detection in complex images

2.1.1 Motivation

A typical way to represent a complex image is by extracting their edges. It sig-

ni�cantly reduces the amount of data to be processed, �ltering out information

that may be regarded as less relevant, while preserving the important structural

properties of an image. This is supported by experimental studies with the human

visual system, that show that object boundaries are extremely important and often

su�cient for object recognition [Attneave 1954] and that, under rather general as-

sumptions about the image formation process, discontinuities in image brightness

can be assumed to correspond to a discontinuity in either depth, surface orientation,

re�ectance or illumination [Lindeberg 1996]. The strong link between edges in the

image domain and physical properties of the world make edge detection one of the

fundamental steps in image processing, image analysis, image pattern recognition,

and computer vision techniques. Despite considerable work and progress made on

this subject (a review on edge detection methods can be found in [Oskoei 2010]),

edge detection is still a challenging research problem due to the lack of a robust and

e�cient general purpose algorithm, in particular for noisy or cluttered images.

According to Canny [Canny 1986], an edge detector should have the following

three criteria: 1. good detection: low probability of failing to mark real edge points;

2. good localization: points marked as edges should be as close as possible to the

center of true edges; 3. single response: only one response to a single edge point.

Although several researchers in the past decades have tried to design of an edge

detector that regards some or all of these properties in various scenarios, current

solutions cannot deal with large amounts of noise or image clutter. Noisy images

with low signal to noise ratio are common in a variety of domains in which pictures

are captured under limited visibility. Examples include electron microscopy (EM)

images taken under certain protocols (e.g., cryo-EM), �ngerprint images with low

tissue contrast, photos acquired under poor lighting, etc.

Existing edge detection methods use various strategies to overcome noise. Meth-

ods that use isotropic smoothing (e.g., [Canny 1986]) are limited, since aggressive

smoothing tends to smear the edges. Anisotropic di�usion methods [Perona 1990]

too face di�culties dealing with low signal-to-noise, as they are typically initialized

by local image gradients, whose estimation in noisy images may be unreliable. Re-

cent methods use a variety of �lter banks of various lengths and orientations and
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in various resolutions to compute signi�cantly di�erent oriented means in an im-

age and improve the detection of faint edges, e.g., rectangular �lters [Galun 2007],

curvelets [Gebäck 2009], shearlets [Yi 2009], and beamlets [Xiaoming 2007]. Al-

though these �lters enable a better recovery of weak edges than standard edge de-

tectors based on Sobel or Prewitt operators, they have typically poor localization;

use multiple resolutions, thus eliminating smaller details; and most only discriminate

opposing sets of pixels based on their mean, neglecting their median and/or stan-

dard deviations, which we show is quite useful in this scenario. Other methods com-

pare histograms of intensities and textures in two adjacent half-disks [Martin 2004].

Finally, [Bovik 1986, Fesharaki 1994, Thune 1997, Williams 2006] considers the sta-

tistical problem of detecting the presence of edges but use small footprints. For this

reason, which we detail in the sequel, the robust detection of edges in noisy and/or

cluttered scenarios remains an open frontier.

2.1.2 Edge detection

To detect sharp changes in image brightness, edge detection methods typically work

by computing the �rst derivatives of the image and then marking the pixels corre-

sponding to local magnitude maxima as edges (alternatively, the second derivatives

of the image are computed and the pixels where the resulting values cross zero are

marked as edges). A one-dimensional derivative in the continuous space,

∂f(x)

∂x
= lim

a1→0,a2→0

f(x+ a1)− f(x− a2)

a1 + a2
,

can be approximated in the discrete scenario by

∂f(x)

∂x
=

1

2
[f(x+ 1)− f(x− 1)],

or, equivalently, by convolving the image with central di�erence operator

K90 =
1

2

[
−1 0 1

]
.

The derivative in a two-dimensional space typically consists of a vector where

each element corresponds to a one-dimensional derivative along direction θ,

(∇θI)(x,y) = (I ∗Kθ)(x,y) . (2.1)

The di�erent ways to approximate ideal image derivatives lead to di�erent

results, depending on the image content. Typical derivative operators are:

• Roberts operators

K45 =

[
−1 0

0 1

]
, K135 =

[
0 −1

1 0

]
, (2.2)
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• Prewitt operators

K0 =
1

3

−1 −1 −1

0 0 0

1 1 1

, K90 =
1

3

1 0 −1

1 0 −1

1 0 −1

, (2.3)

• Sobel operators

K0 =
1

4

−1 −2 −1

0 0 0

1 2 1

, K90 =
1

4

1 0 −1

2 0 −2

1 0 −1

, (2.4)

• Central di�erence operators

K0 =

0 1 0

0 0 0

0 −1 0

, K45 =

1 0 0

0 0 0

0 0 −1

.K90 =

0 0 0

1 0 −1

0 0 0

, K135 =

0 0 −1

0 0 0

1 0 0

. (2.5)

In the typical scenario in which the derivatives are computed along the horizontal

and vertical directions, the magnitude and angle of the approximate derivatives are∣∣∣(∇I)(x,y)

∣∣∣ =
√

(∇0I)2
(x,y) + (∇90I)2

(x,y),

θ(x,y) = arctan

(
(∇90I)(x,y)

(∇0I)(x,y)

)
, (2.6)

and a simple edge detection scheme can be obtained by thresholding this magnitude.

Despite having been proposed over a quarter of a century ago, the Canny edge

detector [Canny 1986] is still considered a state-of-the-art method. It starts typ-

ically by applying a Prewitt or Sobel operators to an image, computing the edge

magnitude (using, e.g., equation (2.6) above), and thresholding the outcome. In an

ideal scenario, the threshold should be large, to avoid detecting noise, but also small

enough to capture �ne details. To manage these often con�icting requirements, the

Canny edge detector starts by using a relatively large threshold, to ensure that the

detected edges are not erroneous ones. Then, by assuming that important edges form

continuous contours, it attempts to �nd other more faint edges, i.e., above a lower

threshold, that are connected with the strong ones. This process can be repeated

for multiple thresholds, from larger to smaller values. This processes is known as

thresholding with hysteresis. Then, it uses an edge thinning step for suppressing

edges corresponding to non-maximum derivative magnitude values [Canny 1986].

The Canny edge detector has many well-known issues. Firstly, by assuming

that the faint edges within a contour must be connected with strong edges, faint

contours with no strong edges are not detected. Secondly, when a strong edge is

detected and when the image contains a great deal of noise or clutter, the strong edge

enables the acceptance of erroneous edges connected to it, often forming complete
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erroneous contours. Thirdly, the edge thinning process marks a point as an edge if its

amplitude is larger than that of its neighbors without checking that the di�erences

between this point and its neighbors are higher than what is expected for random

noise, making it susceptible to spurious and unstable boundaries wherever there is

an insigni�cant change in intensity (e.g., on smoothly shaded objects and on blurred

boundaries) [Oskoei 2010].

2.1.3 Dealing with noise and image clutter

2.1.3.1 Low-pass �ltering

Since derivatives can be seen as a high-pass �lter, their output can contain a great

deal of noise, as illustrated on Fig. 2.1 for a one-dimensional signal.

Figure 2.1: Noise harms edge detection (�gure taken from [Oskoei 2010]). Top: a
noisy one-dimensional signal with a smooth transition; bottom: its derivative, with
an indiscernible transition

The presence of noise or clutter means that it is not always possible to obtain

ideal edges from complex real life images. Therefore, edges extracted from non-

trivial images are often hampered by fragmentation, meaning that the edge curves

are not connected, as well as false edges not corresponding to interesting phenomena

in the image � thus making the subsequent task of interpreting the image harder.

A common approach to deal with this problem is to apply a low-pass �lter

such as, e.g., a Gaussian or box �lter, to the image before applying the di�erential

operator. This leads to the classical three stages of edge detection: noise reduction,

di�erentiation and thresholding. An illustration of the data obtained in the classic

edge detection stages is shown in Fig. 2.2.

In [Canny 1986], Canny proposed the use of an isotropic low-pass �lter in the

presence of noise before applying the methods described above. This technique can

only be used for small amounts of noise or clutter because the aggressive isotropic

smoothing step needed to deal with large amounts of noise or clutter tends to smear

and, thus, destroy the edges.
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Figure 2.2: An original image (left) is blurred (second image), which is then di�er-
entiated (third image) and binarized using a �xed or variable threshold (right).

If anisotropic low-pass �ltering is applied to the images, the orientation of the

�lter, i.e., its alignment with regard to the edges on the image, is an extra factor to

consider. Fig. 2.3 shows the e�ect of applying a long horizontal 1×15 average �lter to

an arti�cial noise image with a square on the center. Although the boundaries of the

square are clearly perceptible to a human viewer on the original image, the vertical

boundaries of the �ltered image became blurred while the horizontal boundaries

became almost noise-free (see zoomed detail of �ltered image). This illustrates that

low-pass �ltering along the edges has the e�ect of preserving them while successfully

dealing with noise, and that low-pass �ltering across edges has a destructive e�ect.

Figure 2.3: Blur along edge direction preserves edge, across destroys edge. Left:
arti�cial noise image. Center and right: blur with a 1× 15 average �lter; detail.

2.1.3.2 Elongated �lters

Noting that the Prewitt operators in (2.3) are equivalent to convolving the central

di�erence operators in (2.5), a pure derivative, with a three pixels wide average �lter

along the edge direction, we see that operators such as Prewitt and Sobel contain an

element of noise �ltering. This makes these �lters very popular for edge detection.

However, if large amounts of noise or clutter are present, a three pixels wide low-pass

�lter is not su�cient to recover weaker edges.

To compute the relationship between �lter size and noise attenuation, consider

an observed one-dimensional signal Î given by the sum of a noise-free signal I and

i.i.d. noise with Normal distribution, n(x, y) ∼ N
(
0, σ2

)
, i.e., Î = I + n. The
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convolution of the Î with kernel K originates a signal with sample variance

Var
(
Î ∗K

)
= Var (I ∗K) + Var (n ∗K)

= Var (I ∗K) +
M−1∑
i=0

K (i)2 Var (n (x− i))

= Var (I ∗K) +
M−1∑
i=0

K (i)2 σ2.

If all coe�cients of kernel K are constant, K = 1/M , we have

Var
(
Î ∗K

)
= Var (I ∗K) +

σ2

M
,

where the variance due to noise is σ2/M , which quanti�es the intuitive idea that

larger low-pass �lters provide increased noise reduction.

If, instead of convolving the central di�erence operators with 1×3 average �lters

along the edge direction to create the Prewitt operator, we convolve the central

di�erence operators with a 1×M average �lter, the resulting �lter is better at dealing

with noise but other issues arise: Firstly, since the resulting �lter has a very sharp

orientation, it has a narrow angular response. Freeman and Adelson [Freeman 1991]

used the term steerable �lter to describe a class of �lters in which a �lter of arbitrary

orientation is synthesized as a linear combination of a set of basis �lters and noted

that many �lters (de�ned as rotated copies of original basis �lters) are needed to

take all orientations into account. In fact, for a kernel K consisting of an elongated

average �lter of size 1×M to span the entire 180◦ angular range and to take every

pixel in the perimeter of a window of radius r = (M−1)/2 into account, the number

of directions that need to be analyzed is

N ≥ πr, (2.7)

if distributed uniformly. As illustration, an average �lter of size M = 15 requires

N = 22 directional �lters. Secondly, �lters with large footprints originate imprecise

localization since every transition is e�ectively smeared by the large point spread

function of the �lters, requiring non-trivial mechanisms to deal with it.

Elongated �lters have been exploited in recent edge detection methods to

compute signi�cantly di�erent oriented means in an image by using a variety

of �lter banks of various lenghts and orientations and in various resolutions

to improve the detection of faint edges, e.g., rectangular �lters [Galun 2007],

curvelets [Gebäck 2009], shearlets [Yi 2009], and beamlets [Xiaoming 2007]. Al-

though these �lters enable a better recovery of weak edges than standard edge

detectors based on Sobel or Prewitt operators, the particular implementation of the

methods make use of multiple resolutions, which has a tendency to eliminate smaller

details and is di�cult to implement. Also, these methods discriminate opposing sets
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of pixels based only on their sample mean, neglecting their sample median or vari-

ance, which contains useful data for edge descrimination, as we show in chapter 3.

2.1.3.3 Statistical edge detection

The process of low-pass �ltering an image and derivation can be seen roughly as

computing the sample mean of two opposing sets of pixels and subtracting them. If

the standard deviation of the noise or clutter in the image would be constant and

equal to σ, the threshold for detecting an edge for a particular con�dence interval

could be de�ned simply as C ∝ σ/
√
M . However, because the standard deviation of

the data in an image is often not constant, it is useful to take a more comprehensive

statistical analysis of the pixel set sample values to improve edge detection.

Such studies were initiated by Bovik et al. [Bovik 1986], which used two-sample

statistical tests in the context of edge detection. Two-sample tests take two op-

posing sets of pixel values and considers that they are samples of two underlying

distributions, XT and XB. The test then checks the null hypothesis H0 that the

underlying probability distributions are in fact the same [Sheskin 2007]. An edge

exists between the samples of XT and XB if the distributions are deemed di�erent.

If a parametric test is used (assuming that the pixel intensity values follow a

Normal distribution), the parameters of each distribution can be estimated from

the samples by computing µ̂i = 1
M

∑M
j=1 xij and σ̂

2
i = 1

M−1

∑M
j=1 (xij − µ̂i)2, with

i ∈ {T,B},XT ∼ N (µT , σ
2
T ) andXB ∼ N (µB, σ

2
B). A typical test is the t-test, that

assumes that the distributions are the same if their means coincide [Sheskin 2007].

Since the sample mean varies with the sample variance and the number of samples

through formula σµ̂i = σ̂i/
√
M , the t-test is given by

t = (µ̂T − µ̂B) /

√
σ̂2
T + σ̂2

B

M
[Sheskin 2007]. (2.8)

Once a t-value is determined, the test computes the probability that the test statistic

would take a value at least as extreme as the one observed, denoted p-value, for

M −1 degrees of freedom. If the p-value is below the threshold chosen for statistical

signi�cance (usually 0.10, 0.05, or 0.01), the distributions are deemed di�erent (two-

tailed test) or larger than the other (one-tailed test) [Sheskin 2007].

If no assumption is made regarding the distributions of XT and XB, nonpara-

metric tests can be used instead. These tests are more general and robust to outliers

but typically computationally more intensive, since many require expensive sorting

operations. Some tests compute empirical cumulative distributions (ecd) from sam-

ples XT and XB and then compute the distance between them: the Kolmogorov�

Smirnov test obtains the maximum distance between the ecds and the Fisz�Cramér�

Von Mises test integrates the squared di�erence between the ecds. The Wilcoxon

Mann�Whitney is a popular rank order test that mixes the samples of both distri-

butions, sorts and ranks them. The di�erence between the distributions is assessed

by adding the ranks of both distributions and comparing them [Sheskin 2007].

The success of two-sample statistical tests in edge detection is shown
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in [Lim 2002]. Reference [Fesharaki 1994] uses a t-test for detecting edges and a mix-

ture of Normal distributions models noisy data in the edge detector of [Thune 1997].

Various statistical tests are used in the neural network approach [Williams 2006].

Despite the success of statistical edge detection, the small footprints in current

methods limit their ability to handle the noise or clutter in complex images.

2.2 Line Segment Extraction

2.2.1 Motivation

In the path to extracting numerical or symbolic information from images, it is use-

ful to decompose an image into components that belong to one or another simple

family. For example, we might want to identify circles, line segments or other

groups described by models. Line segments are fundamental low-level features for

the analysis of many real-life images. Line segments are especially relevant be-

cause most man-made objects are made of �at surfaces, originating images with

edge maps composed by line segments, and also because many shapes accept an

economic description in terms of line segments. Thus, these segments provide im-

portant information about the geometric content of the imaged scene. This has been

exploited, e.g., for localizing vanishing points [Kosecka 2002] or to match line seg-

ments across distinct views [Schmid 1997]. Since more elaborated shapes are often

described in an economic way in terms of line segments, their extraction is often a

�rst step in many other problems, e.g., rectangle detection [Micusík 2008], the in-

ference of shape from lines [Slater 1996], map-to-image registration [Krüger 2001],

3D reconstruction [Liu 2011], or even image compression [Fränti 1998].

Although the problem of extracting line segments from images in an automatic

way has been the focus of attention of several researchers in the past decades, cur-

rent solutions make use of strong implicit assumptions that limit their applicability

to simple and often non-realistic scenarios. Typical assumptions are that, e.g., line

segments are pronounced, thin, occur in small amounts, do not cross each other,

are located away from noise or clutter. Some methods also assume that images

have little data apart from line segments, such as textures or contours. Since

these assumptions often fail in realistic scenarios, many line segments are often

not detected, or are broken in two or more pieces. In more severe cases, extrac-

tion can fail altogether. For this reason, which we detail in the sequel, the ro-

bust detection of line segments in realistic scenarios remains an open frontier (see

[Du 2010, von Gioi 2010, Borkar 2011, Ji 2011] for examples of recent advances).

2.2.2 The Hough Transform

The Hough transform (HT) [Hough 1962, Duda 1972] is arguably the most popular

method to detect lines in images. The classical Hough technique is useful if little

is known about the location of particular curves we wish to detect and their shape

can be described parametrically (e.g., a two-dimensional parameter of a straight
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line). Its input is an edge map such as the Canny edge detector, and it extracts

the parameters that correspond to the largest number of edge points. In a situation

where nothing is known about the location of the curves, each edge point contributes

by restricting the possible locations of the curves to those that include it. The HT

then works roughly by collecting all the evidence put forward by each edge point

and obtaining the parameters that explain the greatest amount of evidence.

For example, consider the point (x′, y′) in Fig. 2.4 and the equation for a line

y = mx + c. What are the lines that can pass through (x′, y′)? All the lines with

(m, c) satisfying y′ = mx′+c. Regarding (x′, y′) as �xed, the last equation is that of

a line in parameter space (m, c). Repeating this reasoning, a second point (x′′, y′′)

will also have an associated line in parameter space and both will intersect at point

(m′, c′), which corresponds to the line AB. All points on the line AB will yield lines

in parameter space which intersect at the point (m′, c′).

Figure 2.4: A line (a) in image space; (b) in parameter space (�gure taken
from [Ballard 1982]).

Since m may be in�nite in the slope-intercept equation y = mx + c, a better

parameterization of the line is given by its polar equivalent [Duda 1972], x cos θ +

y sin θ = r, which produces a sinusoidal curve in (r, θ) space for �xed (x, y).

More concretely, the HT works in two steps. In the �rst step, the Hough trans-

form starts by determining the pencil of all the lines that go through each edge point,

which correspond to a set of two-dimensional parameters. Each of these parameters

is used to access a coordinate in a two-dimensional space typically denoted as Hough

space or accumulator array and add a vote. By processing all edge points, the votes

for each location in the Hough space are accumulated and the locations with larger

number of votes correspond to the most likely parameterizations of the lines in the

image. The second step then consists of identifying the two-dimensional coordinates

with the largest amount of votes. These steps are illustrated on Fig. 2.5.

The success of the HT comes from its global nature, since all points in a line

contribute to its detection. As indicated in [Goldenshluger 2004], which pursued a

statistical study of the HT, it is a statistically robust estimator for �nding lines.
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Figure 2.5: Steps of the HT method. From left to right: an original image, the
respective edges, the Hough space with vote accumulations, the detected vote peaks.

It was shown that, although the convergence rates of the HT are seen to be slower

than those found in some standard regression methods, the HT estimator is shown

to be more robust as measured by its breakdown point.

There are, however, several practical problems with the HT:

• Selecting the accumulator array resolution � As mentioned above, the votes orig-

inated by all edge points in the image are stored in the accumulator array. The

selection of the appropriate resolution for this array is di�cult. If the resolution

is too coarse, many quite di�erent lines may be mapped to a single bucket, i.e., a

coordinate in the accumulator array, which can lead to an erroneously large amount

of votes and the extraction of erroneous lines. If the resolution is too �ne, small

errors in the location of edge points (caused by, e.g., edge points being located in

the discrete pixel grid) may cause the votes to be dispersed by neighboring buckets,

leading to line misdetections as no bucket concentrates a large amount of votes.

Finer accumulator array resolutions also require a lot of storage memory and lead

to increased computational costs. A proportionally higher amount of votes needs to

be computed and stored for each edge point, such as the number of values in the

accumulator array that need to be scanned through in search of local maxima.

Many e�orts have been made to alleviate these problems. They include e�cient

accumulator methods, based on the observation that it is necessary to have high

accumulator resolution only in places where a high density of votes accumulate.

Examples include hierarchical schemes [Li 1986], multiple accumulator resolutions

[Illingworth 1987a] and a probabilistic formulation [Stephens 1991]. The edge

gradient can also be used [Illingworth 1987b, Zhou 2006] to reduce the number of

votes to be processed, with the drawback of increasing the reliance on good edge

information [Illingworth 1987b]. Some approaches reduce the computational cost

by sub-sampling the edge map (randomized HT) [Kälviäinen 1995].

• Low signal-to-noise ratio in Hough space � Since all votes originated by an edge

point are wrong except for the vote which corresponds to the actual segment, these

wrong votes have no positive contribution to the detection of local peaks in the

accumulator array. Instead, they constitute noise. The amount of noise in the

Hough space becomes very signi�cant for complex images with many lines and edge

points [Kim 1998]. This makes it di�cult to identify the most likely parameter-
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ization of actual lines in the Hough space. This is particularly critical for short

segments, since they originate small peaks that are hard to identify [Guil 1995].

The limitations of the HT in dealing with complex images have been pointed out

by several authors, e.g., [Guil 1995, Guru 2004, Lee 2006, von Gioi 2010].

Accidental alignments of unrelated edge points can also originate false peak de-

tections [Kim 1998]. Even in images with fewer edge points, it is usually possible

to �nd many quite good phantom lines in a large set of reasonably uniformly dis-

tributed edge points. For example, regions of texture can generate peaks in the

voting array that are larger than those associated with the lines sought [Guil 1995].

Fig. 2.6 shows an example where Hough space contamination due to vote accu-

mulations lead to complete extraction breakdown. The large number of edge points

in the real image, many of them forming very short segments or due to texture or

noise, originates large numbers of votes that do not correspond to real segments.

As a consequence, the accumulator array does not exhibit prominent peaks and its

processing originates a poor result, where even longer lines are not extracted.

Figure 2.6: Limitation of the HT in detecting line segments in a complex image. Left:
the input to the HT, the edge map obtained by applying the Canny edge detector
to the real image shown in the top left of Fig. 5.4); middle: the HT accumulator
array (note the absence of discernible peaks); right: detected line segments.

A common approach to deal with excessive wrong votes is to use the edge

direction to reduce the accumulation of spurious votes, with the drawback

of increasing the reliance on good edge information, as indicated before and

in [Illingworth 1987b]. Other approaches sub-sample the total number of edge

points that are processed and/or the votes that each edge point originates (ran-

domized HT) [Kälviäinen 1995], which has the e�ect of reducing the number of

wrong votes but also of the number of correct votes, leading to approximately the

same signal-to-noise ratio when identifying local maxima in the accumulator array.

Reference [Guil 1995] proposes a strategy that is based on processing a line a time:

after detecting the line corresponding to the largest peak in the accumulator array,

the votes of the edge points that belong to this line are removed. However, in many

practical situations, when facing highly textured images and/or in the presence of

noise, these approaches are still unable to provide accurate results. Although Duda

and Hart [Duda 1972] argued as early as 1972 that the noise in the Hough space

can be reduced by taking connectivity between collinear points into account, this

topic received little attention in the past (exceptions are [Yuen 1991, Kim 1998]).
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• Reliance on local edge detection � The HT requires an edge detector (such

as [Canny 1986]) to generate its input edge map. As illustrated in Section 2.1,

edge detection is by itself a hard problem, recognized as ill-posed in gen-

eral [Bertero 1988]. To keep edge localization error to the minimum, edge detectors

typically make use of small noise reduction �lters, which makes the resulting edges

very prone to noise. This creates a delicate balance between detecting spurious edge

points in noisy or textured areas and missing faint edges. As a consequence, the

threshold for accepting an edge point is typically set to a high value in common edge

detectors, resulting in partial or complete segment misdetections. Although the

global nature of the HT makes it a robust estimator in theory [Goldenshluger 2004],

its reliance on local noise prone edge detectors counteracts its global nature.

• Only extracts thin lines � Another issue of the HT is that it cannot deal properly

with wide line segments [Yang 1997], i.e., segments made up of blurred edges, since

the highest number of votes corresponds to the diagonal of the segment rather

than the segment itself. Some methods assume constant line thickness and others

address the extraction of various widths [Song 2005, Jang 2001, Yang 1997].

• Not suitable for extracting line segments � The above description and analy-

sis of the HT refer to the extraction of lines. For the extraction of line seg-

ments, HT-based methods typically work by using the standard HT to obtain

the most likely lines in the image and then a post-processing that obtains the

start and end points of segments. This post-processing can make use of a gap-

and-length method [Duprat 2005], the shape of the spread of votes in the Hough

space [Kamat-Sadekar 1998, Ji 2011] or extra accumulators [Teutsch 2011]. A gap-

and-length method works by taking the edge points corresponding to an identi�ed

vote peak and obtaining segments where consecutive edge points are separated by

at most a certain gap and are larger than a minimum length.

The way the HT is adapted to extract line segments, i.e., by �rst taking the

output of the standard HT and then obtaining the start and end points of the

segments, originates issues of its own. While initially each point in the Hough

space supported the existence of a line, now the votes can refer to multiple collinear

line segments of various lengths and di�erent start and end points. The votes of

individual line segments cannot be distinguished because only the total number of

collinear edge points is stored in a Hough space. This means that a local maximum

in the Hough space does not imply a maximum likelihood that line segments actually

exist in the image with such parameterization � this adaptation of the HT is not a

statistically robust line segment estimator.

Fig. 2.7 illustrates how the accumulation of votes does not guarantee good seg-

ment detections (as it guarantees good line detections). If this edge image would

be used as input to the HT, it would lead to the detection of the lines marked in

red as the three most voted lines. However, there are no connected edge points in

either of these three lines. This means that the largest peaks in the Hough space
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do not correspond to the largest line segment in the image. In fact, the only true

line segment in this illustration, the one marked in green, would correspond to the

fourth most voted peak or more.

Figure 2.7: Illustration of an edge image and how the three most voted lines, marked
in red, actually contain no line segment. The only line segment, marked in green,
is the fourth largest peak or more.

In sum, current HT-based methods are not able to tackle the fundamental issues

of the HT in extracting line segments in complex images. HT methods cannot deal

with the large amount of edge points in complex images and rely too heavily on

noise-prone edge detection. Furthermore, the poor adaptation of the HT to deal

with line segments eliminates the attractive robustness feature.

2.2.3 Other robust methods: RANSAC, full search

The ability to recognize the big picture and overcome local imperfections due to noise

and clutter makes global methods attractive. However, few papers apart from those

dealing with the HT have approached the problem of developing global methods to

extract, simultaneously, the line parameters and its extremes. A fruitful example

is the method in [Desolneux 2006], which searches among all possible line segment

candidates, using a Helmholtz principle for validating. Naturally, the good results

come at a high computational cost. Another global approach is the widely known

random sample consensus (RANSAC) [Fischler 1981]: two edge points from the edge

map, randomly sampled, de�ne a candidate line; then, the consensus of the line is

evaluated by counting the number of other edge points that �t that line segment,

given an error tolerance; for segments with a high consensus, the parameters could be

re�ned by using an iterative expectation-maximization (EM) method [Hartley 2004].

However, since a consensus criteria able to cope with complex images is not trivial

and the success of RANSAC hinges on the usage of a very large number of samples,

these approaches result computationally too complex for many realistic applications.

2.2.4 Local methods

For the reasons above, the majority of methods for line segment extraction rely on

local decisions, rather than global ones (see [Nevatia 1980, Burns 1986, Guru 2004,

Nguyen 2007, von Gioi 2010] for examples). These local methods outperform the

HT by taking connectivity into account, and result computationally simple, but

lack robustness to deal with challenging situations, e.g., when line segments cross.

Their local nature makes long line segments particularly di�cult to extract in many

realistic scenarios, because, due to noise and clutter, these segments are interrupted.
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The majority of local methods use three steps: �rst, obtaining a region of connected

edge points; then, roughly estimating the line segment direction; and �nally, re�ning

and extending the segment by including new edge points that approximately �t the

line. The data that is present at each step is illustrated in Fig. 2.8.

Figure 2.8: Typical data that is present at each step of local methods. From left to
right: an original image, detected edges, labeled edges and �tted line segments.

The �rst step consists of chaining edge points [Etemadi 1992]. Methods such

as the one in [Faugeras 1992] even skip the subsequent line �tting and re�nement

steps by chaining connected edge points into curves and then cutting them into line

segments, using a straightness criterion. Texture, low-contrast regions, crossing seg-

ments, and noise make di�cult the extraction of large connected regions belonging

to a single segment. The second step consists of �tting a line to the chain of edge

points using, e.g., total least-squares (TLS) [Nguyen 2007]. Naturally, the reliability

of the regression depends on the length of the underlying point chain. Some methods

bypass the chaining of edge points: [Wilson 1979] uses the so-called local HT (LHT)

[Xiao 2003], roughly estimating the segment direction from the peaks of local orien-

tation histograms, computed at each edge point; [Guru 2004, Arras 1997] directly

�t a line to all edge points inside a sliding window, which only provides reasonable

estimates for simple scenes, with very small clutter. The �nal step usually involves

alternating between two stages until convergence [Nguyen 2007]: inclusion of new

edge points that are close to the candidate line, according to a distance measure;

and re-estimation of the line segment parameters from the new set of edge points.

As is typical with this type of methods, a poor initial estimate of the line segment

may compromise the �nal result. Furthermore, the process may terminate too early

when attempting to extract a long line segment, due to the cluttered nature of the

edge maps of real images. Two popular local methods for line segment detection are

[Burns 1986] and the LSD (Line Segment Detector) of [von Gioi 2010]. The method

in [Burns 1986] coarsely quantizes the local orientation angles, chains adjacent pix-

els with identical orientation labels, and �ts a line segment to the grouped pixels.

LSD [von Gioi 2010] extends this idea by using continuous angles and eliminates

false line segment detections with the Helmholtz principle of [Desolneux 2006].
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2.3 Multi-texture Discrimination

2.3.1 Motivation

Texture is an important and ubiquitous property of regions of various types of im-

ages. Image texture analysis impacts then many �elds. In remote sensing, the

textures of multispectral images, taken from satellites or aircraft, provide informa-

tion about the sensed scene. In biomedicine, magnetic resonance images, ultrasound

images of the human body, and microscopic images of cell cultures or tissue samples,

often contain regions of di�erent textures, whose analysis is required. The di�er-

ent textures present in natural images (outdoor scenes, object surfaces, etc) has

motivated the computer vision community to address the texture analysis problem.

Although texture analysis has been the focus of attention of several researchers

in the past decades, current solutions are either not very discriminant or are compu-

tationally complex, thus not suited for applications where both characteristics are

needed. Optimized �lters have been developed to deal with this problem but are

most e�ective when the number of textures to discriminate is small � their compu-

tational complexity increases dramatically in scenarios with multiple textures. For

this reason, simple and robust discrimination of textures remains an open frontier

(see, e.g., [Mirmehdi 2008] for examples of recent advances).

2.3.2 Overview of texture discrimination methods

The most popular texture discrimination methods use Gray-Level Co-occurrence

Matrices (GLCM), Gabor Filter Banks (GFB), or Local Binary Patterns (LBP).

GLCM [Haralick 1973] create a 28 × 28 matrix (for 8-bit precision) for each texture

patch, where each entry counts the number of co-occurring image intensity pairs

of neighboring pixels. From this matrix, a vector of so-called Haralick features

(Energy, Contrast, Dissimilarity, ...) is computed and used as the texture descriptor

(the distances between texture patches is usually measured by the simple Euclidean

norm of the vector di�erence). GFB compute, for every pixel, the output of about

ten to �fty �lters. These large dimensional vectors may either make up local energy

estimates [Jain 1991] or be clustered and represented by histograms [Malik 2001]

(Euclidean or histogram distance metrics are then used for classi�cation). When

using LBP [Ojala 2002], the intensity values of each set of P pixels in a texture

patch are thresholded and stored into a binary pattern, which addresses a 2P look-

up table. Each entry then indicates if the pattern has few 0�1 or 1�0 transitions

and their type. A histogram accumulates this information for the entire patch and

histogram distance metrics are used for classi�cation. The discrimination success

of GLCM, GFB, and LBP is measured in the comparative study of [Partio 2007]

as being 66.7%, 92.2%, and 90.7%, respectively. Furthermore, the computational

complexity of GLCM and GFB restrict their application in several real-life scenarios.

Usually, methods for texture discrimination are organized into �ve major cate-

gories [Tüceryan 1993]: statistical, geometrical, structural, model-based, and signal

processing. Early work in texture discrimination utilized statistical methods to ex-
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tract features from the image. Examples of these methods are GLCM, LBP, and

those using autocorrelation [Toyoda 2005] or power spectrum [Chetverikov 2000].

Geometrical methods seek to extract texture elements and infer their placement

rule. They include Voronoi tessellation features [Tüceryan 1990] and structural

methods [Yalniz 2010]. Model-based methods are based on the construction of an

image model that can be used not only to describe texture, but also to synthesize it.

These include random �elds, such as the Gauss Markov, or the Gibbs distribution

texture models [Wilson 2003], and fractals [Xia 2006]. Signal processing methods

use spatial �lters, e.g., GFB and Laws �lters [Laws 1980]. Detailed reviews of meth-

ods for texture analysis can be found in [Tüceryan 1993] and [Mirmehdi 2008].

Studies of the Human Visual System [Tüceryan 1993] support signal processing

methods, by showing that it analyzes the retinal image, decomposing textured areas

into their frequency and orientation components. Earlier attempts at de�ning spatial

domain discrimination methods concentrated on measuring the edge density per

unit area, usually by using simple edge masks such as the Roberts or the Laplacian

operators [Husoy 1993]. Fine textures tend to have a higher density of edges per

unit area than coarser ones. In a pioneering work by Laws [Laws 1980], a bank of 25

separable bandpass �lters was applied. This joint spatial�frequency representation

captures image characteristics at several scales, providing meaningful information

for texture analysis. Subsequent works have focused on using di�erent �lter bank

families and processing �lter outputs in distinct ways.

Fig. 2.9 shows the typical block diagram of a signal processing method for tex-

ture discrimination. Usually, the �ltering step consists of a bank of linear �lters.

These �lters should exhibit appropriate frequency and orientation selectivity, so

that the energy of their outputs is approximately constant within the same tex-

ture region but di�erent for distinct textures. Fig. 2.10 displays the normalized

orientation-frequency responses of common �lter banks: Laws, GFB, and ring and

wedge �lters [Coggins 1985]. Since each �lter bank is better suited to textures of

particular characteristics, it is not trivial for the algorithm designer to choose the

appropriate one. As a consequence, a frequent solution is to resort to a large num-

ber of �lters (in practice, GFB requires about ten to �fty �lters, computed at every

pixel). The local energy function is usually divided into a nonlinearity and a smooth-

ing function, as represented in Fig. 2.9. Several nonlinearities have been used, e.g.,

magnitude [Laws 1980], square (power), and sigmoid (tanh) [Jain 1991]. A low-

pass Gaussian �lter is a common smoothing function. The most common classi�er

is the nearest neighbor, using pre-computed class centroids, which corresponds to

the Maximum Likelihood classi�er when the class conditionals are Gaussian with

identical covariance. In [Malik 2001], a computationally more complex method that

has shown to perform well uses K-means to cluster GFB �lter outputs. Then, the

resulting histograms are compared using metrics such as χ2 or the Earth Movers

Distance.
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Figure 2.9: Block diagram of signal processing method for texture discrimination

2.3.3 Optimized �lters for texture discrimination

The di�culties in selecting few but highly discriminant �lter banks motivated re-

search into the automatic optimization of �lters, tuned to deal with particular sets

of textures. We provide an overview of such methods in the sequel.

2.3.3.1 Eigen�lters

Reference [Ade 1983] computes a matrix for each texture, obtained from its auto-

correlation. Then, the most signi�cant eigenvectors are used as image �lter banks,

their output is squared and smoothed with a Gaussian �lter. This method requires

a large number of �lters, typically 5 to 9 per texture (so that the corresponding

eigenvalues sum up to at least 99% of the total). Despite requiring a large number

of �lters, the study in [Randen 1997] reports only a medium discrimination ability,

suggesting that an optimal texture representation does not necessarily correspond

to an optimal image discrimination.

2.3.3.2 Optimal FIR �lters

A two-texture design approach using FIR �lters is proposed in [Mahalanobis 1994].

This method achieves optimal discrimination by taking the maximum ratio between

the mean of squared �lter outputs as criterion. This work was later extended to

use a criterion proposed by Unser [Unser 1986] and the Fisher criterion, which takes

feature variances into account. Experimental results show that these criteria enable

highly discriminant FIR �lters [Randen 1997].

To extend the design criteria above to multiple textures, a �lter for all possible

pairing of textures is computed, which results in, e.g., 45 �lters for 10 textures or 190

�lters for 20 textures. Reference [Randen 1997] groups textures and uses a smaller



24 Chapter 2. Related work

set of �lters to recursively select the most likely class. Although fewer �lters are used

than in the complete pairwise comparison scenario, the computational complexity

is still high and the discrimination ability is reported as average.

2.3.3.3 Prediction error �ltering

Reference [Randen 1997] uses a linear predictor for each texture class, learned with

least squares optimization. After training, a texture is assigned to the class with

the smallest linear prediction error. Despite the potentially high complexity in a

multi-texture scenario (the number of �lters is equal to the number of textures),

reference [Randen 1997] reports modest results for these �lters, which may possibly

be explained, again, due to the emphasis on optimal representation rather than

discrimination.

2.3.3.4 Optimal representation Gabor Filter Banks

Tuning the central frequencies of a narrow-band GFB to the spectral peaks of the

textures is proposed in [Bovik 1991]. They introduce a semi-automatic (claimed to

be easily extended to fully automatic) procedure for determining the spectral peaks.

Despite the high dimensionality of the feature vector (two �lters per texture are

used), the study in [Randen 1997] reports that classi�cation accuracy of [Bovik 1991]

is similar to signi�cantly worse than the best optimal �ltering approaches due to

representation not implying good discrimination.

A GFB design scheme yielding �lters optimized for texture separation in a two-

class scenario is proposed in [Dunn 1995]. The optimal center frequency is deter-

mined by evaluating a large range of center frequencies, using the Fourier transform,

and selecting the best candidate. This approach is extended for an arbitrary number

of textures in [Weldon 1996], with a manually de�ned �lter number. The study in

[Randen 1997] concludes that the two-texture method originates good results (ex-

cept when dealing with similar textures) but that a large number of �lters is needed

to obtain good discrimination in the multi-texture scenario.

2.3.3.5 Neural networks

A feed forward neural network, trained through back-propagation, is proposed in

[Jain 1996]. In this approach, image intensities are weighted and summed in the

input nodes of the network, resembling a �lter bank. The nonlinearities in the

network also resemble the nonlinearity in the local energy function. Comparative

tests reported in [Randen 1997] show signi�cant training times and an average

discrimination, except for very simple texture pairs. Reference [Tivive 2007] uses

a more complex network, with 15 layers of neurons. Although computational

complexity is signi�cant, they report error rates on the Brodatz database of about

16-25%, which decrease with complex pre and post processing smoothing stages.
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To conclude, results show that simple optimization schemes are available when

the texture classes to discriminate are few. However, even for a moderate number

of texture classes, e.g., 10, the number of �lters that are needed for accurate dis-

crimination increases dramatically, approaching that of standard �lter banks, with

medium discrimination ability.
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Figure 2.10: Normalized frequency responses of the Laws (top left), Gabor (top
right), ring and wedge �lter banks (bottom)
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Chapter 3

Statistical edge detection using

elongated oriented footprints

3.1 Proposed approach

The novel and key aspect of our approach is the combination of what we denote

contextual and local edges, taking connectivity into account. Contextual edges are

obtained with �lters of large footprint, which are able to deal with noise in identifying

image transitions. The footprint of a contextual �lter is illustrated on the left of

Fig. 3.1, and its application on an image to detect a contextual edge is illustrated

on the right of Fig. 3.1.

Figure 3.1: Footprint of a contextual �lter (left) and its use in an image (right).

Although such large footprint �lters are robust to noise, edge localization is

imprecise since every transition is smeared by their large point spread function. On

the other hand, local edges are thresholded image derivatives obtained with �lters of

very small footprint, e.g., Sobel, Prewitt, Roberts and central di�erence operators.

Since these �lters are small, edges are located precisely but noise may originate

erroneous detections. Our proposal combines contextual and local edges obtained

at the same pixels by taking the sign of the contextual edge and using it to identify

so-called valid local edges with the same sign. The edge sign indicates if it is a

dark�to�bright transition or the opposite.

In complex images, valid local edges are disconnected from each other, due to

noise and image clutter. To obtain connected edge maps, we handle connectivity

explicitly in the combination process by checking if the valid local edges, along a

given direction, are located at a distance not greater than a maximum distance

threshold from each other. If so, the pixels corresponding to valid local edges and
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those in between are marked as edge points. The resulting edge detector has the

robustness of contextual edges in dealing with noise and the localization of local

edges, as idealized by Canny [Canny 1986].

Typical contextual edge detectors handle noise by applying a low-pass �lter of

large footprint such as, e.g., Gabor or steerable �lters [Freeman 1991], followed

by a derivation step and binarization with a �xed threshold. A �xed threshold

is often deemed su�cient because noise is assumed to be white and of constant

amplitude on simple images. However, since complex images often exhibit high-

frequency variations due to, e.g., textures and clutter from interfering image data, a

more comprehensive statistical analysis of the pixel intensity values is bene�cial to

overcome the use of a simple threshold. Our contextual edge detector collects pixel

intensity values from elongated oriented footprints and uses a two-sample statistical

test to determine if a contextual edge exists, by thresholding the con�dence interval

for the null hypothesis that both distributions are actually the same.

We propose two separate approaches for edge detection:

1. Non-paired Total Variation (TV) parametric test � A computationally simple

running average approach is used to compute the sample mean and variance of pixel

intensity values along elongated and oriented footprints. The parametric values at

opposing positions are used to compute the TV distance between the distributions

(analogous to computing a derivative) and determine if a contextual edge exists and

its sign. The contextual edges are then used to locate valid local edges, i.e., local

edges with the same sign. Valid local edges whose distance is not greater than a

maximum distance threshold are marked as edge points, plus the gap between them.

2. Paired nonparametric sign test � A computationally simple running average

approach adds the signs of local edges along elongated and oriented footprints,

counting the number of positive minus the number of negative transitions that occur

around each pixel. If there is a predominance of positive or negative transitions,

then a contextual edge exists � this implements the sign test. As in the case

above, the contextual edges are used to locate valid local edges and those that are

su�ciently close are marked as edge points, plus the gap between them.

Section 3.2 details the non-paired TV parametric test and section 3.3, the paired

nonparametric sign test. We show experimental results on section 3.5.

3.2 Non-paired Total Variation parametric test

3.2.1 Computing Normal parameters: running average

Each direction n ∈ {1, . . . , N} (with N given by (2.7)) corresponds to angle θn =

180◦(n−1)/N , which lies in the horizontal (H) or vertical (V) half of the semicircle,
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H(θn), and in quadrant Q(θn). This is illustrated in Fig. 3.2 and de�ned as

H(θn) =

{
V θn ∈ [45◦, 135◦[

H otherwise
(3.1)

Q(θn) =


0 θn ∈ [0◦, 22.5◦[∪[157.5◦, 180◦[

45 θn ∈ [22.5◦, 67.5◦[

90 θn ∈ [67.5◦, 112.5◦[

135 θn ∈ [112.5◦, 157.5◦[

Figure 3.2: Left: half of a semicircle, H(θn); right: the respective quadrants, Q(θn).

For each direction θn, we divide the image into lines, as illustrated in Fig. 3.3.

We compute the sample average and variance, µ̂(pm) and σ̂2(pm), ofM consecutive

pixels in the line, pixels pm to pm+M−1, and store the results in pixel pm. Since the

set of M consecutive pixels needed for the next point, pm+1, is the same as the set

for point pm except the points at the start and end of the sets, we use a recursion

that simpli�es calculations and is used often in practice: the running average.

Figure 3.3: Illustration of M = 15 pixels starting at pixel pm along direction θn.

For image I ∈ RSx×Sy , let A address each line along direction θn,

A(x, y, θn) =

{
(x, y + [x tan θn] + γSy) if H(θn) = H

(x+ [y cot θn] + γSx, y) if H(θn) = V
, (3.2)

where [·] is the rounding operation and γ ∈ Z is chosen so that A(x, y, θn) lies

inside the image limits. Methods such as Digital Di�erential Analyzer [Watt 2000]

or [Wu 1991] introduce less aliasing, by using neighboring pixels and weighting their

contribution approximately with their distance to the ideal point, but are more com-

plex. If H(θn) = H, the y-th line is made up of the pixels addressed by A(x, y, θn),

with x ∈ {1, . . . , Sx} and in increasing order. Analogously, if H(θn) = V , the x-th

line is addressed by A(x, y, θn), with increasing y ∈ {1, . . . , Sy}. To compute the
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average and variance in a recursive way, we de�ne accumulators Φx and Φx2 ,

Φx ← Φx − I(pm−1) + I(pm+M−1) (3.3)

Φx2 ← Φx2 − I2(pm−1) + I2(pm+M−1),

where pm is the current pixel; pm−1 is the pixel that is leaving the set of M pixels,

and pm+M−1 is the pixel that is entering the set,

pm = A(x, y, θn),

pm−1 = A(x− 1, y, θn), pm+M−1 = A(x+M − 1, y, θn) if H(θn) = H

pm−1 = A(x, y − 1, θn), pm+M−1 = A(x, y +M − 1, θn) if H(θn) = V

. (3.4)

With accumulators Φx and Φx2 updated at pixel pm, the parametric parameters of

the Normal distribution for direction θn are then, for point pm,

µ̂(pm) =
1

M
Φx (3.5)

σ̂2(pm) =
1

M − 1
Φx2 −

1

M(M − 1)
Φ2
x.

3.2.2 Total Variation distance

In the context of edge detection, two-sample tests consider opposing sets of pixels in

the image as samples of two underlying distributions, XT and XB (where T refers

to the top area and B to the bottom area) and tests the null hypothesis H0 that the

underlying probability distributions are the same [Sheskin 2007]. An edge exists

if the distributions are deemed di�erent. Unlike other statistical tests, the pixel

samples are taken from elongated and oriented footprints, as illustrated in Fig. 3.4.

Figure 3.4: Elongated oriented footprints with samples XT and XB.

Although the t-test is a very popular parametric test, it assumes that coinciding

mean values imply identical distributions (see equation (2.8)). Since a human viewer

sees an edge when pixel distributions have the same sample mean but di�erent

sample variances, this test is not suitable for contextual edge detection. To enable
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this feature, we use the Total Variation (TV) distance [DasGupta 2010],

δ(XT ,XB) =
1

2

∫ ∞
−∞

∣∣f(ξ; µ̂T , σ̂
2
T )− f(ξ; µ̂B, σ̂

2
B)
∣∣ dξ ∈ [0, 1], (3.6)

where f(·;µ, σ2) represents the probability density function (pdf) of the Normal

distribution. The TV distance is the integral of the (linear) distance between the

pdfs of XT and XB. Unlike the Kullback-Leibler or Hellinger divergences, the TV

indicates by how much the two pdf di�er and in a linear way.

Fig. 3.5 shows the result of the TV distance when applied to illustrative distri-

butions (the TV distance is the integral of the gray and black areas). On the left,

both distributions are well separated and the TV distance is 1. On the middle, both

distributions mostly overlap, so the TV distance is low. The right image of Fig. 3.5

illustrates a scenario in which two distributions with the same average but distinct

standard deviations are deemed di�erent by the TV distance.

Figure 3.5: Application of the TV distance. Separate distributions (left, TV = 1);
mostly overlapping distributions (middle, TV = 0.25); distributions with the same
average but distinct standard deviation (right, TV = 0.75).

3.2.3 Computing the Total Variation distance

We now need a simple way to compute the TV distance (3.6). Let ξi ∈
{−∞, ξ̂1, ξ̂2,∞} be the points where the pdf of distributions XT and XB cross,

as illustrated in Fig. 3.6. These points help in dealing with the magnitude operator,

using the cumulative density function of the Normal distribution, F (·;µ, σ2),

δ(XT ,XB) =
1

2

3∑
i=1

∫ ξi+1

ξi

∣∣f(ξ; µ̂T , σ̂
2
T )− f(ξ; µ̂B, σ̂

2
B)
∣∣ dξ

=
1

2

3∑
i=1

∣∣∣∣∫ ξi+1

ξi

f(ξ; µ̂T , σ̂
2
T )− f(ξ; µ̂B, σ̂

2
B)dξ

∣∣∣∣ (3.7)

=
1

2

3∑
i=1

∣∣F (ξi+1; µ̂T , σ̂
2
T )− F (ξi; µ̂T , σ̂

2
T )− F (ξi+1; µ̂B, σ̂

2
B) + F (ξi; µ̂B, σ̂

2
B)
∣∣ .
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To determine ξ̂1 and ξ̂2, we make f(ξ̂; µ̂T , σ̂
2
T ) = f(ξ̂; µ̂B, σ̂

2
B), which results in

ξ̂ =
(
−b±

√
b2 − 4ac

)
/2a, where

a = 1/
(
2σ̂2

T

)
− 1/

(
2σ̂2

B

)
b = −µ̂T /

(
σ̂2
T

)
+ µ̂B/

(
σ̂2
B

)
c = µ̂T /

(
2σ̂2

T

)
− µ̂B/

(
2σ̂2

B

)
− ln (σ̂B/σ̂T ) .

If all parameters are equal, δ(XT ,XB) = 0. For equal sample variances, ξ̂1 =

ξ̂2 = (µ̂T − µ̂B) /2. For di�erent sample variances, two crossing points are obtained.

Figure 3.6: Pdf intersection points and area that is integrated in the TV distance.

We further simplify (3.7) by noting that only the way µ̂T and µ̂B relate to each

other is needed, and only the ratio between σ̂T and σ̂B. Let variables µ̂
′
B and σ̂′B be

µ̂′B = |µ̂B−µ̂T |
min(σ̂T ,σ̂B) σ̂′B = max(σ̂T ,σ̂B)

min(σ̂T ,σ̂B) . (3.8)

Assuming that µ̂T ≤ µ̂B and σ̂T ≤ σ̂B, equations (3.8) become

µ̂B = µ̂T + µ̂′Bσ̂T σ̂B = σ̂T σ̂
′
B. (3.9)

Replacing (3.9) in (3.6) and substituting variable ζ = (ξ − µT ) /σT , we obtain

δ(XT ,XB) =
1

2

∫ ∞
−∞

∣∣∣f(ξ; µ̂T , σ̂
2
T )− f(ξ; µ̂T + µ̂′Bσ̂T , σ̂

2
T σ̂
′2
B )
∣∣∣ dξ

=
1

2

∫ ∞
−∞

∣∣∣f(ζ; 0, 1)/σ̂T − f(ζ; µ̂′B, σ̂
′2
B )/σ̂T

∣∣∣ σ̂Tdζ (3.10)

=
1

2

∫ ∞
−∞

∣∣∣f(ζ; 0, 1)− f(ζ; µ̂′B, σ̂
′2
B )
∣∣∣ dζ,

which shows that the TV distance depends only on two parameters. A two-

dimensional look-up table ∆(µ̂′B, σ̂
′
B) is then �lled in at the start of the program

execution for various (µ̂′B, σ̂
′
B), with µ̂B ≥ 0 and σ̂′B ≥ 1, using (3.7).

During (on-line) program execution, we obtain the coordinates above and below

p, pT = A(xp− [sin θn] , yp− [cos θn] , θn) and pB = A(xp+[sin θn] , yp+[cos θn] , θn).

These coordinates coincide with the non-zero positions of the central di�erence op-

erator for angle θn, KQ(θn), illustrating that the TV distance can be seen as a

derivative operation that takes the variance into account. With these coordinates,
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we extract the parameters of the two distributions, µ̂T = µ̂(pT ), σ̂2
T = σ̂2(pT ),

µ̂B = µ̂(pB), σ̂2
B = σ̂2(pB). We normalize them using equation (3.8) and access

the two-dimensional look-up table containing the TV distances, ∆(µ′B, σ
′
B). The

contextual edge value is computed by including the type of transition, δ(x, y, n) =

∆(µ′B, σ
′
B)sgn(µ̂T − µ̂B). A contextual edge exists if |δ(x, y, n)| ≥ C.

3.3 Paired nonparametric sign test

Despite the multiple sources of inaccuracies for edge detection such as noise and

image clutter, there should be a predominance of either positive or negative intensity

variations (corresponding to light-to-dark and dark-to-light transitions, respectively)

along the edges. This predominance is what we exploit to compute contextual edges.

We start by computing the local directional content of an image I along direc-

tions {0◦, 45◦, 90◦, 135◦}, through the convolution with the central di�erence oper-

ators of equation (2.5). Then, an approximation of the sign is computed using

Eθ(x, y) =


1 if ∇θI(x, y) ≥ T
−1 if ∇θI(x, y) ≤ −T

0 otherwise .

(3.11)

By using T > 0, we avoid using the actual sign function, since experimental tests

have shown that it originates many unwanted edges such as compression grid

artifacts or small gradients in the image. Then, we propose two alternative but

equivalent ways to collect evidence that there is a positive, negative or no transition

at each pixel: using the running average approach, similar to that described in

section 3.2.1, and; accumulating local responses in a histogram.

1. Running average approach � This approach is very similar to the one de�ned

in section 3.2.1, with two di�erences. Firstly, only the mean value is computed

and not the variance. The mean e�ectively counts the positive minus the negative

transitions. Secondly, we do not compute the mean values of image intensities but

instead of the four local edge maps, EQ(θn)(x, y), that are selected through angle

θn and function Q(·), de�ned in equation (3.1). The method computes the mean

value δ(x, y, n) of the directional map EQ(θn), for each pixel and direction θn. A

contextual edge exists if |δ(x, y, n)| ≥ C.
Fig. 3.7 illustrates the results of applying the sign test to a set of M = 15 pairs

of pixels. On the left of this �gure, all the pixels on the left are larger than the

respective pixels on the right. This means that all individual pixel comparisons

return one, so the overall result is the addition of the �fteen ones. Because the

overall result is that 100% if the pixels are showing a positive transition, there is

a clear positive edge at this location. In the middle of this �gure, the number

of positive transitions is the same as the number of negative ones, therefore the

addition of all contributions is zero and there is no contextual edge. On the right of

this �gure, there is a 6/15 = 40% predominance of negative transitions, which may
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be classi�ed as a negative contextual edge, depending on the threshold C.

Figure 3.7: Illustrations of the sign test. If the pixel on the left is larger than the
respective one on the right, the comparison contributes 1; if smaller, it contributes
-1; if equal, contributes 0. The sign test aggregates all contributions and determines
if there is a predominance of positive or negative results, or no predominance.

2. Accumulating local responses in a histogram � We compute local orientation

histograms in pixels where a local edge exists, i.e., where |EQ(θ)(x, y)| = 1 for some

θ. We use neighboring local edge points whose direction is coherent with its position.

To clarify, when building a histogram for edge point (x0, y0), the directions of the

segments passing through (x0, y0) and each neighboring edge point (x, y) are

θ(x0,y0) (x, y) = arctan

(
y − y0

x− x0

)
∈ [0◦, 180◦) . (3.12)

Then, for each neighbor (x, y), we use the directional edge map EQ(θ)(x, y), with

θ computed above, to update the histogram count and Q(θ) given by equation (3.1)

and illustrated on the right of Fig. 3.2. For example, if (x0, y0) = (0, 0) and (x, y) =

(0, 3), we have θ(0,0)(0, 3) = 90◦, a vertical segment, and the directional edge point

that contributes to the histogram is E90(0, 3), since K90 is the kernel that best

responds to the horizontal transitions that de�ne vertical edges.

We de�ne the histogram for point (x0, y0) as δ(x0, y0, ·), with N bins (given

by (2.7)). Each edge point contributes to the two bins most corresponding to angle

θ(x0,y0) (x, y) with weights implementing linear interpolation. The signs in the direc-

tional edge maps are taken into account through positive or negative contributions

to the histogram bins, e�ectively �ltering out con�icting contributions due to noise,

textures and image clutter. The neighborhood that is used for the local histograms

has diameter M . A contextual edge is found in a particular pixel and direction by

thresholding the magnitude of the histogram bins, (e.g., a threshold of 50% of M),

i.e., if |δ(x, y, n)| ≥ C. Alg. 1 synthesizes the procedure for each point p0 = (x0, y0).
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Algorithm 1 Accumulating local responses in a histogram

1: input: p0 = (x0, y0), edge maps Eθ, circular window radius r = (M −1)/2, bin
number N

2: % initialize orientation histogram
3: δ(·, ·, ·) = 0
4: % for every point inside the circular ball of radius r centered in p0

5: for p = (x, y) ∈ B(r,p0) do

6: % compute the angle p makes with p0 (in degrees)
7: θ(x0,y0) (x, y) = arctan (y − y0/x− x0)
8: % compute fractional bin to update
9: n = θ(x0,y0) (x, y)N/180◦

10: % update integer bins using bilinear interpolation
11: δ(x0, y0, bnc) = δ(x0, y0, bnc) + (dne − n)EQ(θ(x0,y0)(x,y))
12: δ(x0, y0, dne) = δ(x0, y0, dne) + (n− bnc)EQ(θ(x0,y0)(x,y))
13: output: δ

3.4 Combining contextual and local edges using connectivity

The method starts by �nding contextual and local edges for every direction θn. Lo-

cal edges are computed as in chapter 3.3, by computing image derivatives through

the convolution of I with central di�erence operators and then obtaining their sign,

using equation (3.11) above. Local orientation has been exploited before and cap-

tured by using several types of kernels, see, e.g., [Burns 1986, Illingworth 1987b,

Dahyot 2009, von Gioi 2010]. Although kernels with a large support would smooth

the noise, the use of simple central di�erence operators enables more precise edge

localization and angular responses, by minimizing the in�uence of surrounding pix-

els. Finally, the edge maps of both the local and contextual edges are combined, for

each pixel and orientation: if local edge EQ(θn)(x, y) has the same sign as contextual

edge δ(x, y, n) then we store the sign of the edges on the combined edge map,

Cθn(x, y) =


1 if ∇Q(θn)I(x, y) ≥ T ∧ δ(x, y, n) ≥ C
−1 if ∇Q(θn)I(x, y) ≤ −T ∧ δ(x, y, n) ≤ −C

0 otherwise .

(3.13)

If a valid edge is found at pixel A(x, y, θn), i.e., |Cθn(A(x, y, θn))| = 1, the

next d pixels along direction θn (where d is the maximum distance threshold) are

scanned until another valid edge with the same sign is found. If a valid edge was

found, all these pixels are marked as edge points. If not, the valid edges are deemed

disconnected and the pixels are not marked as edges.

Fig. 3.8 illustrates how the sign of a contextual edge is used to select coinciding

local edges with the same sign, valid local edges. The arrow indicates the optional

step of edge linking that can occur if the valid local edges are close to each other.
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Figure 3.8: Using contextual edges to select valid local edges. From left to right:
result of the contextual edge detector; result of the local edge detector; valid local
edges; linked valid local edges, to form connected segments.

3.5 Experiments

The values for the contextual footprint size, M ; contextual threshold, C; and local

threshold, T , depend on the image content. Larger footprints enable better handling

of noise and clutter but have the drawback that the edges on the image need to be

aligned along curves with smaller curvatures for detections to occur; and, due to the

narrower angular response of longer footprints, more �lters are needed to span the

entire range of angles, which leads to higher computational cost. In the remainder

of this thesis, we use M = 15, which we found experimentally that provides a good

compromise between noise �ltering and computational complexity for the images

that are used in this thesis, C = 0.7 and T = 10. The fact that all the experiments

in this thesis use the same parameters (except where noted), despite the diversity

of the input images, anticipates the robustness of the methods that we propose.

By not requiring constant and careful tuning of the internal parameters to obtain

good results for particular images, the proposed methods are suitable for real-life

applications where user interaction is minimal.

In the absence of an established database for benchmarking the performance

of edge detection methods, we single out demonstrative results of both our meth-

ods, contrasting them with the ones obtained with the standard Canny edge de-

tector [Canny 1986] (in the implementation of MATLAB c©) and the statistical edge

detector of Bovik et al. [Bovik 1986]. The Canny edge detector is considered a

state-of-the-art in edge detection method and the statistical edge detector of Bovik

et al. [Bovik 1986] is the benchmark of statistical edge detectors. We �rst describe

experiments with synthetic images to illustrate extreme cases that help to charac-

terize the general behavior of our methods. Then, we present results obtained with

several real world images that demonstrate their performance in practice.

3.5.1 Synthetic images

We use a synthetic image made up of intersecting line segments of multiple lengths

and widths, shown on the top left of Fig. 3.9. We conclude that the Canny edge

detector, with results shown on the top center of Fig. 3.9, succeeds in extracting
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clutter-free thin edges but is not able to extract thick edges. The statistical edge

detector [Bovik 1986], is mostly able to extract the edges in the image, except for

points in the center of the edge, where the distributions of the opposing sets of pixels

are deemed equal. The bottom images of Fig. 3.9 show the results of our proposed

edge detectors, which include most edges in the original image, of all lengths and

widths. Because light-to-dark transitions are considered di�erent from dark-to-light

ones, the thin line segments in the image result in edges making up a pair of twin

line segments next to the original segment. The thick line segments in the image

are extracted, with only a few gaps where the transition type changes.

Figure 3.9: Image with crossing lines. Top left to right: image, Canny and statistical
edge detectors. Bottom left to right: TV and sign test edge detectors.

We now illustrate the behavior of the algorithms when dealing with images whose

line segments are characterized by being frontiers of di�erently textured regions. We

use the synthetic images in the left column of Fig. 3.10, which were generated by

adding variations of noise to a piecewise constant map. The central image is a special

scenario in which the textured and textureless regions have the same mean value

and their standard deviation is the only discriminating feature. The second column

of Fig. 3.10 displays the results obtained by applying the Canny edge detector to

the images on the left. Due to the high amplitude of noise and the reliance on local

noise-prone derivative operators (e.g., Sobel), many spurious edges are found. The

third column of Fig. 3.10 displays the results of the statistical edge detector, which

show that it does not originate many erroneous edges and is able to capture the

actual transitions in the image. The fourth column of Fig. 3.10 displays the results

of our TV parametric edge detector, which show that it also extracts few erroneous

edges and captures the actual transitions in the image. In particular, it is the only

method that can extract the boundaries in middle original image. Finally, the �fth

column of Fig. 3.10 displays the results of our nonparametric sign test edge detector,
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whose performance is similar to the TV parametric method, except that it cannot

deal with boundaries with the same mean value.

Figure 3.10: Textured images. From left to right: original image, result of the
Canny [Canny 1986] and statistical edge detector [Bovik 1986], proposed TV and
sign test edge detection methods.

3.5.2 Real images

We start by showing results obtained with the complex image in Section 1.1 to

clarify the limitations of current edge detectors. This image is challenging due to

its dense packing of line segments of multiple lengths. In the top right image of

Fig. 3.11, we display the result of Canny edge detection [Canny 1986]. Although

stronger edges are detected, the underlying crossing line segments and contours are

not. The statistical edge detection [Bovik 1986], on the left of row two, is not able to

capture details in the cluttered areas of the image, due to the shape of the footprints

in its �lter. The next two images of Fig. 3.11 display the results of our proposed

TV and sign test edge detectors, where most edges are extracted successfully. To

illustrate the good performance of our methods, the last three images of Fig. 3.11

show the edges extracted at individual angles, {16◦, 90◦, 172◦}, using the TV test.

These images illustrate that our methods extract entire connected sets of edges at

each direction, thus preserving the underlying crossing line segments and contours.

Finally, Fig. 3.12, �rst shown in Section 1.1, contains many crossing line seg-

ments. The Canny edge detector fails to detect many of the edges due to the

cluttered nature of the image, as mentioned in Section 1.1. The results of the sta-

tistical edge detector, shown on the left of row two of Fig. 3.12, show that many

edges that are parallel and close to each other are not obtained, as in Fig. 3.11. On
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the last two images of Fig. 3.12, we display the results of our proposed TV and sign

test edge detectors. The images show that most edges are extracted successfully.

3.6 Conclusion

We introduced two novel methods for edge detection, which combine contextual and

local edges taking connectivity into account. Contextual edges are obtained with

�lters of large footprint, which are able to deal with noise; and local edges, thresh-

olded image derivatives obtained with �lters of small footprint, which have good

localization. Furthermore, by taking connectivity into account the resulting edge

maps result gap-free. We con�rm experimentally that our edge detectors combine

robustness to noise and good localization, as idealized by Canny [Canny 1986].
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Figure 3.11: Left to right, top to bottom: image, Canny and statistical edge detec-
tion, TV and sign test, and edges along angles 16◦, 90◦, and 172◦ with TV test.
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Figure 3.12: Left to right, top to bottom: image, Canny and statistical edge detec-
tion, TV and sign test.
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Connectivity-enforcing Hough

Transform

4.1 Proposed approach

The key ingredient to the method presented in this chapter, denominated

STRAIGHT (Segment exTRAction by connectivity-enforcInG Hough Transform)

and presented in [Guerreiro 2012, Guerreiro 2011], is the incorporation of connec-

tivity into the Hough Transform (HT) voting process. Connectivity is enforced in

the HT by imposing that edge points only vote for lines in which they are spatially

connected to other points. As a consequence, the vast majority of spurious votes

are eliminated and peaks in the accumulator array become prominent and truly

correspondent to line segments of maximum length. Simultaneously, the method

integrates into the voting process the usually separate step of determining the ex-

tremes of the line segments. The block diagram of Fig. 4.1 summarizes the approach,

which is outlined in the sequel.

Figure 4.1: Block diagram of connectivity-enforcing Hough Transform.

STRAIGHT starts by computing the prominent directions at each edge point,

which will guide the search for the orientations of line segments. An image line

segment is characterized by a rectilinear alignment of dark-to-light (or opposite)

transitions. The prominent direction detector (the paired nonparametric sign test

detailed on section 3.3) computes, for each edge point, the set of directions according

to which there is a predominance of those intensity transitions. As depicted in the

�rst macro-block of Fig. 4.1, this is accomplished by taking into account direction-

ally coherent edge points: in a �rst step, signed directional edge maps are computed;

then, transition evidence is collected. This latter step can occur in two equivalent

ways. In the �rst, a running average approach adds positive minus negative transi-

tions along each orientation at each edge point, and large magnitude entries indicate
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prominent directions. In the second, orientation histograms are built at each edge

point, by considering the neighboring edge points whose relative positions agree

with the angle of the directional edge map. The histogram accumulates the signed

values of the intensity transitions, thus the prominent directions at each edge point

are detected by �nding large magnitude entries in the corresponding histogram.

After computing the local prominent directions, STRAIGHT extracts line seg-

ments using the knowledge that the edge points forming each of them must be con-

nected. This is done by computing new Local Hough Transform (LHT)-like maps

(which we will call length maps) for each edge point, this time taking into account

all other edge points whose position and directional content agree with potential line

segments. Position matters because only points that respect connectivity are consid-

ered; directional content matters because only edge points with prominent direction

that agrees with the candidate segment are considered. In practice, as illustrated in

Fig. 4.1 for each prominent direction of each edge point, STRAIGHT progressively

considers edge points further away until the connectivity criterion is violated. After

exploring all candidate directions, the ones that collected more distant edge points

correspond to the orientations of the longest connected line segments going through

the starting point. Note that allowing a set of prominent directions, rather than a

single one, enables dealing with crossing segments.

This proposed implementation of STRAIGHT incorporates the explicit mapping

of uncertainty balls around the edge points into the Hough space (penultimate block

of Fig. 4.1), increasing robustness and accuracy, and uses a hierarchical coarse-to-

�ne strategy to explore candidate directions, leading to a computationally tractable

algorithm. Illustrative results of experiments that use synthetic and real images

are presented to compare STRAIGHT with the standard HT [Duda 1972] and the

state-of-the-art local method LSD [von Gioi 2010].

The organization of the remaining of this chapter is as follows. Section 4.2

describes the computation of the directional initialization. Section 4.3 details the

extraction of connected line segments, by enforcing connectivity. The hierarchical

implementation is described in Section 4.4. Experimental results are reported in

Section 4.5 and Section 4.6 concludes the chapter.

4.2 Directional initialization

The directional initialization of STRAIGHT makes use of the paired nonparametric

sign test that is detailed in section 3.3 but without enforcing connectivity, since this

is done inside this method. To be used in STRAIGHT, the output is formated into

array Θ(p0), that contains, for each point, a list of directions for which a strong

edge was found and its sign,

Θ(x0, y0) =
{(
θ0,∇Q(θ0)I(x0, y0)

)
,
(
θ1,∇Q(θ1)I(x0, y0)

)
, . . . ,

(
θB,∇Q(θB)I(x0, y0)

)}
,

(4.1)

where 0 ≤ B ≤ N is the number of histogram bins whose count is above the

threshold. We denote by θn the central angle of the bin n and by ∇Q(θn)I(x0, y0)
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the image gradient, with orientation Q(θn) that best matches θn, according to (3.1).

To account for the histogram discretization, i.e., the nonzero width of the bins, we

consider in the sequel as possible directions of line segments all the orientations

θ ∈ [θn −∆θ, θn + ∆θ], with ∆θ = 180/N/2 = 90/N .

4.3 Extracting Connected Line Segments

We now describe the core of STRAIGHT, i.e., the way we incorporate connectivity

into the line segment extraction. We start by making explicit the parameter search

problem that underlies the extraction of each of the segments, introducing the length

map, which plays a similar role of the HT accumulator array. Then, we describe

how edge points are sequentially mapped into the length map by taking into account

both the edge point connectivity and the uncertainty due to discretization. Finally,

we describe the procedure to extract line segments from the length map.

4.3.1 Line segment extraction as a parameter search problem

To accurately detect a line segment whose candidate location p0 = (x0, y0) and

orientation θn was roughly computed as described in the previous section, it is

necessary to re�ne the estimates of both parameters simultaneously. This is done

by accumulating information from other edge points lying close to the candidate

line and having a candidate direction angle similar to θn. Our methods estimate the

pair (p̂, θ̂) that corresponds to the longest linear alignment of candidate matches.

We consider a line segment search range centered in the initial rough estimate

(p0, θn), i.e., the line segments that span the area depicted in Fig. 4.5. The line

position is speci�ed in terms of its distance δp to the edge point p0. The line

orientation is represented by δθ, which represents the deviation with respect to the

prominent direction angle θn in Θ(p0). Thus, as illustrated in Fig. 4.2, any point

p = (x, y) belonging to the line (δp, δθ) obeys

〈p,v⊥θn+δθ
〉 = 〈p0,v

⊥
θn+δθ

〉+ δp , (4.2)

where 〈·, ·〉 is the inner product and v⊥θ = (sin(θ),− cos(θ)) is a unit vector with

directional orthogonal to θ. The candidate line segment is allowed to deviate at most

a prede�ned ∆p from p0, i.e., δp ∈ [−∆p,∆p], (in our experiments, we use ∆p = 1)

and ∆θ from θn, i.e., δθ ∈ [−∆θ,∆θ] (∆θ was de�ned in the previous section).

When the estimate (δp, δθ), coincides with the true value of the parameters

de�ning a line segment in the image, there are several other edge points along the

line (δp, δθ) for which the orientation θ = θn + δθ is also prominent (with matching

signs of the image gradient), according to the information collected in {Θ(·)}. We

call a candidate match to each of these edge points. Besides, due to the connectivity

of the edge points forming a line, the gap between candidate matches must be

smaller than a prede�ned maximum distance threshold d. Naturally, the closer the

estimated line is to the actual one, more distant edge points of the true line segment
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Figure 4.2: Edge point p0, prominent direction θn, line segment speci�ed by param-
eters (δp, δθ), and range limits ∆p and ∆θ.

are captured. This is the key point of our approach, which formalizes the extraction

of a line segment as the search for the parameters (δp, δθ) that maximize the length

of the segment that can be extracted in the neighborhood of p0.

To extract the maximum length segments that pass close to each edge point, we

borrow inspiration in the LHT, where local accumulator arrays are used in contrast

to the single accumulator array of the HT, which cannot discriminate between dis-

tinct segments falling in the same line. In our case, we de�ne local 2D length maps

L : [−∆p,∆p] × [−∆θ,∆θ] 7→ N0. For each edge point, L(δp, δθ) will contain the

integer length of the line segment (δp, δθ). This map can be regarded as an extension

of the accumulator array of a LHT in order to take line segment connectivity into

account. In this scenario, the extraction of a line segment passing close to p0 consists

of �lling L(·, ·), obtaining the parameters (δp, δθ) for which L(δp, δθ) is maximum,

and computing its start and end points.

To �ll L(·, ·) through the direct implementation of an exhaustive scanning of

the space [−∆p,∆p] × [−∆θ,∆θ] would be computationally unbearable. In fact,

the discretization of this space must be very �ne to yield accurate results and,

for each location, many edge points have to be processed (possibly, hundreds or

thousands). Besides, this approach would use redundant computations, since each

edge point would be visited several times because it may belong to several candidate

line segments. For this reason, as usually done to �ll the HT accumulator array,

we also adopt a pixel-centered approach, where the edge points are used to �ll the

length map L(·, ·) in an e�cient way.

4.3.2 Incorporating uncertainty in the length map � the update

region

We now show how each individual edge point is processed in our pixel-centered

approach. Due to the pixel grid discretization, we model each edge point by an

uncertainty ball, rather than a pointwise feature. We use the uncertainty ball radius

R = 1, the maximum expected error in the location of each pixel. Because the



4.3. Extracting Connected Line Segments 47

uncertainty ball has a non-in�nitesimal area, there is a set of parameters {(δp, δθ)},
whose corresponding line segments cross it. This is illustrated in the left side of

Fig. 4.3, where the lines formed by all orientations between θa and θb cross the

uncertainty ball centered at (x, y), for position deviation δp = −α from p0. We

call update region of the length map domain to the set of positions and orientations

{(δp, δθ)}, whose corresponding line segments cross the uncertainty ball centered at

each edge pixel. The update region for the pixel p = (x, y), in the length map of

p0, is shown on the right side of Fig. 4.3.

Figure 4.3: The uncertainty ball of an edge pixel (left) and the corresponding update
region in the length map domain (right).

To �nd the analytic expressions for the bounds of update region, we use the line

equation (4.2), now seen as a condition for line segments rather than points. When

computing the length map for the edge point p0, we see from (4.2) that any segment

(δp, δθ) that crosses the uncertainty ball of pixel p = (x, y) must verify

〈p,v⊥θn+δθ
〉 = 〈p0,v

⊥
θn+δθ

〉+ (δp − r) , (4.3)

where −R ≤ r ≤ R is the distance between the center of the ball and the segment,

along vector v⊥θn+δθ
(depicted in Fig. 4.3). From (4.3), the line segment position δp

is easily expressed in terms of its orientation δθ and r:

δp = 〈p− p0,v
⊥
θn+δθ

〉+ r . (4.4)

The update region, which we denote by U , is thus the collection of intervals speci�ed

by all possible orientations δθ and corresponding positions δp given by (4.4), with

|r| ≤ R:

U =
{

(δp, δθ) : δθ ∈ [−∆θ,∆θ] , δp ∈
[
δ−p (δθ), δ

+
p (δθ)

]
∩ [−∆p,∆p]

}
, (4.5)

where the limits δ−p (δθ) and δ
+
p (δθ) are made explicit from (4.4) by expanding v⊥θn+δθ

:

δ−p (δθ) = (x− x0) sin (θn + δθ)− (y − y0) cos (θn + δθ)−R , (4.6)
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δ+
p (δθ) = (x− x0) sin (θn + δθ)− (y − y0) cos (θn + δθ) +R . (4.7)

If the update region of a given pixel is non-empty, we say that the pixel is within

the search range. In the illustration of Fig. 4.3, the search range for p0 is the one

limited by the lines labelled with θn −∆θ and θn + ∆θ.

As geometrically evident, the range of angles of lines that cross an uncertainty

ball decreases as the distance between p0 and p increases (an approximate expres-

sion for this range is 2 arcsin (R/‖p− p0‖), obtained by noting that p0,p can be

approximated by the hypotenuse of a right-angled triangle of which R is the small

cathetus). As a consequence, to enable the extraction of long line segments, i.e.,

containing edge points p far from p0, the length map must be densely discretized to

sample all relevant values of δθ. We propose an e�cient way to deal with this need

through the hierarchical coarse-to-�ne procedure described in the Section 4.4.

We observe that expressions (4.6) and (4.7) are similar to the parameterizing

equation of the HT [Duda 1972], ρ = x cos(θ) + y sin(θ), with p0 = (x0, y0) as the

origin of the coordinate system and θ shifted by 90◦. Thus, the boundaries of the

update region resemble the sinusoidal shape of the bundles of votes of each edge point

in the HT accumulator array (see Fig. 4.3 where, in fact, only a segment of that

shape is seen, due to the length map limits). In what respects to the resolution of the

accumulator array, when using the HT, the contradictory requirements of accuracy

(high resolution) and coping with discretization error (low resolution, so that votes

of the same line fall within the same bin) makes di�cult, if not impossible, to

achieve a good compromise. Strategies that uniformly blur the accumulation array

(e.g., by using multiple resolutions [Li 1986, Illingworth 1987a], or kernels of various

sizes [Dahyot 2009]) do not change the scenario, since they still neglect the distinct

in�uence of the discretization error of edge points located at di�erent positions. In

opposition, in our case, the resolution of the length map can be chosen arbitrarily

large, since we model the actual discretization error of each individual edge point

by using the correspondent (position-dependent) update region, as described above.

4.3.3 Sequential mapping of edge points to the length map

After describing how each pixel maps to a corresponding update region in the length

map, we now show how to �ll this map in a sequential way by processing all image

edge points. This is illustrated in a simpli�ed way in Fig. 4.4. Assuming that the

starting point is the one in red, the pixels in the vicinity are scanned in search of

an edge point. When an edge point is found, the set of line parameters that go

through both the uncertainty ball of the original red pixel and the uncertainty ball

of the edge point is computed, i.e., the update region. Then, in a simpli�ed way,

the length map is updated in these parameter locations with the distance between

the original red edge point and the current edge point. For the �rst edge point in

the �gure, with the value two. This step is repeated for all subsequent edge points

while they are close to each other. Because this process occurred from the red point

towards the right, the same procedure needs to occur between the red point and the
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edge points in the left, resulting in another length map. In the end, both length

maps are added together and the parameter that corresponds to the longest line

segment, i.e., the parameter with the largest value in the length map, is obtained.

Figure 4.4: Illustration of how the length map is �lled in (see details in the text).

In detail, let us consider, as before, the case the of the edge point p0, with promi-

nent direction θn. When �lling the corresponding length map L, we consider the

image divided in two half-planes by the line orthogonal to θn passing through p0.

In each half-plane, starting from p0 we circularly scan the image, with progressively

larger radius, mapping to the corresponding half-plane length map the candidate

matches that fall within the search range and do not violate the connectivity re-

quirement.

Due to the graceful adaptation to the discrete pixel grid, we use the so-called

Manhattan distance to de�ne the equidistant curves as the set of pixels p located

at �xed distance e from p0 (i.e., such that ‖p − p0‖∞ = e). Fig. 4.5 illustrates

the scenario, with the central edge point p0, the equidistant curves, labeled by the

distance values, the search range and the half-planes.

For each half-plane, we scan each equidistant curve, starting with the one closer

to p0 (i.e., the curve with label e = 1 in Fig. 4.5), looking for candidate matches.

Fig. 4.6 illustrates the scanning pattern for each equidistant curve. It starts in the

center of the search range, i.e., the pixel labeled with 0 in Fig. 4.6, and processes

each pixel within the curve until reaching the limit of the search range (i.e., the

pixels labeled with positive values in Fig. 4.6, up to label 4, shown in red). Then,

the pixels in the other direction are scanned, until the complete equidistant curve

within the search range was processed (i.e., the pixels labeled with negative values
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Figure 4.5: Central edge point p0, search range, and equidistant curves, each labeled
by its integer distance to p0.

in Fig. 4.6, down to label −6, shown in red). Then, the following equidistant curve

is processed.

Figure 4.6: Illustration of the scanning pattern for a single equidistant curve in one
of the half planes.

To account for the usage of the Manhattan distance, the discrete pixel [p] at the

center of the search range for the equidistant curve e is given by

[p] = round

(
p0 ± e

vθn
‖vθn‖∞

)
,

where vθ = (cos(θ), sin(θ)) is a unit vector with angle θ, and the signal ± depends

on the half-plane being considered.

When a candidate match is found in the equidistant curve e, its update region

is computed, according to (4.5), (4.6), and (4.7), and the corresponding entries of

the length map are updated. This updating consists simply in setting those entries
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to the value of the equidistant curve number, e. This indicates that there are valid

line segments of (at least) size e with the parameters corresponding to those entries.

To capture the connected nature of the line segments, we �rst prune the update

region, eliminating the locations where the di�erence between the current value of

the length map, L, and the equidistance value e is larger than the maximum distance

threshold d, i.e.,

U ← U\ {[e−L(δp, δθ)] ≥ d, δp ∈ [−∆p,∆p] , δθ ∈ [−∆θ,∆θ]} . (4.8)

Then, we update the length map according to

L← eU +L�U ,

where U is seen as a binary mask and � denotes the Hadamard, or elementwise,

product. When the distance between e and all the values in the length map, L(·, ·),
is larger than d, i.e., when U = ∅, there are not updatable entries in the length

map and the scanning stops for the corresponding half-plane. Naturally, param-

eter d controls the de�nition of connectivity. If d = 1, no line interruptions are

allowed, thus the results are expected to show many broken lines; if d is very large,

connectivity is relaxed and the results approach the ones of a standard HT. In our

experiments, we used d = 3 pixels.

Alg. 2 synthesizes the procedure just described to compute each half-plane length

map. The �nal length map for each edge point p0 and prominent direction θn is

obtained by adding the two half-plane length maps.

Algorithm 2 Filling one half-plane length map L for edge point p0 and prominent
direction θn.

1: input: p0 = (x0, y0), θn, prominent directions {Θ(·)}, maximum distance d,
uncertainty radius R

2: L(·, ·) = 0, e = 1
3: repeat

4: for [p] = (x, y) in the equidistant curve e (as illustrated in Fig. 4.6) do
5: if [p] is a candidate match (according to Θ(p)) then
6: U = ∅
7: for δθ ∈ [−∆θ,∆θ] do
8: δ−p = (x− x0) sin (θn + δθ)− (y − y0) cos (θn + δθ)−R
9: δ+

p = (x− x0) sin (θn + δθ)− (y − y0) cos (θn + δθ) +R
10: U ← U ∪

{
(δp, δθ) : δp ∈

[
δ−p , δ

+
p

]
∩ [−∆p,∆p]

}
11: U ← U\ {e−L(·, ·) ≥ d} (requirement of line segment connectivity)
12: L← eU +L�U
13: e← e+ 1
14: until e−max{L(·, ·)} ≥ d
15: output: L
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4.3.4 Extracting line segments

As when detecting lines from the peaks of the HT accumulator array, we de-

tect line segments passing through p0 with an orientation close to the promi-

nent direction θn by simply collecting position-orientation pairs lying in the range

(δp, δθ) ∈ [−∆p,∆p] × [−∆θ,∆θ] that correspond to peaks in the corresponding

length map L(·, ·).

Whenever a line segment is detected, with position-orientation parameters

(δp, δθ), we also obtain in a straightforward way the coordinates of its extremes:

[p±] = round

(
p0 + E±

vθn+δθ

‖vθn+δθ‖∞
+ δpv

⊥
θn+δθ

)
, (4.9)

where the subscript ± di�erentiates both extremes and E± denotes the maximum

values of the length map of the corresponding half-planes.

To prevent multiple detections of a single line segment, each time a segment is

detected for a central point p0 and prominent direction θn, we remove that promi-

nent direction from all candidate matches p in the line segment. Multiple crossing

segments are naturally extracted by collecting position-orientation pairs in all promi-

nent directions {θn, 1 ≤ n ≤ N}. To enable the detection of crossing segments with

very close direction angles, a �ne discretization of the angle histogram is required.

Alternatively, we can use variable bin sizes for each prominent direction, in which

case only (a small length interval around) the angle of an extracted line would be

removed from all candidate matches p in the line segment. In the latter scenario,

the corresponding length map may contain more than one peak, thus each one is

dealt with independently.

A �nal remark regards avoiding that a few edge points of lines with position-

orientation parameters outside the range [−∆p,∆p] × [−∆θ,∆θ] vote for spurious

lines inside that range. If fact, this would happen whenever the uncertainty balls

of those edge points intersect that range, as illustrated in Fig. 4.7. We explicitly

detect these cases and ignore them by using an orientation limit slightly larger than

∆θ (in all our experiments, we used a safe guard margin of 2◦) and only consider as

detected segments those with estimated orientation within the original limits, i.e.,

δθ ∈ [−∆θ,∆θ].

Alg. 3 synthesizes the procedure to extract line segments, where the usage of

non-maxima suppression in line 3 is not detailed, since it is similar to the standard

procedure for extracting peaks from the accumulator array of the HT. The only

di�erence is that, since STRAIGHT has detected all the candidate matches for each

line segment, the parameters (δp, δθ) are more accurately estimated by �tting a

line to the coordinates of the candidate matches with weights proportional to the

magnitude of the image gradients. Naturally, other �tting criteria can easily be

adopted in STRAIGHT.
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Figure 4.7: Edge points in a line outside the position-orientation range [−∆p,∆p]×
[−∆θ,∆θ] and a spurious line segment, shown in green, that could be erroneously
detected inside that range.

Algorithm 3 Extracting line segments passing through p0 with orientation close
to θn.

1: input: p0, θn, half-plane length maps L+(·, ·) and L−(·, ·), prominent directions
{Θ(·)}, angle range limit ∆θ, uncertainty ball radius R

2: repeat

3: (δp, δθ) = arg max [L+(·, ·) +L−(·, ·)] (�nd and remove peak using non-

maxima suppression)
4: if |δθ| ≤ ∆θ then

5: [p+] = round
(
p0 +L+(δp, δθ)vθn+δθ/‖vθn+δθ‖∞ + δpv

⊥
θn+δθ

)
6: [p−] = round

(
p0 +L−(δp, δθ)vθn+δθ/‖vθn+δθ‖∞ + δpv

⊥
θn+δθ

)
7: for the candidate matches p whose distance to [p−][p+] is smaller than (or

equal to) R, remove from Θ(p) the entry corresponding to θn
8: until there are not prominent peaks in [L+(·, ·) +L−(·, ·)]
9: output: extremes of the extracted line segments,

{
[p−], [p+]

}
, and updated

{Θ(·)}

4.4 Hierarchical Implementation

Although the computational complexity of the pixel-centered approach described in

the previous section is much smaller than an intensive approach, there are still some

issues that need addressing. Because the discretization of L(·, ·) must be �ne, every
time a new candidate match is found, a very large amount of positions in the length

map need to be updated, which is a time-consuming operation. Furthermore, the

number of pixels in the equidistant curves that fall within the search range and need

to be scanned increases considerably with the size of the detected segment. Simul-

taneously, as the scanning of edge pixels proceeds and the corresponding updates

are incorporated in the length map, the region of the map that remains updatable

progressively becomes smaller. This occurs because more distant pixels correspond

to smaller angle ranges, as explained in the previous section, and fewer (δp, δθ) po-

sitions still correspond to quasi-connected line segments. Since this narrowing of
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the updatable area was not taken into account in the previous section, most pixel

checks are unnecessary and further computational cost optimizations are possible.

This motivates the hierarchical implementation of STRAIGHT, as outlined in this

section.

Our hierarchical approach progressively zooms in on the updatable regions, thus

increasing its discretization density. The process starts with a length map that

spans the initial wide location and angle ranges, as described in the previous section.

Every time a set of equidistant curves are processed, the rectangular bounding box

containing the updatable region (illustrated in the left image of Fig. 4.8) is upscaled,

so that it takes up the complete length map (right image of Fig. 4.8). This way,

although the length map has a constant size, it progressively addresses narrower

location and angle ranges around (δp, δθ), e�ectively increasing the resolution of

the estimates. Since the resolution can increase inde�nitely, a coarse discretization

of L(·, ·) (we use an array of size 21 × 21) becomes su�cient to obtain long line

segments and fewer pixels are tested, thus resulting in computationally e�cient

line segment extractions. Since, as described in the previous section, a length map

may contain multiple disconnected updatable regions, corresponding to di�erent line

segments passing through p0, this process also divides the length map into multiple

ones, each focused on a particular updatable region, and each estimation proceeds

independently.

Figure 4.8: Illustration of the hierarchical implementation of STRAIGHT. Left:
length map, with the bounding box of the updatable region. Right: the same
region, after upscaling.

To implement the length map upscaling in the hierarchical STRAIGHT, we use

the computationally simple Nearest Neighbor interpolation. An alternative to the

discrete formulation underlying our hierarchical implementation is the continuous

smooth kernel-based formulation of reference [Dahyot 2009].
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4.5 Experiments

In the absence of an established database for benchmarking the performance of meth-

ods for line segment extraction, we single out demonstrative results of STRAIGHT,

contrasting them with the ones obtained with the standard HT [Duda 1972] and

the state-of-the-art LSD [von Gioi 2010] (the superiority of LSD when compared

to several other methods is thoroughly demonstrated in [von Gioi 2010]). We �rst

describe experiments with synthetic images to illustrate extreme cases that help to

characterize the general behavior of STRAIGHT. Then, we present results obtained

with several real world images that demonstrate its performance in practice. As

detailed in section 3.5, we use parameters M = 15, C = 0.7 and T = 10, except

where noted.

4.5.1 Synthetic images

We start by illustrating that STRAIGHT succeeds in cases tailored to the HT, i.e.,

when processing images for which the HT exhibits clear superiority with respect

to local methods. We use a synthetic binary image used in a review of several

HT-based line segment extraction methods [Kälviäinen 1995]. In accordance with

the conclusions of [Kälviäinen 1995], the HT succeeds in correctly extracting the

lines from this image. In fact, although the multiple crossings make this image

visually complex, the HT accumulator array exhibits the desired prominent peaks

(see Fig. 2.6), capturing the fact that the lines are long and not in a very large

number. The third and fourth images of Fig. 4.9 show the results of LSD and

STRAIGHT, respectively. A pair of twin segments is extracted for each segment

in the original image because these methods treat the binary image as any other,

i.e., as a grey-level one, and both light-to-dark and dark-to-light transitions are

detected. In the third image of Fig. 4.9, we see that the local nature of the LSD

limits its performance, particularly in resolving the line intersections, making it fail

the extraction of several complete segments that cross each other. In contrast, the

result of STRAIGHT, in the rightmost image, shows that it successfully extracts

the majority of the line segments, regardless of the intersections.

Figure 4.9: Clutterless image with prominent lines. From left to right: original
binary image, result of the standard HT [Duda 1972], LSD [von Gioi 2010], and the
proposed method STRAIGHT.
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We now illustrate the behavior of the algorithms when dealing with the other

extreme of the spectrum, i.e., with images whose line segments are characterized

by being frontiers of di�erently textured regions, rather than abrupt changes in

a very smooth intensity level. We use the synthetic images in the left column of

Fig. 4.10, which were generated by adding noise to a piecewise constant map. The

top image simulates a scenario where a textureless objects occludes a textured one

(e.g., a wall in front of a tree) and the bottom one simulates two textured objects.

The second column of Fig. 4.10 displays the results of the standard HT when its

input is the edge map of the corresponding left image, obtained by using the Canny

edge detector [Canny 1986]. We see that this procedure was not able to extract the

boundary segments, originating a large number of false detections. This is due to

the fact that the majority of the edge points detected by the Canny edge detector

do not belong to the perceptually evident line segments that separate regions but

rather to intensity transitions inside the textured region. Di�erently, LSD succeeds

in interpreting the textures as not forming line segments but only captures parts of

the real segments for the top image and almost none for the bottom one. This is

due to the local nature of LSD, which makes it sensitive to the missing points in the

line segments. The rightmost images of Fig. 4.10 display the results of STRAIGHT,

showing that it succeeds in extracting the perceptually relevant lines as forming,

in both cases, four complete line segments (the few short segments correspond to

accidental connected alignments in the random texture).

Figure 4.10: Textured images. From left to right: original image, Canny edge detec-
tor followed by standard HT [Duda 1972], LSD [von Gioi 2010], and STRAIGHT.

4.5.2 Real images

We start be showing the results obtained with the image used in Section 1.1 to

clarify the limitations of the HT (Fig. 2.6). This image is challenging due to its dense
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packing of line segments of multiple lengths. In the top right image of Fig. 4.11,

we display the results of LSD [von Gioi 2010], showing that a subset of the line

segments are in fact detected. However, a closer look reveals that those are only

the line segments that do not cross other structures and also that several longer

segments are detected as fragmented ones. The results of STRAIGHT are in the two

bottom images of Fig. 4.11. We see that our method succeeds in extracting the vast

majority of the line segments in the image (exceptions are those which exhibit very

low contrast). The fact that the extracted line segments are complete is particularly

evident in the bottom right image, which displays only the line segments that have

length greater than 50 pixels.

Figure 4.11: Top left: image. Top right: LSD [von Gioi 2010]. Bottom left:
STRAIGHT. Bottom right: STRAIGHT (longer line segments).

To illustrate how the noise a�ects the extraction of line segments in real images,

we report the results obtained with noisy versions of the same image. Fig. 4.12

synthesizes the results for two levels of zero-mean white Gaussian noise. We see

that, with the increase of the noise level, LSD [von Gioi 2010] originates more seg-

ment fragmentations and a progressive failure to detect some line segments. The

performance of STRAIGHT declines in a less steep way, as expected from its global

nature.
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Figure 4.12: Left: noisy images (σ = 10 on the top and σ = 20 on the bottom).
Center: LSD [von Gioi 2010]. Right: STRAIGHT.

Fig. 4.13 presents another illustrative case. It was obtained by processing an

image containing a complex scene occluded by a net composed of very long line

segments that cross multiple times. The result of LSD [von Gioi 2010] shows the net

broken into short line segments (several sections of the net are not even extracted).

On the other hand, our method was able to obtain almost all the complete line

segments of the net, even in locations where the background is complex (exceptions

are where the net has a very low contrast with respect to the background). The line

segments extracted by our method that have length greater than 50 pixels, displayed

in the bottom right image of Fig. 4.13, make this particularly evident.

Fig. 4.14 shows the results of processing an image containing mostly long line

segments that cross multiple times. This image, obtained with a low-end camera,

exhibits compression artifacts � it was obtained with a low-end camera and it is

highly compressed (46 KB for 425×319 pixels). While LSD extracts the majority of

lines as being arti�cially broken into very short line segments, our method was able

to obtain almost all the complete segments. The ability of our method in capturing

these long line segments is further illustrated by the large number of lines that have

length greater than 50 pixels (shown in the bottom right image).

Finally, Fig. 4.15 presents results of using STRAIGHT with real images of various

kinds. As desired, the vast majority of long line segments are extracted without

arti�cial fragmentation, despite the multiple segment crossings. Also note that,

although some of these images have edges that form curves, STRAIGHT succeeds

in approximating these sections in a piecewise linear way, i.e., by a sequence of

rectilinear line segments.
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Figure 4.13: Top left: image (from �Prison Break", Fox Broadcasting Company c©).
Top right: LSD [von Gioi 2010]. Bottom left: STRAIGHT. Bottom right:
STRAIGHT (longer line segments).

4.5.3 Computational complexity

The �rst step of STRAIGHT, i.e., the computation of the local prominent directions

(�rst macro-block of Fig. 4.1, described in Section 4.2) has a computational com-

plexity that is fundamentally determined by the one of constructing the orientation

histograms. In fact, the computation of the directional edge maps has a small cost

that depends linearly on the number of pixels, determined by convolutions with

small kernels, see expression (2.1). The construction of the local orientation his-

tograms has in general a larger cost, due to the inherent counting process and the

accounting for directional content. Naturally, this cost increases linearly with the

number of detected edge points.

In what respects to the extraction of connected line segments, described in Sec-

tion 4.3, each computation of the update region and the corresponding updating

of the length map (last two blocks of Fig. 4.1) involve an approximately constant

computational cost. Therefore, the computational burden of the process increases

linearly with the number of edge points that need to be processed. Since spurious

edge points that do not form line segments, i.e., isolated edge points, originated,

e.g., by textures, are discarded when detecting local prominent directions, only the

edge points lying in line segments need to be processed. The number of these edge

points is thus given by the sum of the length of the line segments in the image.
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Figure 4.14: Top left: image. Top right: LSD [von Gioi 2010]. Bottom left:
STRAIGHT. Bottom right: STRAIGHT (longer line segments).

Synthetically, we can say that the overall complexity of STRAIGHT increases

linearly with the number of edge points, which also happens with the standard

HT [Duda 1972]. The standard HT requires �lling a single accumulator array, which

basically depends linearly on the total number of edge points. According to refer-

ence [von Gioi 2010], the complexity of LSD increases linearly with the number of

pixels of the image. In our experiments, we measured the running times of LSD as

being consistently lower than one second (approximately 0.5 seconds1 for the im-

ages in Figs. 4.9-4.14). The running times of STRAIGHT were measured as varying

between approximately 100 and 1000 seconds. The standard HT required approxi-

mately 1 second to process the binary image in Fig. 4.9 and 10 seconds to process

each of the edge maps of the textured images in Fig. 4.10. These numbers show that

the approximately constant cost of processing each edge point with our implemen-

tation of STRAIGHT is signi�cantly higher than the ones of the standard HT (and

LSD). This is not surprising because: i) our code was not optimized; and ii) the

good results obtained due to the enforcement of line segment connectivity naturally

required more expensive computation.

Fig. 4.16 shows the computation time (in seconds) as a function of the image pixel

1All experiments were performed using standard C on an Intel c© 2.67 GHz machine.
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count, for a large set of images, in a standard C implementation and on an Intel c©

2.67 GHz machine. Although the running time of STRAIGHT depends linearly

on the number of edge points and not on the pixel count, we use the pixel count

as a reference, since the latter is easier to measure. For visualization purposes,

we consider that the number of edge points per pixel on the image is roughly a

constant for the selected images, enabling us to indicate that STRAIGHT exhibits

a computation time of about 6.6K pixels/second, for N = 22 directions, obtained

experimentally.

In section 5.4, STRAIGHT is compared with the semi-local method for line

segment extraction that is described in the following chapter.

4.6 Conclusion

We have presented a new method for line segment extraction, which we call

STRAIGHT (Segment exTRAction by connectivity-enforcIng Hough Transform).

Our method inherits the global accuracy of the HT and overcomes its limitations,

particularly those that arise from not taking into account that line segments are

connected sets of edge points. Our experiments show that STRAIGHT outperforms

current methods for line segment extraction in challenging situations, e.g., when

dealing with complex images containing several crossing segments.

We end by pointing out that our approach may pave the way to other improve-

ments in HT-like image edge analysis. In fact, as we saw, the standard HT is sensible

to erroneous votes, which are eliminated by taking point connectivity into account.

Thus, the detection of non-rectilinear shapes, e.g., circles, in challenging scenarios,

may also bene�t from a similar treatment.
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Figure 4.15: Results of STRAIGHT for several kinds of real images.
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Figure 4.16: Computation time (in seconds) as a function of image pixel count, for
a large set of images and in a standard C implementation. Roughly about 6.6K
pixels per second are processed using N = 22 directions.
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Chapter 5

Combining contextual and local

edges for line segment extraction

in cluttered images

5.1 Proposed approach

In the previous chapter, we propose a Hough Transform (HT)-based method that

solves the main issues of the HT in dealing with complex images by enforcing con-

nectivity in the voting process. In this chapter, we use the novel non-paired Total

Variation parametric test edge detector proposed in section 3.2 that, by combining

contextual and local edges and enforcing connectivity, outputs edge maps that do

not exhibit gaps, despite noise and clutter in the images. For each orientation, the

line segment extractor described in this chapter (and on paper [Guerreiro 2013a])

takes the output of the edge detector, �nds connected edge regions through simple

region growing, �ts each region to a rectangle and then accepts or rejects each rect-

angle according to a �tness quality metric. Because this method uses the same ideas

as local methods except that it uses our novel edge detector, which takes context

into account, we refer to it as a semi-local method.

By avoiding expensive search mechanisms for overcoming gaps, as the costly

scheme used in our previous HT-based method [Guerreiro 2012], our semi-local

method results simple. Its simplicity enables its use in most practical applications

and it obtains line segments of all lengths and widths. This is demonstrated in the

experimental section, where we present illustrative results using synthetic and real

images to compare this method with other methods: the standard HT [Duda 1972],

the state-of-the-art of local methods LSD [von Gioi 2010], and our previous HT-

based method [Guerreiro 2012].

The organization of the remaining of this chapter is as follows. In section 5.2.1

we provide a brief introduction to the region growing method we use and rectangle

�tting is described in 5.2.2. The experimental results are reported in Section 5.3

and Section 5.5 concludes the thesis.
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Chapter 5. Combining contextual and local edges for line segment

extraction in cluttered images

5.2 Combining contextual and local edges for line seg-
ment extraction in cluttered images

5.2.1 Region Growing

We obtain edges using the parametric non-paired two-sample Total Variation sta-

tistical edge detector detailed in section 3.2. This edge map Cθn(x, y) is computed

by combining contextual and local edges taking connectivity into account. Since

the edge maps are already connected along lines along angles θn, we use a region

growing method to join the various thin edge point segments into a single area and

attribute a unique identi�cation number to each. This is illustrated in Fig. 5.1.

Region growing works by assigning a label to each set of edge points that have the

same sign and are connected with each other, using an 8�neighbourhood.

Figure 5.1: The multiple connected edges along lines (left), obtained in Section 3.2,
are joined into a single area and lines are �t to the upper and lower limits (right).

5.2.2 Rectangle �tting

Rectangle �tting can occur in various ways (see [von Gioi 2010] for brief summary).

In this method, we start by �tting a line to the upper and lower limits of each

area, as illustrated in Fig. 5.1. Then, using the average angle of both �tted lines,

θR = (θupper + θlower)/2, we obtain the start and end of each line segment.

To make sure that only rectilinear structures are detected, we validate each

segment. In this thesis we require only that the lines that are �tted to the top and

bottom of the connect area have similar angles, θupper ∼ θlower, and the average

angle should lie inside the permitted range, θR ∈ [θn − 180◦/2N, θn + 180◦/2N ].

5.3 Experiments

We single out demonstrative results of this semi-local method, which we contrast

with the ones obtained with the standard HT [Duda 1972], the state-of-the-art of

local methods LSD [von Gioi 2010] (the superiority of LSD when compared to sev-

eral other local methods is thoroughly demonstrated in [von Gioi 2010]), and our

previous HT-based method, STRAIGHT [Guerreiro 2012]. We describe experiments

with synthetic images, which help characterize the general behavior of this method.

Then, we present results obtained with several real world images, which demonstrate
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its performance in practical application. Finally, we discuss the computational com-

plexity of these methods. As detailed in section 3.5, we use parameters M = 15,

C = 0.7 and T = 10, except where noted.

5.3.1 Synthetic images

We start by illustrating the behavior of the algorithms when dealing with an image

made up of intersecting line segments of multiple lengths and widths, shown on

the top left of Fig. 5.2. By comparing the edges computed by the Canny edge

detector [Canny 1986] with the line segments that the HT extracts from them, on

the top middle and right of Fig. 5.2, respectively, we conclude that the HT succeeds

in correctly extracting the lines from this image. This occurs because line segments

are long, not in a large number, and the HT does not require connectivity, therefore

being able to overcome the multiple line crossings. On the other, the results of

the LSD method, shown in the bottom left image of Fig. 5.2, illustrate that local

methods fail to overcome line crossings and splits them. This occurs because local

methods require absolute connectivity, i.e., that edge points are perfectly chained

together. In the particular case of the LSD, the state-of-the-art of local methods,

edge points must have approximately constant direction. Although the results of

STRAIGHT show that it is able to extract thin line segments regardless of the

intersections, it is unable to deal with thick ones, originating multiple erroneous

detections. Our semi-local method succeeds in extracting line segments of all lengths

and widths, with few errors. A pair of twin segments is extracted for each segment in

the original image because both light-to-dark and oposite transitions are detected.

We now illustrate the behavior of the algorithms in capturing transitions between

di�erently textured regions. This simulates low signal-to-noise scenarios that occur

when using very low thresholds in edge detection, for increased sensibility, where

real transitions should be extracted successfully, while avoiding false ones. We use

the synthetic images in the left column of Fig. 5.3, which were generated by adding

noise to a piecewise constant map. The top image represents a simpler scenario,

where one of the areas involved in the transition is perfectly smooth. The central

image represents the same scenario, except that the mean value of both regions

is now equal, making the variance the single discriminating factor. The bottom

image simulates two smooth objects in a low signal-to-noise image. The second

column of Fig. 5.3 displays the results of applying the HT to the images on the

left. The Canny edge detector [Canny 1986] computes an edge map, which is the

input to the HT. The high amplitude of noise and the reliance on local noise-prone

derivative operators (e.g., Sobel) by the Canny edge detector originates spurious

edge points that prevent the HT from extracting the real boundary segments. This

originates a large number of false detections and illustrates the lack of robustness

in typical global methods. Due to the e�ect of noise, the local edge detection in

LSD can not produce edges with constant direction along real segments and the

LSD fails to extract line segments, except for parts of the top image. The results of

STRAIGHT and the proposed semi-local method, in the two rightmost columns of
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Figure 5.2: Image with prominent lines. Top left to right: original image, result of
Canny edge detector [Canny 1986], and standard HT [Duda 1972]. Bottom left to
right: LSD [von Gioi 2010], STRAIGHT [Guerreiro 2012], and the proposed semi-
local method.

Fig. 5.3, show that both overcome noise and succeed in extracting the line segments

for the top and bottom images (the few short segments correspond to accidental

connected alignments in the random texture). By allowing samples with the same

mean but di�erent variances to be classi�ed as edges, by using two-sample tests and,

in particular, the TV distance, the proposed semi-local method is the only one that

succeeds in obtaining most of the real segments of the �gure in the middle row.

5.3.2 Real images

We start by showing a challenging image that was �rst used in [Guerreiro 2012]

to demonstrate the ability of STRAIGHT in dealing with the dense packing of line

segments of multiple lengths that cross each other. In the top right image of Fig. 5.4,

we display the results of the HT [Duda 1972], showing that extraction fails altogether

for not being able to cope with the large number of edge points (this is explained

in detail in [Guerreiro 2012]). On the middle left image of Fig. 5.4, we display the

results of LSD [von Gioi 2010], showing that a subset of the line segments are in fact

detected. A closer look reveals that those are only the line segments that do not cross

other structures and also that several longer segments are detected as fragmented

ones. The results of STRAIGHT are shown in the middle right image of Fig. 5.4 and

we see that it succeeds in extracting the vast majority of the line segments in the

image (exceptions are those which exhibit very low contrast). Similar good results

are obtained by the semi-local method we propose, shown in the bottom images of

Fig. 5.4, with the di�erence that STRAIGHT needed about 56 seconds to process
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Figure 5.3: Textured images. From left to right: original image, result of the stan-
dard HT [Duda 1972] (preceded by the Canny edge detector), LSD [von Gioi 2010],
STRAIGHT [Guerreiro 2012] and the proposed semi-local method.

this image while the semi-local method needed only about 7 seconds on the same

machine. The bottom right image displays only the line segments that have length

greater than 50 pixels, illustrating that line segments are not arti�cially broken in

pieces.

Fig. 5.5 presents another illustrative case. It was obtained by processing an

image containing a complex scene of line segments (many of which of low contrast)

occluded by a net that is large and out-of-focus. The result of LSD [von Gioi 2010]

shows that most low contrast segments were not extracted and that others are

fragmented in multiple pieces. The fragmentation of line segments is improved in

STRAIGHT [Guerreiro 2012] but low contrast segments are equally not extracted

and the thick lines of the net originate a multitude of erroneous line segments. On

the other hand, this semi-local method extracts most line segments, including low

contrast and thick ones, with little fragmentation. The extraction of low contrast

line segments is enabled by the better handling of noise of two-sample statistical

tests.

Finally, Fig. 5.6 presents results of using the proposed semi-local method with

real images of various kinds. As desired, the vast majority of long line segments are

extracted without arti�cial fragmentation, despite the multiple segment crossings.

Also note that, although some of these images have edges that form curves, our

method succeeds in approximating these sections in a piecewise linear way, i.e., by

a sequence of rectilinear line segments.
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Figure 5.4: Top left: image. Top right: HT [Duda 1972]. Middle left:
LSD [von Gioi 2010]. Middle right: STRAIGHT [Guerreiro 2012]. Bottom left:
proposed semi-local method. Bottom right: proposed semi-local method (longer
segments).

5.3.3 Computational complexity

The most computationally intensive portion of this method is the calculation of

contextual and local edges and their combination into continuous edge maps. By
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Figure 5.5: Top left: image. Top right: LSD [von Gioi 2010]. Bottom left:
STRAIGHT [Guerreiro 2012]. Bottom right: proposed semi-local method.

using a running average framework, the calculation of contextual edges depends only

linearly on the pixel count and the number of directions, N . Such linear dependency

also occurs in the calculation of local edges and in their combination with contextual

ones. This is con�rmed in Fig. 5.7, which shows the computation time1 needed by

the proposed method (implemented in C code) to extract line segments for multiple

images, as a function of pixel count and for N = 22 directions. The trend line for

N = 22, the number of directions that are used in all experiments, indicates that

about 166.6K pixels are processed at each second (e.g., the 512× 512 Lenna image

takes about 1.5 seconds to compute).

The standard HT requires �lling an accumulator array, which depend linearly

on the total number of edge points. In our experiments, the standard HT required

about 1 to 10 seconds to process each image in this thesis, using MATLAB c© code.

Reference [von Gioi 2010] states that the complexity of the LSD method depends

linearly with the image pixel count, as illustrated by a plot showing the calculation

time needed to extract line segments in various images. In the worst case scenario,

i.e., images made up of noise, LSD is able to process about 240K pixels per second.

Although the main advantage of local methods such as the LSD is its low com-

1All experiments were performed on an Intel c© 2.67 GHz machine.
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putational complexity, with the drawback of only dealing successfully with simple

scenarios, the amount of pixels processed by the LSD is only about 3�4 times greater

than the proposed semi-local method.

The complexity of STRAIGHT [Guerreiro 2012] increases linearly with the num-

ber of edge points, as the dominating factor in the calculations is the updating of

the Hough space of each local HT. In our experiments, the computation time of

STRAIGHT varies between approximately 100 and 1000 seconds (e.g., the 512×512

Lenna image takes about 43 seconds to compute), using standard C code, and we

obtained rough trend lines indicating that only about 6.6K pixels are processed each

second. This complexity is about one order of magnitude greater than the method

proposed in this chapter and is prohibitive for many applications. Although a por-

tion of the computation times may be due to a non-optimized implementation, the

theoretical analysis of STRAIGHT clearly shows that it is very complex, far exceed-

ing that of any other method that we have tested.

Although only STRAIGHT and the semi-local method proposed here can deal

with the complex images that arise in practice, the results above show that the com-

putational complexity of this method is far below STRAIGHT. Furthermore, the

complexity of this method is comparable with local methods, i.e., it is only about

3�4 times more complex than the LSD method, despite the ability to handle com-

plex scenarios. This indicates that our semi-local method is e�cient in extracting

segments of all lengths and widths in complex scenarios.

5.4 Comparison of proposed line segment extractors

In this thesis, we propose two line segment detectors. The �rst is denoted as

STRAIGHT and is detailed in chapter 4, and the second is the semi-local method

described in this chapter.

The �rst method, STRAIGHT, extends the classic Hough Transform (HT)

methodology to enable the robust detection of line segments, by including con-

nectivity in the voting process. We believe that the approach that was chosen, of

including connectivity in the voting process, is the only HT approach in the litera-

ture that can successfully deal with images that include both a large amount of edge

points and collinear line segments. For this reason, we believe that it is the only

HT approach that can successfully deal with the complex images that are obtained

in unconstrained real life scenarios. However, despite the virtue of this approach,

its computational complexity can be deemed prohibitive for standard applications,

since our tests reported computation times of between 100 and 1000 seconds for

each image, of standard high-de�nition sizes. In the section where the future work

is discussed, section 8.2, we point out that it would be very useful to create a more

e�cient method that makes use of the idea of including connectivity into the HT.

The semi-local method, on the other hand, simply replaces the edge detector

of a standard local method with the edge detector presented in this thesis. This

method improves the other family of classic approaches to extract line segments
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from the image, i.e., local methods, and enables robust detections when the in-

put image is complex. From a computational point of view, this method is only

about three times more expensive than the state-of-the-art method Line Segment

Detector [von Gioi 2010], thus simple enough to be used in standard applications.

Regarding the quality of the detections, both methods exhibit similar perfor-

mance. Because STRAIGHT considers that each pixel contains an uncertainty, it is

better suited for dealing with edges that are not aligned exactly in a line segment.

The semi-local method, on the other hand, is able to extract line segments whose

transition is not abrupt, which leads to erroneous detections in STRAIGHT. Finally,

regarding the computational complexity, the semi-local method is by far the method

that is most e�cient in extracting line segments.

5.5 Conclusion

We have presented a new semi-local method for line segment extraction. This

method combines contextual and local edges, with explicit handling of connectivity.

Our experiments show that it outperforms current methods for line segment extrac-

tion in challenging situations, e.g., when dealing with complex images containing

several crossing segments of multiple widths, and that its computational e�ciency is

comparable with simple local methods. We use a contextual edge detection scheme

based on two-sample statistical tests, which is a robust way to handle noise.
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Figure 5.6: Results of the proposed semi-local method for several kinds of real
images.
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Figure 5.7: Computation time (in seconds) as a function of image pixel count, for a
large set of images and in a standard C implementation. About 166.6K pixels per
second are processed using N = 22 directions.
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Chapter 6

Optimized �lters for e�cient

multi-texture discrimination

6.1 Proposed approach

Our approach, presented in [Guerreiro 2013b, Guerreiro 2010], also follows the block

diagram in Fig. 2.9. We propose the usage of optimal FIR �lters, as illustrated

above, where a standard �lter bank is replaced by one made up of adjustable co-

e�cients, obtained through supervised learning. Rather than the two-dimensional

large footprint �lters of typical �lter banks, we use: a) one-dimensional �lters, ap-

plied horizontally and vertically, to perform orientation-dependent discrimination;

or b) ring-shaped �lters, to perform rotationally-invariant discrimination of tex-

tures. These �lters are simple to compute and we show that they su�ce to extract

the relevant textural features.

In the local energy function, we compute the �rst four moments of each �l-

ter output and weight their contribution to the overall classi�cation. This results

computationally very simple and we show that it approximates typical local energy

functions, including the computationally complex and exceptionally discriminant

clustering and histogram matching approach of [Malik 2001].

We use a Maximum-Likelihood classi�er with normalized Euclidean distance to

obtain the class of a texture sample. To learn the �lter bank coe�cients, we de�ne

an objective function to minimize, which, due to the use of moments, results non-

convex. Supervised learning is then performed by using a Genetic Algorithm, whose

properties enable an apt solution.

We conduct an experimental analysis of our method using the publicly avail-

able Brodatz [Brodatz 1966] and VisTex [vis 2002] albums. The Brodatz database

has been used extensively to evaluate the performance of texture discrimination

methods when dealing with images exhibiting mild variations. We conclude that

our method outperforms state-of-the-art methods, such as GFB, and LBP, both in

terms of accuracy and computational simplicity. By repeating the experiments in

the VisTex database, we further conclude that the performance of our method is

consistent among di�erent databases. We report the actual parameters of the �lters

learned using the Brodatz album, to enable a quick implementation of a texture

discrimination method using a similar database.

The organization of the remaining of the chapter is as follows. Section 6.2.1

introduces the framework of the optimized �lters for e�cient multi-texture dis-

crimination. They are particularized for the cases of rotationally discriminant and



78Chapter 6. Optimized �lters for e�cient multi-texture discrimination

rotationally invariant discrimination. Section 6.3 describes the usage of a Genetic

Algorithm to learn the �lter parameters in these two scenarios. In Section 6.4, we

report the experimental results and section 6.5 concludes the chapter.

6.2 Optimized Filters for E�cient Multi-texture Dis-
crimination

6.2.1 Framework for optimized �lters

Consider a patch of size p× q of the input image, whose central point corresponds

to pixel (x, y) and contains a texture. We name it texture patch and denote it

as T xy ∈ Rp×q. To estimate its class, we de�ne a texture discrimination function,

φ :Rp×q→Rv, which will incorporate our optimized �lter approach. This function

takes a texture patch as input and computes a feature vector with measurements of

the textural information contained in it, represented as φ (T xy). We assume that

the feature vectors belonging to class c constitute a random variable following a

v-dimensional Gaussian distribution of average µc, which we denote class centroid,

and covariance Σc, i.e., p(φ (T ) |c) = N (µc,Σc). Assuming that all texture classes

are equally likely, the maximum-likelihood class estimate for a new texture patch,

ĉML (T ), is given by

ĉML(T ) = arg max
c
p(φ(T )|c)

= arg min
c

√
(φ(T )− µc)

T Σ−1
c (φ(T )− µc)

= arg min
c
‖φ(T )− µc‖

2

Σ−1
c

, ∀c∈{1,...,C}, (6.1)

where ‖·‖2
Σ−1
c

is the Mahalanobis distance and C is the total number of classes to be

discriminated. The calculation of the Mahalanobis distance requires C multiplica-

tions with symmetric matrices Σ−1
c of dimension v× v, for each point in the image.

Because our emphasis is in achieving computationally simple texture discrimina-

tion, we impose that matrix Σc is a diagonal matrix. The Mahalanobis distance

then becomes the normalized Euclidean distance. We show how the φ(T ), µc and

Σc quantities are computed later.

Although it is possible to de�ne a discrimination �lter, φ(·), that handles a

complete texture patch directly, this is not the typical approach in texture discrimi-

nation methods � or nature. Julesz [Julesz 1981] studied extensively the way humans

perceive textures and proposed the theory of textons. Textons are the basic sub-

elements of textures, i.e., primitives such as oriented edges, collinearities, endpoints

of line segments, corners, dots. These primitives are then repeated within a texture

according to certain placement rules. Julesz considered that humans discriminate

textures by �rst identifying individual textons and then aggregating information

with respect to their occurrence rates, locations, etc. Typical discrimination meth-

ods use this approach too: they analyze smaller portions of the texture patch � the
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textons � and combine the overall data into a discriminating feature vector.

To incorporate this approach into our framework, we process each texton within

the texture patch with a texton analysis �lter and then use an integration function

to build the �nal feature vector. Let Jxy∈Ra×a be a texton, i.e., a small portion of

the texture patch, whose center corresponds to pixel (x, y) of the input image. Since

the description of the primitives contained in each texton is conceptually related to

feature and edge points, which typically span only a few pixels, we use a = 7 except

where noted. Let ψ :Ra×a→RI be texton analysis �lters, unde�ned for now, where

I represents the number of �lters that are applied to each texton. A texton feature

vector is then ψ (Jxy). The individual texton feature vectors of a texture patch are

aggregated in Ψ :Rp×q→Rp×q×I ,

Ψ(T xy) =


ψ
(
Jx− p

2
,y− q

2

)
· · · ψ

(
Jx− p

2
,x+ q

2

)
...

. . .
...

ψ
(
Jx+ p

2
,x− q

2

)
· · · ψ

(
Jx+ p

2
,x+ q

2

)
 . (6.2)

The aggregation of texton feature vectors, ψ (J ·,·), makes Ψ(T xy) a third-order ten-

sor, which we denote as aggregation tensor. The integration function, γ :Rp×q×I→
Rv, builds a texture feature vector from this tensor,

φ(T xy) = γ(Ψ(T xy)). (6.3)

In this scenario, a discrimination method is determined by de�ning functions

ψ(·) and γ(·). This formulation is very general and can be particularized in various

ways. In fact, most existing texture discrimination methods can be expressed in this

manner.

6.2.2 Texton analysis �lters

The texton analysis �lters, ψ :Ra×a→RI , should be general enough to be able to

extract discriminative data from textons and, simultaneously, simple enough to avoid

over�tting and excessive computational complexity. In signal processing approaches,

this consists of convolving a texton with the impulse response of a �lter bank such

as, e.g., GFB.

We particularize our framework by de�ning that the texton analysis �lters consist

of convolving a texton with the impulse response of a learned �lter bank of I di�erent

matrices, as in the Optimal FIR �lters category of optimized �lters (see section

2.3.3.2). We impose that the i-th value of the texton feature vector, ψi (Jxy), is the

sum of the pointwise multiplication of texton Jxy with matrixW i, for i ∈ {1, . . . , I}
and matricesW i de�ned later. More simply, the i-th layer of the aggregation tensor,

Ψi(T ), is a matrix given by the convolution of texture T with matrix W i,

Ψi(T ) = T ∗W i, (6.4)



80Chapter 6. Optimized �lters for e�cient multi-texture discrimination

where ∗ is the convolution operator. The number of linear �lters we apply to the

texture patch, I, is an adjustable parameter. Matrices W i are estimated in the

training phase and, naturally, as I increases so does the overall discrimination ability,

at the expense of a higher computational cost and more parameters to be learned.

In this thesis, we present two separate discrimination possibilities, one optimized

for a rotationally discriminant scenario and another for a rotationally invariant one.

This distinction occurs by restricting the elements of matricesW i that are allowed

to have non-zero values. In particular:

� Method I � Rotationally discriminant �lters � The output of these �lters

change when arbitrary rotations are applied to the input texture patches. Most

texture discrimination methods are of this type and perform well in texture patches

within the same image. We implement these �lters using pairs of matrices where the

�rst one implements a vertical support �lter, in which only the central a× 1 values

are allowed to have non-zero values. The second matrix implements a horizontal

support �lter where only the central 1×a values are allowed to have non-zero values.
Because the vertical and horizontal �lters serve the purpose of extracting general

and informative texton data, the coe�cients are the same in both scenarios, i.e.,

the matrices are transposed versions of each other. In this scenario, the number

of �lters, I, is an even number but only I/2 independent sets of coe�cients are

learned. Fig. 6.1.a illustrates such �lters, W h and W T
h , where h = di/2e. The

aggregation tensor Ψ(T ) contains the result of I convolutions of T with allW h and

W T
h matrices,

Ψ2h−1(T ) = T ∗ (W h)T , (6.5)

Ψ2h(T ) = T ∗W h.

� Method II � Rotationally invariant �lters � The output of these �lters

doesn't change when arbitrary rotations are applied. Newer texture discrimination

methods are often of this type and their higher generality makes them suitable for

recognizing textures among di�erent images, which is important for applications

such as content-based image retrieval. This is the �rst optimized �lter approach

that is invariant to rotation. It uses matricesW i where the non-zero elements form

a circle of diameter a plus an element at the center of the window, as illustrated

in Fig. 6.1.b. The element at the center of the window can function as a reference

value for the non-zero elements in the circle, as in [Ojala 2002]. The aggregation

tensor Ψ(T ) contains the result of I convolutions of T with all W i, as in (6.4).

6.2.3 Local energy function

The integration function we propose as a local energy function, γ : Rp×q×I → Rv,
computes simple yet powerful high-order statistics of the �lter outputs. The statis-

tics are the average, the standard deviation and modi�ed standardized moments
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(a) rotationally discriminant (b) rotationally invariant

Figure 6.1: Location of non-zero values in texton analysis �lters

three and four, the skewness and kurtosis, respectively, of each layer of the aggre-

gation tensor, Ψi(T ),

κ1 = µ′1 ≡ µ,

κ2 =
2

√
µ′2 − µ′1

2 ≡ σ,

κ3 = 3

√(
µ′3 − 3µ′2µ

′
1 + 2µ′1

3
)
/κ3

2, (6.6)

κ4 = 4

√(
µ′4 − 4µ′3µ

′
1 + 6µ′2µ

′
1

2 − 3µ′1
4
)
/κ4

2,

µ′l = E
[
Ψ (T )l

]
=

1

pq

q∑
y=1

p∑
x=1

(Ψi (T , x, y))l ,

where κj is the j-th statistic we compute and µ′l is the l-th moment about the

origin of Ψi(T ). The modi�cation of the standardized moments j = 3 and 4, by

applying the j-th root, is intended to linearize κj and enable a better approximation

to a Gaussian distribution. This is supported by experimental results that show an

improved classi�cation rate in this scenario. Quantity µ′l can be computed e�ciently,

for every l, by: a) raising each element of Ψi (T ) to the power l and; b) using a

sliding window box �lter.

The �nal discrimination vector, φ(T ), is obtained by arranging each κj (Ψi (T ))

in a discrimination vector of size v = 4I,
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φ(T ) = γ (Ψ(T )) =



κ1 (Ψ1(T ))

κ2 (Ψ1(T ))

κ3 (Ψ1(T ))

κ4 (Ψ1(T ))
...

κ1 (ΨI(T ))

κ2 (ΨI(T ))

κ3 (ΨI(T ))

κ4 (ΨI(T ))


. (6.7)

By computing such comprehensive statistical measures of the �lter outputs, our

integration function is able to approximate typical local energy functions used in

the literature, including the exceptionally discriminant but computationally complex

one of Malik et al. [Malik 2001]. In this method, the I-dimensional �lter outputs

at each pixel are assigned to one of a set of previously identi�ed textons. The

di�erent textons within a texture patch make up a histogram that is used to infer its

texture class, by �nding the closest stored class histogram centroid according to some

histogram distance metric. The clustering of the �lter outputs into textons, with the

consequent loss of information, is deemed necessary in [Malik 2001] to enable the use

of relatively simple one-dimensional histograms and histogram distance metrics. The

alternative of using I-dimensional histograms of the �lter outputs and I-dimensional

histogram distance metrics is computationally prohibitive.

This alternative is simple to implement in our method, since the high-order

statistics we compute of the �lter outputs make up a parametric descriptions of

such histograms. An I-dimensional histogram is described with a parametric set

of only 4I numbers and the (normalized) Euclidean distance substitutes costly I-

dimensional histogram distance metrics. In sum, our approximation reduces the

accuracy of each histogram by representing it parametrically but, by not having

to reduce its dimensionality, preserves important discriminant information. The

learning scheme is expected to make the best use of the characteristics of our method.

6.3 Learning texture �lters

6.3.1 Formulation as a minimization problem

The �lter parameters W that constitute the texture discrimination function, φ(.),

are obtained through supervised learning. Consider a training set of N texture

patches from C textures classes, and a map k :{1, ..., N}→{1, ..., C} that contains
the knowledge of which class c corresponds to patch n. We obtainW that maximizes

the overall probabilities of choosing class kn given T n, for all n ∈ {1, . . . , N},
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Ŵ = arg max
W

N∏
n=1

p (kn|φ (T n))

= arg max
W

N∏
n=1

p (φ (T n) |kn)∑C
c=1 p (φ (T n) |c)

' arg min
W

N∑
n=1

∥∥φ(T n)− µ̂kn
∥∥2

ˆΣ
−1

kn∑C
c=1 ‖φ(T n)− µ̂c‖

2
ˆΣ
−1

c

' arg min
W

N∑
n=1

∥∥φ(T n)− µ̂kn
∥∥2

ˆΣ
−1

kn

, (6.8)

where all classes are assumed equally likely; the denominator, which favors solu-

tions where texture classes have di�erent averages, is removed by imposing that all

averages µ̂C must be di�erent; and the discrimination vector is assumed to be a vec-

tor with Normal distribution, for computational simplicity. Quantity µ̂c represents

the sample average and Σ̂c the sample covariance, which is forced to be a diagonal

matrix for computational simplicity,

µ̂c =
1∑

{n:kn=c} 1

∑
{n:kn=c}

φ(T n), (6.9)

diag
(
Σ̂c

)
=

 1∑
{n:kn=c} 1

∑
{n:kn=c}

φ(T n)2

− µ̂2
c .

For the training of the rotationally invariant estimator, instead of rotating the

texture patches, we change the order of the parameters located in the circular area

of W , as illustrated in Fig. 6.2. The parameters in the outter circle shift their

position but not the parameter in the center of W i, wi0 . This procedure has the

advantage of being computationally simpler than rotating texture patches and of

not introducing rotation blur, which has been reported in [Ojala 2002] to introduce

classi�cation errors. We denote the amount of shift with letter θ ∈ {1, . . . ,Θ}, where
W i(θ) indicates that the parameters inW i (exceptW i0) are shifted by θ positions.

Θ is the number of parameters in the outter circle of W i.
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Figure 6.2: Illustration of the shift of parameters ofW i located in the outer circle.
The central parameter remains unaltered

In this scenario, equations (6.8) and (6.9) become

Ŵ = arg min
W

N∑
n=1

Θ∑
θ=1

∥∥φW θ (T n)− µ̂kn
∥∥2

ˆΣ
−1

kn

,

µ̂c =
1∑

{n:kn=c}

Θ

∑
{n:kn=c}

Θ∑
θ=1

φW θ (T n) , (6.10)

diag
(
Σ̂c

)
=

1∑
{n:kn=c}

Θ

∑
{n:kn=c}

Θ∑
θ=1

φW θ (T n)2 − µ̂2
c .

6.3.2 Supervised learning using a Genetic Algorithm

The minimizations in (6.8) or (6.10) constitute optimization problems in the domain

of the internal parameters of φ(.), i.e., W . These optimization problems are non-

trivial, due to the fact that the objective functions are non-convex on W . We use

a Genetic Algorithm (GA) [Mitchell 1996] for the purpose, but other methods such

as, e.g., particle swarm optimization [Poli 2008], could be used instead. Although

GAs provide no guarantee of convergence to the global optimum, they have been

used with success in several non-convex problems, since the crossover step moves

the population away from the local optima that a traditional local algorithm (e.g.,

gradient descent) might get stuck in. Although GAs are easy to implement, they

have the disadvantage of being slow � the parameters of each �lter whose results are

reported in Section 6.4 took several hours to compute. However, since the training

phase occurs o�ine and only once for each set of training images and parameters,

the computation time of the GA does not in�uence the run-time performance of this

method.

Other methods have used GA for texture discrimination: reference [Lam 2008]

proposes a GA scheme to evolve discriminators of pixel histograms of di�erent tex-

tures, reference [Song 2003] proposes to evolve Mathematical operations with pixels
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in textons, to enable fast discrimination, and, in [Aurnhammer 2007], better dis-

criminating GLCM features are evolved. However, the discrimination ability of

these methods is far below the state-of-the-art ones referred in Section 2.3.

The optimization procedure we propose is summarized as Alg. 4. The GA starts

by creating an initial generation of Gp �lter coe�cients,W , initialized with uniform

random noise of magnitude Gn. For each member W p, texture feature vectors

φW p
(T n) are computed, as are all class sample averages µ̂c and covariances Σ̂c.

The classi�cation error of each member, εp, is computed and the GpGe members

with the smallest classi�cation errors are selected, i.e., the elite member set. A new

generation is created by copying the elite member set of the previous generation and

creating new GpGc crossover and GpGm mutation members. Crossover members are

created by mixing the coe�cients of two elite members, and mutation members, by

taking an elite member and adding uniform random noise of magnitude Gn. The

elite members are selected and mixed in an uniformly random way. The crossover

step enables large jumps in the solution space and, since the mutation magnitude

Gn decreases by Gu in every generation, the mutation step enables elite members

to converge to their local optima. The new generation is evaluated and the process

is repeated until the mutation magnitude has a low value and a good solution is

achieved.

6.4 Experiments

We describe experiments using the Brodatz [Brodatz 1966] and the VisTex [vis 2002]

photographic albums. The Brodatz album, illustrated on the top of Fig. 6.3 and

Fig. 6.5, has been the de facto standard for evaluating texture analysis methods for

many years, with hundreds of studies having been applied to its images. The VisTex

album, illustrated on the bottom of Fig. 6.3, provides texture images that are di�er-

ent from the Brodatz ones but are also representative of real world scenarios. Other

databases, e.g., Columbia-Utrecht database [Dana 1999], have been used when the

goal is to classify materials exhibiting dramatic appearance variability (arising from

very di�erent viewpoints and lighting). Since we particularly care with the analysis

of the texture patterns under mild variations, we consider the Brodatz and VisTex

databases to be adequate.

6.4.1 Training

For the Brodatz database, we use a training set of N = 1025 texture patches from

C = 41 classes. Each class corresponds to an image from this album, from which 25

non-overlapping patches are extracted. Each image in the VisTex database corre-

sponds to one of C = 81 classes, from which 9 non-overlapping patches are extracted,

making up a total of N = 729 texture patches. The mean value of each image is

set to a constant value, to enable a more accurate measurement of the true dis-

criminative ability of our method. We use patches of size p × q = 60 × 60 for the

Brodatz album and 80×80 for the VisTex one (as Fig. 6.3 illustrates, the repetitive
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Algorithm 4 Genetic Algorithm for learning W

1: input: map kn, patches T n, texton size a, number of �lters I, GA parameters:
population Gp, noise magnitude Gn, update Gu, rate of elitism Ge, cross-over
Gc and mutation Gm (with Ge +Gc +Gm = 1)

2: % initialize W with uniform random noise
3: W pi ∼ GnU (−1, 1, a), ∀p ∈ {1, . . . , Gp}, i ∈ {1, . . . , I}
4: repeat

5: % For all members W p of the population
6: for p = {1, . . . , Gp} do
7: µ̂c ← 0, Σ̂c ← 0, #c← 0, ∀c = {1, . . . , C}
8: for n = {1, . . . , N} do
9: % compute texture feature vectors (eq. (6.7))

10: φW p
(T n)← γ

(
ΨW p

(T n)
)

11: µ̂kn ← µ̂kn + φW p
(T n)

12: diag
(
Σ̂kn

)
← diag

(
Σ̂kn

)
+ φ2

W p
(T n)

13: µ̂c ← µ̂c/#c, ∀c
14: diag

(
Σ̂c

)
← diag

(
Σ̂c

)
/#c− µ̂2

c , ∀c
15: % compute classi�cation error (eq. (6.8))

16: εp =
∑N

n=1

∥∥∥φW p
(T n)− µ̂kn

∥∥∥2

ˆΣ
−1

kn

17: % decrease magnitude of mutation noise
18: Gn ← GnGu
19: % create population for next generation
20: save GpGe best members, Wp ←Warg minp′ εp′

21: crossover GpGc members, Wp ← mix
(
Wp′ ,Wp′′

)
22: mutate GpGm members, Wpi ←Wp′i +GnU (−1, 1, a)
23: until Gn < threshold
24: output: W 0

pattern of the textures in the Brodatz album is typically smaller than the one of the

textures in the VisTex album) and texton patches of size a × a = 7 × 7. Although

there are no supported quantitative ways to determine the parameters of the GA

described in Section 6.3, it is typical that the number of members that are used in

each generation is at least one order of magnitude larger than the number of pa-

rameters being generated, so that su�cient variability exists within the gene pool.

In our scenario, in which the parameters being estimated are continuous (instead

of, e.g., binary), the required variability is much higher, so we use a population of

Gp = 1000 members, which is about two orders of magnitude. We use Ge = 10%

elitism rate, Gc = 50% crossover rate and Gm = 40% mutation rate. For initializa-

tion, we use random uniform noise of mutation magnitude Gn = 1 and it decreases

by Gu = 0.8 in every generation. When the mutation magnitude is so low that it

no longer meaningfully a�ects the elitist members, e.g., 10−3, the algorithm stops.
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Figure 6.3: Top: "Ra�a weave" (D18) and "fossilized sea fan" (D87) from the
Brodatz database; Bottom: "wood" and "food" from the VisTex database

6.4.2 Filter performance

6.4.2.1 Comparison with other methods

We evaluate the �lters obtained in the training phase, φ(.), in three scenarios. In the

�rst one, we classify texture patches from the same classes used in the training phase

and using the same parameters. We compute a �lter using only the Brodatz album

and another one using the VisTex album. This illustrates applications where we

know beforehand the set of textures we need to discriminate, so we compute a �lter

φ(.) that is highly discriminant and e�cient in this scenario. In the second scenario,

we use both �lters on the database 1 (DB1) of [Partio 2007], a large comparative

study of texture discrimination methods. The texture patches have size 60 × 60,

as in the �rst scenario of the Brodatz database. By doing so, we are testing the
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Table 6.1: Correct classi�cation rates for proposed Methods I and II and the state-
of-the-art (see details in the text)

Method I Method II GLCM GFB LBP

I Brodatz DB1 DB1 I Brodatz DB1 DB1 DB1 DB1 DB1
60× 60 60× 60 160×160 60× 60 60× 60 160×160 160×160 160×160 160×160

2 91.90% 78.67% 98.70%

66.7% 92.2% 90.7%

4 99.02% 87.73% 99.48% 4 74.87% 49.84% 79.65%

6 99.32% 91.13% 99.90% 6 79.82% 51.40% 83.45%

I VisTex DB1 DB1 I VisTex DB1 DB1
80× 80 60× 60 160×160 80× 80 60× 60 160×160

2 87.65% 79.06% 98.25%

4 98.76% 87.71% 99.76% 4 65.80% 54.35% 92.28%

6 99.38% 87.60% 99.74% 6 73.89% 60.21% 89.36%

generalization ability of �lters φ(.), since 45% of the classes in database DB1 are not

present in the Brodatz database and there are no common classes with the VisTex

database. In the third scenario, we use both �lters on DB1 but with texture patches

of size 160 × 160, the same size used in the tests reported in [Partio 2007]. This

allows us to directly compare the performance of our method with other popular

methods. DB1 [Partio 2007] consists of N = 960 non-overlapping texture patches

from C = 60 texture classes, where each corresponds to an image of the Brodatz

album.

The results we obtained are shown in Table 6.1. The correct classi�cation rates of

our method on the textures used for training, shown in the left Brodatz or VisTex

columns, illustrate the validity of our approach. Method I achieves classi�cation

rates above 90% for the Brodatz album, even for I = 2, i.e., a single horizontal and

vertical convolution, and respective high-order statistics, which are very simple to

compute. This is especially noteworthy since the texture patches are relatively small,

60 × 60, which makes classi�cation more challenging, as we argue in the following

section. Method II achieves an inferior but still positive performance. By enabling

high discrimination in a multi-texture scenario, in a computationally simple way,

our method surpasses current optimized �lter approaches.

Using the learned �lters on database DB1 [Partio 2007] yields lower classi�cation

rates, displayed in the DB1 � 60× 60 columns, particularly for smaller I. The still

high correct classi�cation rate for Method I shows that the learning step creates

�lters that are able to discriminate textures in general. However, the reduction in

this rate rate also shows the e�ect of over�tting to the training set. In Method II, the

lower classi�cation rates on the training set and the sharper decrease when applied to

database DB1 indicates that this implementation of a rotationally invariant classi�er

requires more �lters than Method I for proper generalization to occur.

To compare our method with the state-of-the-art, we use the DB1 database

and texture patches of size 160 × 160, as in the comparative study reported in

[Partio 2007]. Since our �lters are learned using 60× 60 or 80× 80 texture patches,



6.4. Experiments 89

in the databases described in Section 6.4.1, imperfect generalization partly accounts

for the errors we obtain. Even in this scenario, our results, shown in columns DB1 �

160×160, show that Method I, even with I = 2, achieves an accuracy of 98.70% for

the Brodatz album and 98.25% for the VisTex one. These correct classi�cation rates

are signi�cantly higher than the ones of the methods tested in [Partio 2007] and, in

particular, than the ones obtained with GLCM, GFB and LBP. Naturally, increasing

I, yields even higher accuracy. Table 6.1 also shows that the rotationally invariant

Method II is able to successfully classify 83.45% and 89.36% of the patches in the

Brodatz and VisTex albums, respectively, with I = 6, regardless of their rotation

angle.

6.4.2.2 In�uence of texture patch size

Table 6.1 reports an improved performance of our method for database DB1, ob-

tained by simply by increasing the texture patch size from 60× 60 to 160× 160. To

elaborate on the in�uence of texture patch size, Fig. 6.4 shows the correct classi�-

cation rates of Method I, for I = 2 (left) and I = 4 (right), as a function of p = q

used in the test phase, i.e., the patch size (the training phase used patches of size

60× 60 for the Brodatz database and 80× 80 for the VisTex database, as described

in Section 6.4.1). The gray lines in the plots correspond to each of the classes in

the training set and the black line is the average correct classi�cation rate. All

plots show that, as the texture patch size increases, the classi�cation rate increases

accordingly.

The two lower correct classi�cation rates for I = 2, for the Brodatz album, occur

for images D32 and D29, shown in the left and center of Fig. 6.5. The image on

the right of Fig. 6.5 is D49, the one that leads to the higher correct classi�cation

rate. By observing these textures, we note that the repetitive pattern of the images

on the left and the center is quite large, thus requiring a large patch to capture all

the necessary discriminating features. On the other hand, the image on the right is

mostly composed of high frequency light-to-dark transitions, which can be captured

by using a small patch. Method I with I = 4 and for the Brodatz album, on the

other hand, successfully discriminates all textures with smaller patches. This occurs

due to its increased resources. Note that, for texture patches of size 160 × 160, as

used in the experimental tests of [Partio 2007], both methods show near-perfect

classi�cation for most classes. Note that, because the repetitive patterns in the

images of the VisTex database are much larger than in the Brodatz database, larger

texture patch sizes are needed for lower classi�cation error.

The patch size is an important factor in discrimination methods. Patches should

be small enough to reduce texture boundary issues but also large enough to include

su�cient repetitive textural patterns for good discrimination. For deterministic

textures, characterized by a set of primitives and a placement rule (e.g., a tile �oor),

larger patch sizes are typically required. Stochastic textures, on the other hand, do

not have easily identi�able primitives (e.g., granite, bark, sand) and typically require

smaller patch sizes.
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Figure 6.4: Correct classi�cation rate of each texture class as a function of texture
patch size p × q (p = q), using Method I and I = 2 (left) and I = 4 (right). The
average value is represented by the darker line. Top: Brodatz database; Bottom:
VisTex database

6.4.2.3 In�uence of the number of moments

As mentioned in Section 6.2.3, statistical moments make up parametric descriptions

of histograms. Naturally, the larger the number of moments, more complex are the

histograms allowed to be. Fig. 6.6 shows how the number of moments in�uences the

correct classi�cation rate of Method I, for several values of I and using the Brodatz

database. The method is trained as described in Section 6.4.1 with the exception

that fewer moments are used. As expected, fewer moments decrease the classi�cation

accuracy. For higher values of I, the e�ect of coarser histogram descriptions is

compensated by the extra �lters.

6.4.2.4 In�uence of the texton patch size

Now, Method I is trained as described in Section 6.4.1, for several I and using the

Brodatz database, with the exception that textons of distinct sizes are used. Fig. 6.7

shows the classi�cation rates for various texton sizes. For texton size a = 3, the

correct classi�cation rates are already close to their maximum values, and larger



6.4. Experiments 91

Figure 6.5: "Pressed cork" (D32), "beach sand" (D29), and "screening straw" (D49)
from the Brodatz database. Method I, with I = 2, has trouble classifying D32 and
D29 but not D49; however, with I = 4, all these texture are correctly classi�ed

Figure 6.6: In�uence of the number of moments on the correct classi�cation rate of
Method I, for the Brodatz database

textons, containing more contextual information, only improve classi�cation up to

about a = 7. This shows that the most discriminant data (for the Brodatz album)

is contained in small 3×3 windows, thus supporting the theory of textons of Julesz.

It also underlines the simplicity of our method, by showing that convolutions with

kernels as small as 3× 1 are su�cient for high discrimination.

6.4.2.5 Segmentation performance

Fig. 6.8 and Fig. 6.9 show 256 × 256 images composed by di�erent Brodatz and

VisTex textures and corresponding segmentation results, obtained by Method I, for

several values of I. These segmentation results were obtained for a patch size of 27×
27 and show that, for the Brodatz database, misclassi�cation errors are concentrated

mostly on the border areas. Since the repetitive patterns of the textures in the
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Figure 6.7: In�uence of the texton patch size on the correct classi�cation rate of
Method I, for the Brodatz database

Table 6.2: Filter coe�cientsW resulting from the training step (see Section 6.4.1),
for Method I, with I = 2 and I = 4
I W

1 W 1 = 0.943558335 −0.233047068 −0.305871248 −0.5472932 −3.62117529 1.29731488 2.3787837

2
W 1 = 0.7133761 −1.53790593 1.42311716 −0.413867027 0.050681863 0.09082524 −0.3170155
W 2 = −0.217909262 −0.102130122 −0.8199126 −0.344204336 −0.1386514 −0.107457839 −1.08223581

VisTex database are larger, more classi�cation errors occur in Fig. 6.9.

6.4.3 Filter analysis

Table 6.2 shows the �lter coe�cients that were obtained in Section 6.4.1 for Method

I, with I = 2 and I = 4, using the Brodatz database.

The frequency response of �lter W 1, for Method I, with I = 2, is plotted in

Fig. 6.10 (top). It shows that W 1 is essentially a wide band-pass �lter that atten-

uates the lowest and highest frequencies. This suggests that textures are identi�ed

simply by analyzing the statistics of the transition magnitudes. The low frequency

attenuation indicates that the mean value of each texton is not useful for texture

discrimination. Because the textures in the Brodatz album are not very sharp, the

high-frequency attenuation is probably meant to reduce the e�ect of noise. Fig. 6.10

(bottom) plots the frequency response of �lters W 1, W 2, and W 3, for Method I,

with I = 6. It shows a �ner (and redundant) distribution of the frequency spectrum

by each �lter, which explains the increased accuracy as I increases.



6.5. Discussion and conclusions 93

Figure 6.8: Union of Brodatz textures (top left) and segmentation results using
Method I, with I = 2 (top right), I = 4 (bottom left), I = 6 (bottom right)

6.5 Discussion and conclusions

This chapter presents a computational simple and highly discriminant approach to

texture discrimination. It is based on optimized �lters and its general methodology

is particularized to rotationally discriminant and rotationally invariant classi�ers.

The performance of our method exceeds current optimized �lter approaches in multi-

texture scenarios or when rotation invariance is needed. The discriminative ability

of our method is comparable or superior to state-of-the-art methods such as GLCM,

GFB or LBP. We believe that the disadvantage of requiring a supervised learning

stage, is far outweighted by these advantages. In fact, the computational complexity

of most state-of-the-art methods is at least an order of magnitude greater than ours.

Similarly to �lter bank approaches, and unlike LBP or GLCM, our method has

the advantage of having a very simple and intuitive foundation � it simply consists of

a number of linear convolutions followed by statistical measures. This also suggests
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Figure 6.9: Union of VisTex textures (top left) and segmentation results using
Method I, with I = 2 (top right), I = 4 (bottom left), I = 6 (bottom right)

that it would be easy to adapt the �tness function to application-speci�c scenarios,

e.g., classes with di�erent a priori likelihoods, and learn optimal �lters for that

e�ect. In standard methods, such adaptations are not straightforward.
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Figure 6.10: Frequency response of �lters W i of Method I, with I = 2 (top) and
I = 6 (bottom), obtained using the Brodatz database
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Chapter 7

Combination of all methods

7.1 Proposed approach

Although the merit of each individual method was shown in the previous chap-

ters and are the main focus of this thesis, we provide a brief illustration that the

combination of the low level methods dealt within this thesis enable better image

understanding of complex images. We do not claim that the techniques used in this

chapter are novel or even comparable to the state-of-the-art � we are merely show-

ing an example that combines edge detection, line segment and texture detection.

We chose to combine our methods by �rst detecting regions that contain textures,

since the edges and line segments detected in them are erroneous. Edge detection

and line segment extraction is then applied to the remaining area. By having fewer

erroneous line segments, the task of image understanding becomes simpler.

Since the method in chapter 6 deals with texture discrimination, i.e., the ability

to distinguish between various types of textures, and not with texture detection, we

modify it slightly for this goal. In chapter 6, the classes are known beforehand and

therefore it is possible that, once a candidate set of �lter coe�cients is processed by

the Genetic Algorithm, class centroids and the covariance matrices (to be used in

the weighted Euclidean distance, inside the cost function in (6.8)), can be computed

for every class. If the classes (and even the number of classes) in an image are not

known beforehand, it is preferable to not depend on speci�c covariance matrices

but, instead, to have a covariance matrix that is applicable to all classes. In this

scenario, we simply assign weights to the moments of the �lter convolution outputs

in the classi�cation task. We proceed simply by replacing class-speci�c covariance

matrices in equation (6.8) with a constant covariance matrix,

Ŵ = arg max
W

N∑
n=1

p (kn|φ (T n))

' arg min
W

N∑
n=1

∥∥φ(T n)− µ̂kn
∥∥2

ˆΣ
−1 . (7.1)

In chapter 6, the class centroids and covariance matrices were computed analyti-

cally using equation 6.10. To obtain a generic covariance matrix, various alternatives

are possible. Firstly, we can obtain covariance matrices for each class in the training

set, as before, and then combine them using, e.g., their average or their median

values. In this chapter, we aggregate the estimation of the covariance matrices to
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the estimation of the �lter coe�cients by the Genetic Algorithm,

{Ŵ , Σ̂} = arg max
W ,Σ

N∑
n=1

p (kn|φ (T n))

' arg min
W ,Σ

N∑
n=1

∥∥φ(T n)− µ̂kn
∥∥2

ˆΣ
−1 . (7.2)

Because we make the simplifying approximation that the covariance matrices

are diagonal matrices, only a few extra parameters need to be estimated. We solve

the minimization problem (7.2) using the Genetic Algorithm detailed in section 6.3,

using the extra restriction that the values of the diagonal of Σ̂ are non-negative.

After obtaining parameters {W ,Σ}, we detect textured regions by �rst com-

puting the magnitude of the gradient of the texture discrimination function, φ(·),
using the weighted Euclidean distance,

∂φ(T , x, y)

∂x
= ‖φ(T , x+ 1, y)− φ(T , x, y)‖2ˆΣ−1

∂φ(T , x, y)

∂y
= ‖φ(T , x, y + 1)− φ(T , x, y)‖2ˆΣ−1

|∇φ(T )|(x,y) =

√
∂φ(T , x, y)2

∂x
+
∂φ(T , x, y)2

∂y
. (7.3)

Then, we downscale the resulting texture gradient magnitude, |∇φ(T )|, by 8 in both

directions to obtain the gradient of a more representative area. We de�ne that the

points below a threshold constitute a texture region and apply dilation and erosion

to obtain a region without gaps. Finally, we upscale the image to the original size

using nearest neighbor interpolation, to be used as a mask for the original image.

7.2 Experiments

We �rst obtain the coe�cients that minimize the function (7.2), using, as before,

supervised learning with a Genetic Algorithm. We use, as in section 6.4.1, a training

set ofN = 1025 texture patches from C = 41 classes, where each class corresponds to

an image taken from the Brodatz database, from which 25 non-overlapping patches

are extracted. The mean value of each image is set to a constant value, and we

use patches of size p × q = 60 × 60 and texton patches of size a × a = 7 × 7. The

parameters of the Genetic Algorithm are the same as in section 6.4.1.

Fig. 7.1 shows the results that are obtained with the combination of the methods

proposed in this thesis on the image �rst shown in Fig. 1.1. The image on the

top left shows the original image and, the top right, the estimated texture areas,

according to the method described above. The bottom left image shows the result

that would have been obtained if the method detailed in chapter 5 (which uses the

TV parametric edge detection method we detail in chapter 3) had been applied
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directly to the original image. But because some of the areas have already been

identi�ed as belonging to textured areas and the line segments in those areas are

erroneous, the line segment detector is applied only to the texture-free areas. The

result is shown on the bottom right image (the textured area in indicated in gray,

for completeness).

Figure 7.1: Using texture detection to eliminate erroneous line segments. Top left:
image; Top right: detected texture region (in gray); Bottom left: line segments
extracted using the line segment extractor of chapter 5; Bottom right: image with
texture region (in gray) and line segments outside the texture regions.

7.3 Discussion and conclusions

The chapter provides a very simple illustration that the combination of low level

methods such as those dealt within this thesis enable better image understanding

of complex images.
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Chapter 8

Conclusion and future work

8.1 Conclusion

The high availability of image and video capturing devices created many image

processing applications such as autonomous vehicles [Urmson 2007] and surveil-

lance [Thida 2013]. Because these applications occur in unconstrained scenarios,

the input images are often complex, i.e., they contain many edges, line segments,

textures, etc. Because these applications often rely on low-level methods such as,

e.g., edge detection, line segment extraction, and multiple texture discrimination,

these methods should cope with complex images. In this thesis, we have shown that

many of the popular techniques are not suitable for dealing with complex images.

Regarding edge detection, we have shown that the Canny edge detec-

tor [Canny 1986] does not have a suitable strategy for dealing with large amounts

of noise or clutter (i.e., densely concentrated details on the image), missing the de-

tection of many real edges and returning false edges due to noise. We also showed

that, although the Statistical edge detector [Bovik 1986] can deal with noisy images

due to its statistical framework, it cannot cope with cluttered real images.

We proposed two edge detectors that combine what we denoted as contextual

edges, obtained with large footprints that deal well with noise; and local edges,

obtained with small footprints that enable good localization, to achieve an edge

detector with both qualities, as idealized by Canny. The contextual edges are

obtained by using two-sample tests, either the non-paired Total Variation (TV)

parametric test or the paired nonparametric sign test. We con�rmed experimentally

that our edge detectors can deal successfully with images with large amounts of

noise and clutter, combining robustness to noise and good localization.

Regarding line segment extraction, we have shown that the Hough trans-

form (HT) [Hough 1962, Duda 1972] cannot detect lines reliably when the image

has many edge points, as is often the case for complex images; and also that the

typical adaptation of the HT to deal with line segments does away with many of

the attractive features of the HT. On the other hand, local methods such as the

popular Line Segment Detector (LSD) [von Gioi 2010] also lack robustness to deal

with complex images, originating many interrupted segments.

We proposed two methods for extracting line segments. The �rst, which we call

STRAIGHT, added connectivity to the voting process of the Hough Transform,

inheriting the global accuracy of the HT and overcoming its limitations in the
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extraction of line segments. The second is a semi-local method that uses our edge

detector in the standard framework of local methods, resulting in a computationally

simple method. Our experiments show that both of our methods outperform

popular ones when dealing with complex images.

Regardingmulti-texture discrimination, we have shown that Gray-Level Co-

occurrence Matrices [Haralick 1973] are computationally expensive and have low

discrimination rates; that the popular Gabor Filter Banks approaches [Jain 1991,

Malik 2001] have high classi�cation rates but are computationally very complex;

and that Local Binary Patterns [Ojala 2002] has high discrimination rate but is

not simple to compute. This illustrates that current methods for multi-texture

discrimination are either not very discriminant or are computationally too complex

for several real-life applications.

We proposed a method that takes inspiration from Gabor Filter Bank approaches

but replaces its computationally expensive elements with simple learned alternatives.

The result is a method that is two to three orders of magnitude faster than most

multi-texture discrimination methods and with a discrimination rate that is com-

parable or superior to state-of-the-art methods. We believe that the disadvantage

of requiring a supervised learning stage, is far outweighted by these advantages.

8.2 Future work

This thesis introduced methods that can cope with unconstrained real images. How-

ever, this work also raised new questions that could be investigated in the future.

Regarding edge detection, we concluded that the use of elongated footprints

enabled the handling of noise and clutter. However, because elongated footprints

have narrow angular responses, the processing has to be repeated separately for

many directions, to cover the entire range of angles. This means that, in practice,

the values of the pixels in the image have to be used many times, which, naturally,

leads to computational complexity and memory transfer bandwidth issues. It would

be useful to not process the several directions independently but to, somehow, do

so in an integrated way, to optimize the use of pixel value accesses.

Because the footprint that was used to determine contextual edges consists of

two line segments that are steered to the desired angle, the edge detector is only

e�ective in �nding edges that are aligned along line segments or curves with large

curvature radii. It would be useful to extend the design of footprints to include

curved segments, spanning segments that are curved to the left to segments that are

curved to the right, to enable the detection of faster curving contours. Because, in

this scenario, all directions and curvatures would have to be tested, the number of

times that each pixel is accessed would increase, leading to further computational

complexity. This could be made practical if, as argued above, the information could

be obtained using fewer pixel accesses.

In this thesis, the size of the footprints for determining contextual edges has
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been set to a constant M = 15 pixels. As detailed earlier, this value was set experi-

mentally, as the one that achieves the best compromise between a good handling of

noise and clutter and computational complexity, for the images that were used in

this thesis. A method to determine the ideal size of such footprints automatically

could be useful. This size could be estimated as a constant for the entire image but,

perhaps more interestingly, this could occur locally, depending on local estimates

of what is needed to achieve a clear result. It is possible to imagine a process in

which only a few pixel values are analyzed (e.g., three) and, if it is already clear that

there is a contextual edge at that location (with some su�cient degree of statistical

certainty), no more pixels would be analyzed. And if the information was deemed

insu�cient to reach a conclusion, more pixels would be taken into account.

In this thesis and in all the suggestions above, the footprint that is used to deter-

mine if there is a contextual edge is narrow. A possible way to improve detections

could be to analyze wider areas, i.e., to have wider footprints, but still enabling

the detection of cluttered areas. The sheer fact that more pixels would be analyzed

enhances the contextual data that is taken into account when making decisions,

which would also be important in locating the start and end positions of contours.

Regarding line segment extraction, this thesis extended the ideas behind the

Hough Transform to include connectivity. Although this method was shown to have

good performance, the notion of including connectivity in the voting process of the

Hough Transform should receive further attention. In particular, to create methods

that are computationally simpler.
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