The World of Fourier and Wavelets:
Theory, Algorithms and Applications

Martin Vetterli
École Polytechnique Fédérale de Lausanne and University of California, Berkeley

Jelena Kovačević
Carnegie Mellon University

Vivek K Goyal
Massachusetts Institute of Technology

March 4, 2008

Copyright (c) 2007 Martin Vetterli, Jelena Kovačević, and Vivek K Goyal. These materials are protected by copyright. They have been made available for your personal use. You may not otherwise copy, reproduce, publish, post, transmit, display, store, sublicense, transfer, distribute, and/or make derivative works without the express written permission of the authors.
Cover photograph by Christiane Grimm, Geneva, Switzerland.

Experimental set up by Prof. Libero Zuppiroli, Laboratory of Optoelectronics Molecular Materials, EPFL, Lausanne, Switzerland.

The photograph captures an experiment first described by Isaac Newton in “Opticks” in 1730. Newton indicates how white light can be split into its color components and then resynthesized. It is a physical implementation of a decomposition into Fourier components, followed by a synthesis to recover the original, where the components are the colors of the rainbow. This experiment graphically summarizes the major theme of the book—many signals or functions can be split into essential components, from which the original can be recovered.
Contents

Image Attribution xiii
Quick Reference xvi
Preface xix
Reading Guide xxi

From Rainbows to Spectra 1
 Historical Remarks 6

I Tools of the Trade 7

1 From Euclid to Hilbert 9
1.1 Introduction 10
 Real Plane as a Vector Space 10
 Inner Product and Norm 10
 Subspaces and Projections 11
 Bases and Coordinates 12
 Orthogonal Bases 12
 General Bases 13
 Frames .. 14
 Matrix View of Bases and Frames 15
 Chapter Outline 17
1.2 Vector Spaces 17
 1.2.1 Definition and Properties 17
 1.2.2 Inner Products and Norms 20
 Inner Products 20
 Norms 21
 Distance 22
 1.2.3 Some Standard Normed Vector Spaces 23
 Finite-Dimensional Spaces 23
 l^p Spaces 24
 L^p Spaces 25
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C^p([a,b])$ Spaces</td>
<td>26</td>
</tr>
<tr>
<td>1.3 Hilbert Spaces</td>
<td>26</td>
</tr>
<tr>
<td>1.3.1 Completeness and Separability*</td>
<td>27</td>
</tr>
<tr>
<td>Completeness</td>
<td>27</td>
</tr>
<tr>
<td>Separability</td>
<td>28</td>
</tr>
<tr>
<td>1.3.2 Orthogonality</td>
<td>29</td>
</tr>
<tr>
<td>1.3.3 Linear Operators</td>
<td>30</td>
</tr>
<tr>
<td>1.3.4 Projection Operators</td>
<td>33</td>
</tr>
<tr>
<td>1.4 Bases and Frames</td>
<td>37</td>
</tr>
<tr>
<td>1.4.1 Orthonormal Bases</td>
<td>38</td>
</tr>
<tr>
<td>Bessel’s Inequality and Parseval’s Equality</td>
<td>38</td>
</tr>
<tr>
<td>When Is an Orthonormal Set a Basis?</td>
<td>39</td>
</tr>
<tr>
<td>Orthogonal Projection and Least Squares Approximation</td>
<td>40</td>
</tr>
<tr>
<td>1.4.2 General Bases</td>
<td>41</td>
</tr>
<tr>
<td>1.4.3 Frames</td>
<td>42</td>
</tr>
<tr>
<td>1.4.4 Matrix View of Bases and Frames</td>
<td>43</td>
</tr>
<tr>
<td>Discussion</td>
<td>45</td>
</tr>
<tr>
<td>1.5 Random Variables as Hilbert Space Vectors</td>
<td>45</td>
</tr>
<tr>
<td>1.6 Algorithms</td>
<td>45</td>
</tr>
<tr>
<td>1.6.1 Gaussian Elimination</td>
<td>45</td>
</tr>
<tr>
<td>1.6.2 Gram-Schmidt Orthogonalization</td>
<td>47</td>
</tr>
<tr>
<td>1.A Elements of Real Analysis</td>
<td>50</td>
</tr>
<tr>
<td>Convergence</td>
<td>50</td>
</tr>
<tr>
<td>1.A.1 Functions of Interest</td>
<td>51</td>
</tr>
<tr>
<td>Dirac Delta Function</td>
<td>51</td>
</tr>
<tr>
<td>Sine Function</td>
<td>52</td>
</tr>
<tr>
<td>Gaussian Function</td>
<td>53</td>
</tr>
<tr>
<td>1.B Elements of Algebra: Polynomials</td>
<td>53</td>
</tr>
<tr>
<td>Fundamental Theorem of Algebra</td>
<td>54</td>
</tr>
<tr>
<td>Polynomial Interpolation</td>
<td>54</td>
</tr>
<tr>
<td>Partial Fraction Expansion</td>
<td>54</td>
</tr>
<tr>
<td>1.C Elements of Linear Algebra</td>
<td>54</td>
</tr>
<tr>
<td>1.C.1 Basic Definitions and Properties</td>
<td>54</td>
</tr>
<tr>
<td>1.C.2 Linear Systems of Equations and Least Squares Solutions</td>
<td>57</td>
</tr>
<tr>
<td>1.C.3 Eigenvectors and Eigenvalues</td>
<td>59</td>
</tr>
<tr>
<td>Positive Definite Matrices</td>
<td>61</td>
</tr>
<tr>
<td>Singular Value Decomposition</td>
<td>61</td>
</tr>
<tr>
<td>1.C.4 Special Matrices</td>
<td>62</td>
</tr>
<tr>
<td>Circulant Matrices</td>
<td>62</td>
</tr>
<tr>
<td>Toeplitz Matrices</td>
<td>62</td>
</tr>
<tr>
<td>Band Matrices</td>
<td>62</td>
</tr>
<tr>
<td>Polynomial Matrices</td>
<td>62</td>
</tr>
<tr>
<td>Unitary Matrices</td>
<td>63</td>
</tr>
<tr>
<td>Chapter at a Glance</td>
<td>64</td>
</tr>
<tr>
<td>Historical Remarks</td>
<td>67</td>
</tr>
</tbody>
</table>
Contents

Further Reading ... 67
Books and Textbooks .. 67
Gram-Schmidt Orthogonalization Procedure for Frames 68
Exercises with Solutions ... 68
Exercises .. 75

2 Discrete-Time Sequences and Systems 81
 2.1 Introduction .. 82
 Chapter Outline .. 84
 2.2 Sequences .. 84
 2.2.1 Infinite-Dimensional Sequences 84
 Sequence Spaces ... 84
 Space of Finite-Energy Sequences $\ell^2(Z)$ 84
 Space of Finite-Power Sequences $\ell^\infty(Z)$ 85
 Space of Absolutely-Summable Sequences $\ell^1(Z)$ 85
 Geometry in $\ell^2(Z)$... 85
 Special Sequences .. 85
 Dirac impulse Sequence 85
 Sinc Sequence ... 86
 Heaviside Sequence ... 86
 Window Sequences ... 87
 2.2.2 Finite-Dimensional Sequences 88
 2.2.3 Two-Dimensional and Multidimensional Sequences 88
 Two-Dimensional Sequences 88
 Sequence Spaces ... 89
 Three-Dimensional Sequences 89
 2.3 Systems ... 90
 2.3.1 Discrete-Time Systems and Their Properties 90
 Basic Systems .. 91
 Shift ... 91
 Modulation .. 91
 Hard Limiter .. 91
 Accumulator .. 91
 Linear Systems .. 91
 Memoryless Systems ... 92
 Shift-Invariant Systems 92
 Causal Systems ... 92
 Stable Systems .. 92
 2.3.2 Difference Equations 93
 2.3.3 Linear Shift-Invariant Systems 94
 Impulse Response ... 94
 Convolution ... 95
 Filters ... 96
 Matrix View of the Convolution Operator 96
 Stability .. 96
 2.4 Analysis of Sequences and Systems 98
Contents

2.4.1 Fourier Transform of Infinite Sequences—DTFT
- DTFT Vs Frequency Response 100
- Magnitude and Phase Response 100
- Existence and Convergence of the DTFT 100
- Properties of the DTFT .. 103
 - Convolution ... 103
 - Modulation ... 104
 - Autocorrelation .. 104
 - Crosscorrelation .. 104
 - Parseval’s Equality 105
- Frequency Response of Filters 105

2.4.2 The z-transform
- z-transform and the DTFT 108
- Rational z-transforms 110
 - Difference Equations with Finite Number of Coefficients
 - Inverse z-transform 113
 - Inversion by Inspection 113
 - Inversion Using Partial Fraction Expansion 113
 - Inversion Using Power-Series Expansion 114
- Properties of the z-transform 115
 - Convolution ... 115
 - Autocorrelation .. 117
 - Spectral Factorization 118
 - Crosscorrelation .. 119
- Rational Filters and Filter Design 119
 - FIR Filters .. 120
 - Linear Phase Filters 120
 - Allpass Filters .. 120

2.4.3 Fourier Transform of Finite Sequences—DFT
- Periodic Assumption Leads to the DFT 122
 - Periodizing Finite Sequences 122
 - Circular Convolution 122
 - Eigensequences of the Convolution Operator 124
- Sampling the DTFT to Obtain DFT 125
- Properties of the DFT .. 126
 - Matrix View of the DFT 126
 - The DFT and the Circular Convolution 126
 - The DFT as an ONB 128
 - Relation between Linear and Circular Convolutions . 129

2.5 Multirate Sequences and Systems
- Downsampling .. 132
 - Downsampling by 2 132
 - Downsampling by N 134
- Upsampling .. 135
 - Upsampling by 2 ... 135
 - Relations between Upsampling and Downsampling 136
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Upsampling by N</td>
<td>137</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Filtering and Interpolation</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>Filtering Followed by Downsampling</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>Upsampling Followed by Filtering</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>Upsampling, Downsampling and Filtering</td>
<td>141</td>
</tr>
<tr>
<td>2.5.4</td>
<td>Multirate Identities</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>Orthogonality of Filter's Impulse Response to its Even Shifts</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>Noble Identities</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>Commutativity of Upsampling and Downsampling</td>
<td>143</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Polyphase Representation</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>Polyphase Representation of Sequences</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>Polyphase Representation of Filters</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>Polyphase Representation with Rate Changes by N</td>
<td>146</td>
</tr>
<tr>
<td>2.6</td>
<td>Stochastic Sequences and Systems</td>
<td>147</td>
</tr>
<tr>
<td>2.6.1</td>
<td>Stationary and Wide-Sense Stationary Processes</td>
<td>147</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Linear Shift-Invariant Processing</td>
<td>147</td>
</tr>
<tr>
<td>2.6.3</td>
<td>Multirate Processing</td>
<td>147</td>
</tr>
<tr>
<td>2.6.4</td>
<td>Wiener Filtering</td>
<td>147</td>
</tr>
<tr>
<td>2.7</td>
<td>Algorithms</td>
<td>147</td>
</tr>
<tr>
<td>2.7.1</td>
<td>Fast Fourier Transforms</td>
<td>147</td>
</tr>
<tr>
<td>2.7.2</td>
<td>Convolution</td>
<td>148</td>
</tr>
<tr>
<td>2.A</td>
<td>Elements of Complex Analysis</td>
<td>149</td>
</tr>
<tr>
<td></td>
<td>Roots of Unity</td>
<td>150</td>
</tr>
<tr>
<td>2.B</td>
<td>Elements of Algebra: Discrete Polynomials</td>
<td>151</td>
</tr>
<tr>
<td></td>
<td>Chapter at a Glance</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>Historical Remarks</td>
<td>153</td>
</tr>
<tr>
<td></td>
<td>Further Reading</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>Books and Textbooks</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>Inverse z-transform Via Contour Integration</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>Filter Design</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>Algebraic Theory of Signal Processing</td>
<td>155</td>
</tr>
<tr>
<td></td>
<td>Exercises with Solutions</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>Exercises</td>
<td>159</td>
</tr>
</tbody>
</table>

3 Continuous-Time Signals and Systems

<table>
<thead>
<tr>
<th>Subsection</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Instructions to Martin when he starts writing</td>
<td>161</td>
</tr>
<tr>
<td>3.2</td>
<td>Introduction</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>Signals of Interest</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>Systems of Interest</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>Fourier Transform</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>Periodic Systems</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>Fourier Series</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>Outline of the Chapter</td>
<td>162</td>
</tr>
<tr>
<td>3.3</td>
<td>Continuous-Time Signals and Systems</td>
<td>162</td>
</tr>
<tr>
<td></td>
<td>Continuous-Time Signals and Functions</td>
<td>162</td>
</tr>
</tbody>
</table>
Contents

Continuous-Time Systems .. 162

3.4 Fourier Transform ... 163
 Eigenfunctions of Convolution Operators 163
 The Fourier Transform CTFT 163
 Table of Fourier Transforms 163
 Table of Properties 163

3.5 Periodic Signals and Fourier Series 163
 Continuous-Time Periodic Signals 163
 Fourier Series ... 163
 Table of Fourier Series 163
 Table of Properties 163

3.6 Relation Between Fourier Transform and Series 163
 Fourier Series Coefficients As Samples Of The Fourier Transform ... 163
 Periodization ... 163
 Windowing and Periodization 163

3.7 Synthetic View of Different FTs 164
 DTFT .. 164
 DFT .. 164
 FT ... 164
 FS ... 164

3.A Appendices .. 165
 Chapter at a Glance 165
 Historical Remarks 166
 Further Reading ... 166
 Exercises with Solutions 166
 Exercises ... 166

3 Continuous-Time Signals and Systems (Old Version) 167

3.1 Introduction .. 168

3.2 Continuous-Time Fourier Transform—CTFT 168
 3.2.1 Properties of the CTFT 168
 Linearity ... 168
 Symmetry .. 169
 Shifting ... 169
 Scaling ... 169
 Differentiation/Integration 169
 Moments ... 169
 Convolution ... 170
 Parseval's Formula 171

3.3 Continuous-Time Fourier Series—CTFS 171
 3.3.1 Properties of the CTFS 172
 Parseval's Relation 172
 Best Approximation Property 173

3.4 Shannon Sampling ... 173
 3.4.1 Sampling Theorem 174
4 Sampling, Interpolation, and Approximation

4.1 Introduction

4.2 Functions on a Closed, Bounded Interval

4.2.1 Approximation by Polynomials

4.2.2 Approximation by Trigonometric Polynomials

4.3 Functions on the Real Line

4.3.1 Basic Idea of Sampling

4.3.2 Best Approximation in Shift-Invariant Spaces

4.3.3 Interpolation

4.4 Functions on the Real Line Revisited: Splines

4.5 Approximations with Finite Precision

4.6 Approximating Random Processes

4.7 Algorithms

Historical Remarks

Further Reading

Exercises with Solutions

Exercises

II Fourier and Wavelet Representations

5 Time, Frequency, Scale and Resolution

5.1 Introduction

5.2 Time and Frequency Localization

5.2.1 Time Spread

5.2.2 Frequency Spread

5.3 Heisenberg Boxes and the Uncertainly Principle

5.3.1 Uncertainty Principle for Discrete Time

5.4 Scale and Scaling

5.5 Resolution, Bandwidth and Degrees of Freedom

5.6 Haar Tiling (Old)

5.7 Case Studies

5.7.1 Music and Time-Frequency Analysis

5.7.2 Images and Pyramids

5.7.3 Singularities, Denoising and Superresolution
6 Filter Banks: Building Blocks of Time-Frequency Expansions 217

6.1 Introduction .. 218
6.2 Theory of Orthogonal Two-Channel Filter Banks 223
 6.2.1 The Lowpass Channel and Its Properties 223
 Orthonormality of the Filter and Its Even Translates 223
 Orthogonal Projection Property 224
 6.2.2 The Highpass Channel and Its Properties 225
 Orthonormality of the Filter and Its Even Translates 225
 Orthogonal Projection Property 225
 Orthogonality of the Lowpass and Highpass Filters 225
 6.2.3 Perfect Reconstruction 227
 Summary of Filters in an Orthogonal Perfect Reconstruction
 Filter Bank .. 228
 6.2.4 Polyphase View of Orthogonal Filter Banks 229
 6.2.5 Polynomial Approximation by Filter Banks 231
6.3 Design of Orthogonal Two-Channel Filter Banks 233
 6.3.1 Lowpass Approximation Design 233
 6.3.2 Polynomial Approximation Design 235
 6.3.3 Lattice Factorization Design 237
6.4 Theory of Biorthogonal Two-Channel Filter Banks 239
 6.4.1 The Lowpass Channel and Its Properties 241
 6.4.2 Completing the Biorthogonal Filter Bank 242
 6.4.3 Polyphase View of Biorthogonal Filter Banks 244
 6.4.4 Linear-Phase Filter Banks 245
6.5 Design of Biorthogonal Two-Channel Filter Banks 247
 6.5.1 Factorization Design 247
 6.5.2 Complementary Filter Design 249
 6.5.3 Lifting Design ... 250
6.6 Duality and Transmultiplexing 251
 6.6.1 Analysis of the Two-Channel Case 252
 6.6.2 Frequency Division Multiplexing 253
6.7 Theory of Stochastic Filter Banks 254
6.8 Algorithms .. 254
 The World Is Periodic 254
 The World Is Finite ... 254
 The World Is Symmetric 254
 The World Is Smooth .. 256
Chapter at a Glance .. 256
Historical Remarks ... 258
Contents

Further Reading .. 258
 Books and Textbooks .. 258
 Theory and Design of N-Channel Filter Banks 258
 Theory and Design of Multidimensional Filter Banks . 258
 Theory and Design of Oversampled Filter Banks ... 258
Exercises with Solutions 258
Exercises .. 259

7 Wavelet Series on Sequences 261
8 Wavelet Series on Functions 263
9 Localized Fourier Series on Sequences and Functions 265
10 Frames on Sequences ... 267
11 Continuous Wavelet and Windowed Fourier Transforms 269
12 Approximation, Estimation, and Compression 271

Bibliography ... 273
Index .. 278
Image Attribution

This list summarizes the sources for various images used in the book. Most of the text in the description is taken verbatim from the source (most often Wikipedia (W) or Wikimedia Commons WC).

Euclid Euclid of Megara (lat: Evklidi Megaren), Panel from the Series “Famous Men”, Justus of Ghent, about 1474. Panel, 102 x 80 cm, Urbino, Galleria Nazionale delle Marche. The image is in the public domain because its copyright has expired.

Hilbert This photograph was taken in 1912 for postcards of faculty members at the University of Göttingen which were sold to students at the time (see “Hilbert”, Constance Reid, Springer 1970). It was therefore published before 1923. Since it is not written in a foreign language, it is public domain in the US.

FFT Butterfly Will recreate or ask for permission to use.

Fourier Jean Baptiste Joseph Fourier. “Portraits et Histoire des Hommes Utiles, Collection de Cinquante Portraits,” Societe Montyon et Franklin, 1839-1840. The image is in the public domain because its copyright has expired.

Heisenberg Werner Karl Heisenberg (1901 - 1976). According to te MacTutor website: "We believe that most of the images are in the public domain and that provided you use them on a website you are unlikely to encounter any difficulty." This image (or other media file) is in the public domain because its copyright has expired.

Gabor Some information here.

0Last edit: JK Mar 04 08
natural numbers \(\mathbb{N} \) 0, 1, \ldots
integer numbers \(\mathbb{Z} \) \ldots, \(-1, 0, 1, \ldots
real numbers \(\mathbb{R} \) \((\mathbb{R}, \infty)\)
complex numbers \(\mathbb{C} \) \(a + jb, re^{j\theta}\)
a generic vector space \(V \) §1.2
a generic Hilbert space \(H \) §1.3
real part of \(\mathbb{R}(\cdot) \)
imaginary part of \(\mathbb{I}(\cdot) \)
closure of set \(S \)
functions \(x(t) \) argument \(t \) is continuous valued, \(t \in \mathbb{R} \)
sequences \(x_n \) argument \(n \) is an integer, \(n \in \mathbb{Z} \)
ordered sequence \((x_n)_n \)
set containing \(x_n \) \(\{x_n\}_n \)
vector \(x \) with \(x_n \) as elements \([x_n]\)
Dirac delta “function” \(\delta(t) \) \(\int x(t)\delta(t)\,dt = x(0) \)
Kronecker/Dirac/discrete impulse sequence \(\delta_n \) \(\delta_n = 1 \) for \(n = 0 \); \(\delta_n = 0 \) otherwise

Elements of Real Analysis (TBD)
integration by parts
\[
\int u\,dv = uv - \int v\,du
\]

Elements of Complex Analysis (TBD)
complex number \(z \) \(a + jb, re^{j\theta}, a, b \in \mathbb{R}, r \in \mathbb{R}^+, \theta \in [0, 2\pi] \)
conjugation \(z^* \) \(a - jb, re^{-j\theta} \)

\(X_n(z) \) conjugation of coefficients but not of \(z \)
\(W_N = e^{-j\frac{2\pi}{N}} \)

Standard Vector Spaces
Banach space of sequences with finite \(p \) norm, \(1 \leq p < \infty \)
\(\ell^p(\mathbb{Z}) \) \(\{x: \mathbb{Z} \to \mathbb{C} \mid \sum_n |x_n|^p < \infty\} \) with norm \(\|x\|_p = (\sum_n |x_n|^p)^{1/p} \)
Banach space of bounded sequences with supremum norm
\(\ell^\infty(\mathbb{Z}) \) \(\{x: \mathbb{Z} \to \mathbb{C} \mid \sup_n |x_n| < \infty\} \) with norm \(\|x\|_\infty = \sup_n |x_n| \)
Banach space of functions with finite \(p \) norm, \(1 \leq p < \infty \)
\(\mathcal{L}^p(\mathbb{R}) \) \(\{x: \mathbb{R} \to \mathbb{C} \mid \int |x(t)|^p\,dt < \infty\} \) with norm \(\|x\|_p = (\int |x(t)|^p\,dt)^{1/p} \)
Hilbert space of square-summable sequences
\(\ell^2(\mathbb{Z}) \) \(\{x: \mathbb{Z} \to \mathbb{C} \mid \sum_n |x_n|^2 < \infty\} \) with inner product \(\langle x, y \rangle = \sum_n x_ny_n^* \)
Hilbert space of square-integrable functions
\(\mathcal{L}^2(\mathbb{R}) \) \(\{x: \mathbb{R} \to \mathbb{C} \mid \int |x(t)|^2\,dt < \infty\} \) with inner product \(\langle x, y \rangle = \int x(t)y(t)^*\,dt \)

\(^0\) Last edit: JK Mar 02, 08
Bases and Frames

standard Euclidean basis \(\{ e_n \} \)

\(e_n = 1 \), for \(k = n \), and 0 otherwise

vector, element of basis or frame \(\varphi \)

when applicable, a column vector

basis or frame \(\Phi \)

set of vectors \(\{ \varphi_n \} \)

operator \(\Phi \)

concatenation of \(\varphi_n \)s in a linear operator: \([\varphi_0 \varphi_1 \ldots \varphi_{N-1}]\)

vector, element of dual basis or frame \(\varphi^* \)

when applicable, a column vector

operator \(\Phi^* \)

concatenation of \(\varphi_n^* \)s in a linear operator: \([\varphi_0^* \varphi_1^* \ldots \varphi_{N-1}^*]\)

expansion in a basis or frame \(x = \Phi\Phi^* x \)

Transforms

DFT: discrete Fourier trans.

\(x_n \overset{DFT}{\longleftrightarrow} X_k \)

\(X_k = \sum_{n=0}^{N-1} x_n W_N^{kn} \)

DTFT: discrete-time Fourier trans.

\(x_n \overset{DTFT}{\longleftrightarrow} X(e^{j\omega}) \)

\(X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x_n e^{-j\omega n} \)

FS: Fourier series

\(x(t) \overset{FS}{\longleftrightarrow} X_k \)

\(X_k = \frac{1}{T} \int_{-T/2}^{T/2} x(t)e^{-j2\pi kT} dt \)

FT: continuous-time Fourier trans.

\(x(t) \overset{CTFT}{\longleftrightarrow} X(\omega) \)

\(X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega t} dt \)

ZT: z-trans.

\(x_n \overset{ZT}{\longleftrightarrow} X(z) \)

\(X(z) = \sum_{n=-\infty}^{\infty} x_n z^{-n} \)

Discrete-Time Nomenclature

sequence \(x_n \)

signal, vector

discrete-time system \(T_n \)

filter, operator

linear \(T_n \)

filter, operator, matrix

convolution \(h * x \)

convolution, filter, operator, matrix

eigensequence \(v_n \)

eigenfunction, eigenvector

finite time \(v_n = e^{j\omega n} \)

\(h * v = H(e^{j\omega}) v \)

finite time \(v_n = e^{j2\pi kn/N} \)

\(h * v = H_k v \)

frequency response \(H(e^{j\omega}) \)

infinite time \(\sum_{n=-\infty}^{\infty} h_n e^{-j\omega n} \)

finite time \(\sum_{n=0}^{N-1} h_n e^{-j\omega n} = \sum_{n=0}^{N-1} h_n W_N^{kn} \)

Filters

synthesis lowpass \(g_n \)

synthesis highpass \(h_n \)

analysis lowpass \(\tilde{g}_n \)

analysis highpass \(\tilde{h}_n \)

Two-Channel Filter Banks

lowpass sequence \(\alpha_k \)

\(\alpha_k = (\tilde{g}_{2k-n}, x_n) \)

highpass sequence \(\beta_k \)

\(\beta_k = (\tilde{h}_{2k-n}, x_n) \)

synthesis basis: even elements \(\varphi_{2k,n} = g_{n-2k} \)

synthesis basis: odd elements \(\varphi_{2k+1,n} = h_{n-2k} \)

analysis basis: even elements \(\varphi_{2k,n} = \tilde{g}_{n-2k} \)

analysis basis: odd elements \(\varphi_{2k+1,n} = \tilde{h}_{n-2k} \)

synthesis filter length \(L \)
Preface

The aim of these notes is to present, in a comprehensive way, a number of results, techniques, and algorithms for signal representation that have had a deep impact on the theory and practice of signal processing and communications. While rooted in classic Fourier techniques for signal representation, many results appeared during the flurry of activity of the 1980’s and 1990’s, when new constructions were found for local Fourier transforms and for wavelet orthonormal bases. These constructions were motivated both by theoretical interest and by applications, in particular in multimedia communications. New bases with specified time-frequency behavior were found, with impact well beyond the original fields of application. Areas as diverse as computer graphics and numerical analysis embraced some of the new constructions, no surprise given the pervasive role of Fourier analysis in science and engineering.

The presentation consists of two main parts, corresponding to background material and the central theme of signal representations. A companion book on applications is in the works.

Part I, Tools of the Trade, reviews all the necessary mathematical material to make the notes self-contained. For many readers, this material might be well known, for others, it might be welcome. It is a refresher of the basic mathematics used in signal processing and communications, and it develops the point of view used throughout the book. Thus, in Chapter 1, From Euclid to Hilbert, the basic geometric intuition central to Hilbert spaces is reviewed, together with all the necessary tools underlying the construction of bases. Chapter 2, Sequences and Signal Processing, is a crash course on processing signals in discrete time or discrete space. in Chapter 3, Fourier’s World, the mathematics of Fourier transforms and Fourier series is reviewed. The final chapter in Part I, Chapter 4, Sampling, Interpolation, and Approximation, talks about the critical link between discrete and continuous domains as given by the sampling theorem. It also veers from the exact world to the approximate one.

Part II, Fourier and Wavelet Representations, is the heart of the book. It aims at presenting a consistent view of signal representations that include Fourier, local Fourier, and wavelet bases, as well as related constructions, frames, and continuous transforms. It starts in Chapter 5, Time, Frequency, Scale and Resolution, with time-frequency analysis and related concepts, showing the intuitions
central to the signal representations constructed in the sequel. Chapter 6, Filter Banks: Building Blocks of Time-Frequency Expansions, presents a thorough treatment of the most elementary block—the two-channel filter bank, a signal processing device that splits a signal into a coarse, lowpass approximation, and a highpass difference. This block is then used to derive the discrete wavelet transform in Chapter 7, Wavelet Series on Sequences. It is also used to construct wavelets for the real line in Chapter 8, Wavelet Series on Functions, where other wavelet constructions are also given, in particular those based on multiresolution analysis. We then return to a more Fourier-like view of signal representations in Chapter 9, Localized Fourier Series on Sequences and Functions based on modulated filter banks. Relaxing the condition of completeness inherent in bases to allow for overcompleteness leads to frames, studied in Chapter 10, Frames on Sequences. Chapter 11, Continuous Wavelet and Windowed Fourier Transforms, develops continuous time-frequency transforms, where time, frequency, or scale indices are now continuous (and thus “infinitely” overcomplete!). The final Chapter 12, Approximation, Estimation, and Compression ends with three classical tasks, making a step towards the real world and modeling of that world; no small task. Fourier and wavelet representations are natural models for at least some objects of interest, and are thus shown in action.

As can be seen from the outline, we try to present a synthetic view from basic mathematical principles to actual construction of bases, always with an eye on concrete applications. While the benefit is a self-contained presentation, the cost is a rather sizable manuscript. We provide a reading guide with numerous routes through the material. The level spans from elementary to advanced material, but in a gradual fashion and with indications of levels of difficulty. In particular, starred sections can be skipped without breaking the flow of the material.

The material grew out of teaching signal processing, wavelets and applications in various settings. Two of the authors (Martin Vetterli and Jelena Kovačević) authored a graduate textbook, Wavelets and Subband Coding, Prentice Hall, 1995, which they and others used to teach graduate courses at various US and European institutions. With a decade of experience, the maturing of the field, and the broader interest arising from and for these topics, the time was right for a text geared towards a broader-audience, one that could be used to span levels from undergraduate to graduate, as well as various areas of engineering and science. As a case in point, parts of the text are used at Carnegie Mellon University in an undergraduate class on bioimage informatics, where some of the students are biology majors. This plasticity of the text is one of the features which we aimed for, and that most probably differentiates the present book from many others. Another aim is to present side-by-side all methods which have arisen around signal representations, without favoring any in particular. The truth is that each representation is a tool in the toolbox of the practitioner, and the problem or application at hand ultimately decides which one is the best!
Reading Guide

Below we give suggestions on how to material could be covered in a standard, one-semester, course. Most of these scenarios have been taught already by one of the authors (where appropriate, we will note that). We will also note levels and audience whenever possible.

<table>
<thead>
<tr>
<th>Chapter</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route 1</td>
<td>✓</td>
</tr>
<tr>
<td>Level</td>
<td>Graduate</td>
<td></td>
</tr>
<tr>
<td>Taught</td>
<td>Martin Vetterli at EPFL, S’07.</td>
<td></td>
</tr>
<tr>
<td>Course Name</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Route 2</td>
<td>✓</td>
</tr>
<tr>
<td>Level</td>
<td>Graduate</td>
<td></td>
</tr>
<tr>
<td>Taught</td>
<td>Jelena Kovačević at CMU, S’08.</td>
<td></td>
</tr>
<tr>
<td>Course Name</td>
<td>Wavelets and Multiresolution Techniques.</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>Route 3</td>
<td>✓</td>
</tr>
<tr>
<td>Level</td>
<td>Graduate</td>
<td></td>
</tr>
<tr>
<td>Taught</td>
<td>Vivek Goyal at MIT, S’07.</td>
<td></td>
</tr>
<tr>
<td>Course Name</td>
<td>Wavelets, Approximation, and Compression</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td>This course does not have DTSP as a prerequisite, but most students are well prepared.</td>
<td></td>
</tr>
</tbody>
</table>

⁰Last edit: JK Mar 04 08

xxi
<table>
<thead>
<tr>
<th>Chapter</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Route 4</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>·</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>·</td>
<td>·</td>
<td>·</td>
<td>·</td>
<td>·</td>
</tr>
<tr>
<td>Level</td>
<td>Graduate</td>
<td></td>
</tr>
<tr>
<td>Taught</td>
<td>Jelena Kovačević at CMU, S’04, F’04, F’05, F’06.</td>
<td></td>
</tr>
<tr>
<td>Course Name</td>
<td>Advanced Bioimage Informatics</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td>This material was taught as part of the course, covering modern tools to be used in bioimage informatics.</td>
<td></td>
</tr>
<tr>
<td>Route 5</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>·</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>·</td>
<td>·</td>
<td>·</td>
<td>·</td>
<td>·</td>
</tr>
<tr>
<td>Level</td>
<td>Undergraduate</td>
<td></td>
</tr>
<tr>
<td>Taught</td>
<td>Jelena Kovačević at CMU, S’05, S’06, F’06, F’07.</td>
<td></td>
</tr>
<tr>
<td>Course Name</td>
<td>Bioimage informatics</td>
<td></td>
</tr>
<tr>
<td>Comments</td>
<td>This material was taught as part of the course, covering modern tools to be used in bioimage informatics.</td>
<td></td>
</tr>
</tbody>
</table>