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Abstract—Recent approaches to classification of text, images, recover previous) information-theoretic kernels on mesasu

and other types of structured data, launched the quest for psitive
definite (p.d.) kernels on probability measures. In particdar,
kernels based on the Jensen-Shannon (JS) divergence and eth
information-theoretic quantities have been proposed. Wernitro-
duce new JS-type divergences, by extending its two building
blocks: convexity and Shannon’s entropy. These divergense
are then used to define new information-theoretic kernels on
measures. In particular, we introduce a new concept of g-
convexity, for which a Jensen g-inequality is proved. Basean
this inequality, we introduce the Jensen-Tsallis g-diffeence, a
nonextensive generalization of the Jensen-Shannon divesgce.
Furthermore, we provide denormalization formulae for entropies
and divergences, which we use to define a family of nonextensi
information-theoretic kernels on measures. This family, gounded
in nonextensive entropies, extends Jensen-Shannon divergce
kernels, and allows assigning weights to its arguments.

Index Terms—Positive definite kernels, nonextensive entropy,
Tsallis entropy, Jensen-Shannon divergence, convexity,eknel
machines.

I. INTRODUCTION

probability measures, with applications in classificatibtext,
images, and other types of structured data [2], [3], [4]. |

(JSD [5]) and other (Shannon) information-theoretic qifigst
have been considered by several authors [2], [3].

Over the years, several generalizations of the Shannon

entropy have been proposed [6], [7], [8]. Rényi entropies a

arguably the best known of these, with several applications
[9], [10]). The Rényi and Shannon entropies are both
additive the joint entropy of independent variables is the

sum of the individual entropies. In the so-callednextensive and the chain rule,(X,Y) =

(e.g.,

(namely Tsallis) entropies [7], [8], [11], the additivitygperty

More specifically, our main contributions are:

« A new concept ofg-convexity, for which aJenseng-
inequality(Jql) is proved. Based on the Jgl, we introduce
a the Jensen-Tsallig-difference (JTgD) a nonextensive
generalization of the JSD.

« Characterization of the JTgD, with respect to convexity
and extrema, extending the work in [19], [5] for the JSD.

o Denormalization formulae for entropies and diver-
gences, which we use to define a family nonextensive
information-theoretic kernels on measures. This family
(which contains JSD kernels [20] as particulars cases)
is novel in two ways: it is grounded in nonextensive
entropies; it allows assigning weights to its arguments.

All the proofs omitted in this paper can be found in [21].

Il. TSALLIS ENTROPIES
Let A"~! be the simplex inR™. The Tsallis entropys, :

_ _ _ A"~! - R, defined as
In the field of kernel-based machine learning [1], there has

been recent interest in defining positive definite kernels W (py,.

_ (1—2?:11)?) _
CPp) = e = —
qg—1

> p(z)? Ingp(z) (1)

reX

L . . -
particular, kernels based on the Jensen-Shannon d|vengWEereln‘Z( z) := (27 7~1)/(1-q) is theg-logarithm, satisfies
the axioms for nonextensive entropies introduced in [22].

Tsallis joint and conditional entropies are defined as

Sq(va) = _Zp(xvy)qlnqp(xay)
S(XIY) = = plz,y)"Ingp(xly)
S,(X) +5,(Y|X) holds [23].

For two pmfspx, py € A", the Tsallis relative entropy

is abandoned. Tsallis entropies have been used to formulgéseralizing the KLD, is defined as

nonextensive statistical mechanics [12], [13] and, rdgeint
signal/image processing [14], [15], [16].

Dy(px|py) : pr ) Ing(py (2) /px (). (2)

Convexity is a key concept in information theory, namely
via the ubiquitouslensen’s inequalityJl) [17], [18]. The JI .
underlies the concept of JSD, which has been used in statisti We consider functionals that extend the domain of the
machine learning, image and signal processing, and physic&hannon and Tsallis entropies to unnormalized measures.
In this paper, we introduce new JSD-type divergences, Bythough they are completely characterized by their restm
extending its two building blocks: convexity and Shannon® the normalized counterparts, these denormalizatioh$wi
entropy. These divergences are then used to define new (asdd in Section VI to derive novel positive definite kernels.

ENTROPIES OF UNNORMALIZED MEASURES



Let (X, .#,v) be a measured space, wheres Hausdorff Proof: Straightforward from (6) and (8). ]
andv ao- f|n|te Radon measure (usually the Lebesgue-Borel Natyrally, all the equalities in Prop. 1 are obtained byrigki
measure, ift C R and intt’ # &, or the counting measure, if the |imit ¢ — 1 in those of Prop. 2.

X is countable). We denote by/, (') the set offinite Radon

v-absolutely continuous measures ah and by M1 (X) the IV. JENSENDIFFERENCES ANDDIVERGENCES
subset of those which are probability measures. For siylic  Definition 3 (Jensen difference (JD)): Consider

we often identify each measure M, (X) or M1 (X) withthe two measured sets(X,.#,v) and (7,.7,7). Let

corresponding nonnegative density. In the sequel, Lelesgy = {ju;}ier € [M4(X)]7 be a set of measures in
Stieltjes integrals of the fornj, f(x)dv(x) are often written A7, (X) indexed by7, and letw € M, (7) be a measure in
as [, f, orsimply [ f, if A=2X. T. The JD is defined as

For some functional? : M (X) — R, let M (X) :={f €
M. (X): |G(f)] < oo} and M} (X) .= ME(X) N ME(x).  Jilp) =¥ (/ w(t) pe dT(t)) —/ w(t)W(pe) dr(t) (12)
The foIIowmg functional [24], extends the SBG entropy from 7 7

M H 4 unnormalized measures MH (with 0log 0 := 0) where () ¥ is a concave functional such thdbm ¥ C
( ); (ii) w( Jut(z) is T-integrable, for allx € X’; (iii)

H(f) = —k/flogf - /<,0H of, (3) fT t)pdr(t) € dom U; (iv) py € dom ¥, for all t € T; (v)
w(t)W(u) is T-integrable.
wherek € Ry, andyy : Ry — R is defined as In the following subsections, we consider several instance
on(y) = —kylogy. ) of Definition 3, leading to several Jensen-type divergences

The generalized KLD is a directed divergence between tfo The Jensen-Shannon Divergence
measuresuys, g € M (X), such thatuy is pg-absolutely  Let P be a random probability distribution with values in
continuous [y < fig). In terms of densities, {p:}+e7 following a distributions € M3 (7). Then,

D)=k [ (o= 1+ 1052}, ©) Jg({pihier) = W (BIP) - E(P),  (13)

Both & and D letelv det d by th ¢ where the expectations are with respectrtd_etting ¥ = H,
o an are completely determined by their res ”Cthe Shannon entropy, we have :— J.

tion to the normalized measures, as the next propositionsho If X and T are finite with [T| = m, J7(p1 o) i
Proposition 1: The following equalities hold for any €  the JSD ofpy, ..., pin, With we|ghtsm, N };Irm [21_9]’ ’[5]_ For

Ry andf,g € M{(X), with pip < pg: 17| =2 and7 = (1, 1), we haves(3:2)(P) = JS(p1, p2),
Hef) = cH()+Iflen(c) JS(p1,p2) = H((p1 +12)/2) = (H(p1) + H(p2)/2  (14)
Dicf,eg) = ¢D(}.9), as introduced in [5]. It has been shown thafS satisfies the
Dicf,g) = cD(f.g9) = |flen(c) + k(1 —c)lgl, triangle inequality and that it is an Hilbertian metric [2516].
where|f|:= [ f = ps(X). ) N
Proof: Straightforward from (3) and (5). ] B. The Jensen-Tsallis Divergence

Divergences of the form (13), based on the Tsallis entropy

Sq Py— .
Forg >0, let M (X) == {f € My (%) : f4 € M, (X)}. have been studied in [19]. Letting = S,, (13) becomes

The Tsallis counterpart of (3), defined (Mf" (X), is

J5,({pi}ier) = Sy (E[P]) — E[S(P)]. (15)
Salf) = /wq °f; © For finite X and 7, JZ is called theJensen-Tsallis diver-
wherey, : Ry, — R is given by gence(JTD) and it has been applied in image processing [27].
o (y) if g =1, . V. ¢q-CONVEXITY AND JENSENg-DIFFERENCES
Paly) = { 2y —y?) ifg#lL (A Introduction and Definitions
Similarly, a nonextensive version of (5) is Definition 4: The unnormalized-expectatiorof a random
k variable X, with probability densityp, is
Dy(fi9) =~ / (¢f +(1—q)g— 9", (8)
q E,[X]:= /qu(:zr) dx. (16)
for ¢ # 1, and Dy (f, g) := limg—1 Dy(f, 9) = D(f, 9).
Proposition 2: The following equalities hold for any € For ¢ # 1, the g-expectation does not correspond to the
R,y andf,g € qu()(), with pp < pg: intuitive meaning of expectation. Nonetheless, it has hesenl

4 in the construction of nonextensive information theogyy,
Salef) = ¢"Sq(f) +[flpg(c), ) the Tsallis entropy can be written 8$(X) = —E,[In, p(X)].
Dy(cf,cg) = ¢cDqo(f.9), (10)  we now introduceg-convexity and derive several related

Dy(cef,g) = ¢2Dy(f,9) — apq(c)|f] + k(1 —c?)|g11) results, namely thdensery-inequality (Jgl).



Definition 5: Let ¢ € R andX be a convex set. A function We now present results regarding convexity and extrema of

f: X — Ris g-convex if for anyz,y € X and A € [0, 1], the JTgD, extending known properties of the JSD={ 1),
. . some of which are lost in the transition to nonextensivity: F
FOz+(1=A)y) < A1 (2) + (1= X f(y)- (17) example, while the JSD is nonnegative and vanishes iff all th

distributions are identical, this is not true in general foe
JTgD. Nonnegativity of the JTqD is only guaranteed if 1,
explaining why some authore.g, [23]) only considery > 1,
Proposition 6 (The Jenserg-Inequality): If f: X — R when developing nonextensive information theories.

Naturally, f is g-concave if— f is g-convex, and 1-convexity
is simply standard convexity.

is g-convex, then for any: € N, z1,...,2, € X andw = The following propositions establish convexity propesti
(1,0 ) € AP the JTgD (complementing the joint convexity of the JTD, for
q € [1,2], proved in [19]) and provide upper and lower bounds
f (Z ”ixi) < Z”gf(xi)' (18)  for the JTqD.

Proof: By induction, as in the proof of the JI [18]. m Proposition 11: Let 7 and X’ be finite sets with cardinali-
Proposition 7: Let f > 0 andg > ¢ > 0; then, ¢- tiesm a?dn, .respec]t\zlilsy; I;?qTe [0,1], the JTgD is a jointly
convexity impliesg’-convexity. convex function on(AZ,"™* (X))~ .
Definition 8 (Jenseng-Differences (JgD)): Let Proposition 12: Let 7 and X" be countable sets. The JTqD
i o= {mher € [My(X)]T be a class of measures iniS convex in each argument, fore [0, 2], and concave in each

X indexed byT, and letw € M, (T) be a measure if. argument, forg = 2.
For ¢ > 0, define Proposition 13: Let 7 andX’ be countable sets. Fgr> 0,
T7(p1,---Pm) < S¢(m), with the bound reached for a set of
TSy (p) =" </ w(t) py dT(t)) —/ WI ()W (pg) dr () disjoint degenerate distributions. Fpe> 1, T (py, . . ., pm) >
T T (19) 0, with the minimum attained in the pure deterministic case,

where: (i) ¥ is a concave functional such thabm ¥ C i.e, when all distributions are equal to the same degenerate
M(X); (i) w(t)u(z) is T-integrable for allz € ; (i) ©Ne- Forg € [0.1] and X a finite set with |X| = mn,

- e . .
[ w(t)udr(t) € dom ¥; (iv) 1, € dom W, for all t € T; (v) L (P1o---»Pm) = Sg(m)[1 —n"1]. This lower bound (which
W9(£)W (1) i T-integrable. can be negative) is attained when all distributions areoumif

Conditions for the Jensen difference to be convex were VI. TSALLIS KERNELS
given in [19]. The following proposition generalizes thesult,

extending it to JgD. A. Positive and negative definite kernels

We start by recalling basic concepts from kernel theory [1];

Proposition 9: Let 7 and X’ be finite sets, with7| =m . ;
in the following, X denotes a honempty set.

and |X| = n, and letr € M} (7). Lety : [0,1] — R be a
function of classC’? and consider thef-entropy [19]) function ~ Definition 14: Let ¢ : X x X — R be a symmetric
U : [0,1]" — R defined by¥(z) := — 32", ¢(z;). Then, the function,i.e, satisfyingy(y,z) = ¢(z,y), for all z,y € X.
g-differenceT’, : [0,1]"™ — R is convex if and only ifp is ¢ is called apositive definitep.d.) kernelif and only if
convex and-1/¢" is (2 — ¢)-convex.

NE

i Cj i»Zj) >0 21
B. The Jensen-TsalligDifference ; i ¢ P 73) (21)
Definition 10 (Jensen-Tsallisg-Difference (JTgD)): In
the conditions of Definition 8, the JTgD, denotdd’, is o o
defined asT’™ := T . Definition 15: Let ¢ : X x X — R be symmetricy) is

/ o called anegative definitén.d.) kernelif and only if

1

J

forallneN, z;,...,z, € X andc;,...,c, € R.

When|7T| =2 andw = (1/2,1/2), defineT, := qu/g’l/Q.
Notable cases arise for particular values;of
o Forg=0, So(p) = —1+ [|pllo, where||p||o denotes the

so-called0-norm (although it's not a norm) of vectap,
Qr alneN, z;,...,2, € X andg;,...,c, € R, such that

i.e. its number of nonzero components. The JTOD is thd ‘ ) o
c1+...+¢, = 0.In this case—v is calledconditionallyp.d.

To(p1,p2) = 1 = [Ip1 © p2flo; (20) Both the sets of p.d. and n.d. kernels are convex cones
where® denotes the Hadamard-Schile( elementwise) (clpsed under pointwisg sums and integrations), the former
product. We callT, the Boolean difference being closed under_p0|r_1tW|se products; moreover, both sets

« Forg =1, sinceS;(p) = H(p), T} is the standard JSD. &€ closed under_ pointwise convergence. Proofs of these fac
« Forg = 2, So(p) = 1 — (p,p), where (z,y) = and of the following propositions can be found in [28].

> zi y; denotes inner product. Consequently, the JT2D Proposition 16: Let ¢ : X x X — R be a symmetric
is To(p1,p2) = (1—{p1,p2))/2, we calllinear difference function, andxzy € X. Let ¢ : X x X — R be given by

C; Cj ’L/J(.”L‘l, .I'j) S 0 (22)

i
-

<
I
-

i=1



o(xz,y) = Y(x,z0) + V(y,x0) — Y(x,y) — ¥(x0,x0). Then, Definition 23 (weighted Jensen-Tsallis kernels (WJSK)):
o is p.d. if and only ify is n.d. The kernel@, : M7 (X) x M}*(X) — R is defined as

Proposition 17: The functiony : & x X — R is a n.d. ~ — (S _r q
kernel if and only ifexp(—tv) is p.d. for allt > 0. Palin, 2) = (Sul(m) = 17 (1, p2)) (o1 + )",

Proposition 18: The functiony : X x X — R, is a n.d. Wherepi = pi/wy and p; = ps/wy are the normal-
kernel if and only if(t + )~ is p.d. for allt > 0. ized counterparts ofi; and pp, with corresponding masses

Proposition 19: If v is n.d. and nonnegative on the diag’“2 € Ry, andr = (wi/ (w1 + wp), wa/(wr + w2)).

2
onal,i.e, ¢(z,z) > 0 for all z € X, then so are)®, for ~ The kernelp, : (qu()() \ {0}) — R is defined as
a € [0, 1], andlog(1 + ).
Proposition 20: Let f : X — R with f > 0; then, for
a € [1,2], Yalz,y) = = (f(z) + f(y))* is a n.d. kernel. Proposition 24: The kernelz, is p.d., forg € [0,2].
The following definition has been used in a machine learn-  Proof: Writing p; = wip1 and us = wepo and using the

ing context [24], following [28]. denormalization formulae of Prop. 2, we obtain, after atgeb

Definition 21 (Semi-group Kernels): Let (X,+) be a @q(p1,p2) = — ,1(,15’?(M1,M2)- Since _Tq(,lé'i)(ﬂlaMQ) =

semigroup. A functionp : X — R is called p.d. (in the semi- —Sq (1 + pi2) + g (1) +Sq(p2) = —Sq(pa + p2) + Sq (p1 +
group sense) ik : X x X — R, defined as(z,y) = o(z+y), Ho)+Sg(p2+ o) — Sq(po + o), With 1o = 0, and Sy is n.d.
is a p.d. kernel. Likewiseyp is called n.d. ifk is a n.d. kernel. (Prop. 22), Prop. 16 guarantees thafq(_’léi) is p.d. [ |

Pq(p1, p2) = Sq(m) — T;(Plapz)-

Proposition 25: The kernely, is p.d., forg € [0, 1].
Proof: Observe thaty,(u1,p2) = ©q(p, p2)(wi +

The basic result underlying JSD- and TTqD-based p.g,y-a The result follows from the fact that the product of
kernels is the fact, shown in the following proposition, tthg,,, p.d. kemels is a p.d. kernel arfd; + w») 9 is a p.d.
the denormalized Tsallig-entropies (6) are n.d. functionsy o a forg € [0,1] (see [28]). -

s -
on M\*(X), for ¢ € [0,2]. Of course, this includes the . : _
denormalized Shannon entropy (3) as a particular case (forThe_ f_o_llowmg are_ particular cases of WJTK, fge= 1.

q = 1). Although, for the Shannon entropy case, part of the Definition 26 (weighted JS kernel (WJSK)): The kernel
proof is in [28], [26], [24], we present a general proof here$ : (M{(X))?> — R is defined asp = 21, i.e,,

Propositiop 22: For g e.[0,2], tr;e denormalized Tsallis B, o) = (H () — J™(p1,p2)) (w1 + wo),
g-entropy S, is a n.d. function on\/\*(X).

Proof: Since n.d. kernels are closed under pointwis&herep: = p1/wy andps = p2/w, are the normalized coun-
integration, it suffices to prove that, (see (7)) is n.d. ok . terpartofu; andus, andm = (w1 /(w1 + wa2), w2 /(w1 + w2)).
Forq # 1, o,(y) = (¢ — 1)y — y9), thusp, = & + 74 Analogously, the kernelp : (M{(X)\{0})" — R is
where&, (y) = ysigng — 1) andy,(y) = y? sign(1 — ¢), both  simply ¢ = ¢y, i.e,
defined onR_ . Since the set of n.d. functions is closed under .
sums, this reduces to showing that b@thand ~, are n.d. Plpas p2) = H(m) = J7(p1, p2)-

Function¢, is both n.d. and p.d. for any. For ¢ € [0,1], i ~
vg = &4, for any a > 1; since, is n.d. and nonnegative, Corollary 27: The WJSKg andp are p.d.

B. Jensen-Shannon and Tsallis kernels

Prop. 19 guarantees thaj is also n.d. Fog €]1, 2], Prop. 20 Proof: Invoke Props. 24 and 25 with = 1. -
guarantees that(z,y) = —(z +y)? is n.d., thus so isy,. The JS kernel (JSK), introduced and shown to be p.d. in
For g = 1, we use the fact that, [20], is now simply a particular case of the WJSK in Def. 26.

or—gl Definition 28 (JSK): The kernelk;s: (M1(X))? — R is
p1(x) = pnu(z) = —vlogs = lim 1 lim ¢q(z),  defined askys(p1, p2) = 1 — JS(p1,p2).

Corollary 29: The kernelk;gis p.d.
Proof: ks is the restriction ofp to (M7 (X)) [

The so-callecexponentiated JSKEJSK), next defined, has

We are now in a position to present the main contributiofuen ysed (and shown to be p.d.) by several authors [24].
of this section, which is a family ofveighted Jensen-Tsallis L
. Definition 30 (EJSK): Let the kernel kgjs

kernels generalizing the JSD-based (and other) kernels in !
three ways {M}F(X))2 — R be defined (fort > 0) as

. . k ,p2) = —tJS (p1, .
« they allow using unnormalized measures; EasP1,P2) = exp | (p1,p2)]

. they allow using different weights for each of the two Corollary 31: The EJSK is p.d. _
arguments; Proof: Invoke Prop. 17 and the fact thajsis n.d. =

where the limit is obtained by L'Hdpital’s rule; since thets
of n.d. functions is closed under limitg; (x) is n.d. [ |

« they extend the mutual information feature of the JSD Next, we introduce a weighted generalization of the EJS
kernel to the nonextensive scenario. kernel, which allows unnormalized measures as its argusnent



Definition 32 (Weighted EJSK (WEJSK): Define  the

kernel kweys: MY (X) x MH(X) = R, for ¢t > 0, as

kweadp, p2) = exp(t H(m)) exp [—tJ™ (p1,p2)] . (23)

Corollary 33: The kernelkwgjsis p.d.

Proof: From Prop. 17 and Cor. 27. Notice that although[4]
kweisis p.d., none of its exponential factors in (23) is pHl.

Finally, we study two particular (nonextensive) member§5]

cases of the family of Tsallis kernels.

Definition 34 (Boolean kernel): Let the kernelkgggle
M{°(X) x M3°(X) — R be defined agpoole = Po, i-€.

kBoole(ti1, p2) = (card(m) — 1) card(py © pz).  (24)

Definition 35 (Linear kernel): Let the kernel ki
M3 (X) x M}(X)— R be defined as

N~

klin(p17p2) =

Corollary 36: The kernelkgggle is p.d.
Proof: Invoke Prop. 24, withy = 0.

Corollary 37: The kernelk, is p.d.

Proof: This well-known property of the inner product
kernel [1], also results from Prop. 24, sinég,(p1,p2) =

<P2(P17P2) = @2(]917]92)/4-

In conclusion, the Boolean kernel, the JSK, and the linear
kernel, are simply particular elements of the much wider-farft®!
ily of Tsallis kernels, continuously parameterizedgw [0, 2].
Furthermore, the Tsallis kernels are a particular subfauwil

the even wider set of weighted Tsallis kernels.

VII. CONCLUSION

In this paper we have introduced a new family of positive
definite kernels between measures, which contain previ&aO
information-theoretic kernels on probability measurepas
ticular cases. One of the key features of the new kernelsis th
they are defined on non-normalized measures (not necg/ssqﬁg]
normalized probabilities). This is relevarg,g, for kernels
on empirical measures (such as word counts, pixel intensi
histograms); instead of the usual step of normalizatior, [2
we may leave these empirical measures un-normalized, thus
allowing objects of different sizee(g, documents of different [24]
lengths, images with different sizes) to be weighted déffethy.
Another possibility is the explicit inclusion of weightsivgn
two normalized measures, they can be multiplied by arlyitrar
(positive) weights before being fed to the kernel function.

Technically, the new kernels, and the proofs of positive
definiteness, are supported on other contributions of dyiep
the new concept ofg-convexity, for which we proved a
Jenseny-inequality, the concept ofensen-Tsallig-difference
a nonextensive generalization of the JSD; denormalizati&s!

formulae for several entropies and divergences.

(p1,p2)- (25)
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