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Abstract

In this paper we study singular values of a matrix whose one entry varies while all other entries are
prescribed. In particular, we find the possible pth singular value of such a matrix, and we define explicitly
the unknown entry such that the completed matrix has the minimal possible pth singular value. This in turn
determines possible pth singular value of a matrix under rank one perturbation. Moreover, we determine the
possible value of pth singular value of a partially prescribed matrix whose set of unknown entries has a form
of a Young diagram. In particular, we give a fast algorithm for defining the completion that minimizes the
pth singular value of such matrix.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we are interested in completions of a partially prescribed matrix, such that the
rank of the completed matrix is as small as possible, and in defining the completion when this
minimum is obtained.
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Problems of this kind have been considered previously, e.g. in the papers by Cohen et al. [4],
Gohberg et al. [6], Rodman and Woerdeman [11].

Moreover, direct motivation for studying these problems comes from computer vision. Several
computer vision tasks have been approached by using methods that require finding linear or
affine low dimensional subspaces from noisy observations. Usually, those subspaces are found
by computing rank deficient matrices from noisy observations of their entries. Examples of these
tasks include applications in photogrammetry [2], image registration [16], object recognition [15],
and the construction of 3D models from 2D images [14,1].

An alternative way of saying that a matrix has the rank at most r is to say that its (r + 1)th
singular value is equal to 0. Thus, the problem becomes to complete a partially prescribed matrix
such that its (r + 1)th singular value is equal to 0. This formulation has the advantage in applica-
tions, where matrices are usually corrupted with noise. In that case, it should be required that the
completed matrix is close to a rank r matrix (in terms of, e.g., Frobenius or spectral distance), i.e.
that the (r + 1)th singular value is as small as possible.

Hence, the most natural generalization of this problem is

Problem 1. Determine the possible values of pth singular value of a partially prescribed matrix.

Related problems of determining the possible singular values of the sum of two matrices have
been studied by Queir6 and de Sa [9] (see also the review paper by Fulton [5]).

In this paper we solve Problem 1 in the case when the set of unknown entries has the form of
a Young diagram, which includes the cases when the set of unknown entries has the form of a
submatrix, or a triangle, which is of high interest in the applications.

We give complete solution for the generic matrix, and for an arbitrary matrix we show that
we can complete it such that the resulting matrix has the pth singular value arbitrarily close to
a theoretical minimum. Moreover, we give a fast and efficient algorithm for the definition of the
unknown entries such that the completed matrix has the prescribed singular value.

The solution of Problem 1 is split in two problems, solved in Sections 3 and 4:

Consider the matrix whose only one entry varies while all other are prescribed. Denote the
value of the unprescribed entry by x. In Section 3, Theorems 2 and 5, we solve the following
problem:

Problem 2. Find the possible values of o, when x varies, and find x when the minimum is
obtained.

Problem 2 can be equivalently stated as the problem of determining the possible pth singular
value of a given matrix under specified rank one perturbation. In other words, if A € R™*" is the
prescribed matrix, and f € R™*! and g€ R"*! are nonzero vectors, in Section 3 we determine

inf 0, (A +tng) and supo,(A +tng). (D
1€R (R

The related problem of the prescription of the possible singular values of a matrix when
an arbitrary rank one perturbation is performed, was solved in the case of square matrices by
Thompson in [12]. In that case, the vectors f and g are also allowed to vary, and that gives much
more freedom. In the problem we are interested in, the vectors f and g are fixed (or equivalently,
all entries of an arbitrary rectangular matrix A except one are fixed) which makes the problem
more complicated. Moreover, we give explicit definition of the unique unknown entry when the
extremal values from (1) are obtained.
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In Section 4, we study singular values of a real matrix M of dimensionn x m, with the property
that if the entry (i, j) is known then all the entries (k, /), withk > i and/ > jin M, are known, i.e.
when the set of unknown entries has the form of a Young diagram. Particular cases are when the
unknown entries form a submatrix or a triangle. In Theorem 7, we solve the following problem:

Problem 3. Find the possible values of pth singular value of M, and define the completion when
the minimum is obtained.

As we said previously, our major motivation for these problems comes from computer vision.
In the factorization method for the recovery of 3D rigid structure from video, a set of points
is tracked across time and their trajectories are collected in an observation matrix, where each
column contains the sequence of coordinates of each feature point. Due to the rigidity of the
scene, the observation matrix is rank deficient in a noiseless situation, see, e.g. [14,1]. When the
observation matrix is completely prescribed, the solution to the problem of finding the nearest
matrix with prescribed rank is easily obtained from its Singular Value Decomposition. How-
ever, in practice, the observation matrix may be only partially prescribed, because some of its
entries may be unknown (unobserved). Various similar problems have been previously studied
by using numerical optimization methods. For example, by developing sub-optimal solutions to
combine the constrains that arise from the observed submatrices of the original matrix [14,8],
or by minimizing the nonlinear cost function that accounts for the residual of the approximation
[7,3]. As usual in nonconvex optimization, these approaches lead to iterative algorithms whose
convergence to the global minimizers is highly dependent on the initialization.

In practice, when a feature point is occluded (or missed during tracking for any other reason)
at a given frame, the corresponding trajectory ends at that frame and the remaining entries of
the corresponding column of the observation matrix must be treated as missing data. In these
situations, by re-arranging the observation matrix, through column re-ordering, the pattern of
missing entries becomes a Young diagram.

In this paper, we show how to complete partially prescribed matrices in an optimal way, when
the set of unknown entries has the form of a Young diagram, by using purely linear algebra
methods.

2. Preliminary results and notation

Let A € R™*", We shall assume that n > m. If n < m, the singular values of A we define to
be the singular values of the matrix AT.

By singular values of the matrix A we mean the nonnegative real numbersoy > --- > 0, > 0
such that 012 > > U,%, are the eigenvalues of AAT € R™" | Also, we assume that o; = +00
fori < 0,and o; =0 fori > m.

Then, there exist orthogonal matrices U € R™*™ and V € R"**", such that

o1 -~ 0 0
UAV = ol )
0 -~ o, O

The form (2) of the matrix A is called the singular value decomposition (SVD). Moreover, from
(2), we have that multiplying the matrix A from left and from right by orthogonal matrices does
not change its singular values. In particular, permuting rows or permuting columns of a matrix
does not change its singular values.
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Ifo,>--- >0, >0,41 = =0, =0, thenrankA = r. Moreover if 0,41 = 0, then rank
A<Lr.

Let M, be the set of all m by n real matrices, with the rank at most r. Then by SVD (2) we
have that the (Frobenius) distance from matrix A to the set M, is given by

m

Z oiz </m—ropgy.

i=r+1

dist(A, M,) =

Moreover, a matrix from M, , closest to A is

of --- 0 0
A =U V.
0 -+ o 0

Thus, we have that o, is small (less than given positive tolerance €), if and only if, A is close
to the rank r matrix, and in this case, we say that the numerical rank of A is at most r.

2.1. Interlacing inequalities

Interlacing inequalities present the relation between the singular values of a matrix and its
submatrix. For details, see [13] or [10]

Theorem 1. Let A € R™"™ u € R*™*! and
B=[A u]eR™mD,
Lets; > 5o - - be singular values of A, and si > sé > - - - be singular values of B. Then

= 2
SyZSIZ8h 2 28y 283>

3. One unknown entry

In this section we determine the possible pth singular value of a partially prescribed matrix
whose only one entry is unknown. By permuting rows and columns, we can assume that the
unknown entry is at the position (1,1).

Letu € Ry e R"! and A € R¥*" be prescribed matrices. Consider the matrix

X UT
_ (k+1)x (n+1)
M= [T‘T} eR , (3)

where x € R varies. Without loss of generality, we can assume that k < n. Denote the singular
values of 3) by o1 > 02 = -+ = 0k41-

Moreover, denote by s1 > s > --- > s ands; > 5, > - > s,’(Jrl the singular values of the
matrices

B — [l/l A] c ka(rrH)

and
C — UT = R(k+1)><n
A b

respectively, and let 51 > 52 > - -+ > § be singular values of the matrix A.
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Then, by interlacing inequalities (Theorem 1), we have
max{s, s;)} < 0p < minfs,_p, s;_l}. 4)

Thus, max{s), s;,} is the lower bound for o). In the following theorem, we prove that for
generic matrix M (by the generic set of matrices we mean any subset S of all matrices, such
that the closure of S in Frobenius metric is equal to the whole R*F+Dx 141y any value from the
interval (4) can be obtained as the pth singular value of matrix M, when x varies.

Theorem 2. Suppose that the numbers s, s;,, Sp—1, s;_l, Sp and 5,1 are all pairwise distinct.
Let s € R be a number such that

max{sp, s,} <s < minfsp_1,s),_;}.

Then there exists x, such that the matrix (3) has s as the pth singular value.
Moreover, there exists a unique x such that the matrix (3) has max({s,, s;,} as the pth singular
value.

Proof. Since the singular values change continuously with the change of the entries of the matrix,
it is enough to show that there exists x such that the matrix M has the pth singular value equal
to max{s, s;,}, and that there exists some other value of x for which the matrix M has the pth
singular value equal to min{s,_1, s;_l}. We shall show how to define x in the first case — the
second one can be obtained analogously.

Without loss of generality, we assume that s, > s},. In order to prove that the pth singular
value of matrix M is equal to s,, note that it is enough to show that s, is a singular value of M.
Indeed, from:

op =8y > s;, > 0pi1,
we conclude that then o}, = 5,,. Hence, we are left with defining x such that the matrix M has s,
as a singular value.

From the definition of singular values, we have that s, is a singular value of (3), if and only if

57 is an eigenvalue of MMT, i.e. if
det(MM™ —s31) = 0. 5
From (5) and (3), we have
2., .T 2 T, TAT
x“4+vv—s xu' +v A
— p _
px) = det |: xu + Av uut + AAT — slz,li| =0. ©)

In the matrix in (6), we have x2 only at the position (1,1), and linear factors of x in the first
row and first column. Thus, p(x) is a quadratic function of x, i.e.,

p(x) =ax®+bx +c @)
for some a, b, ¢ € R. We shall show below that the discriminant D = b% — 4ac is equal to 0, and
that a # 0, and so that there exists unique x, given by

b

" 2a

for which the matrix (3) has s, as singular value, as wanted.
Thus, we are left with showing that b? = 4dac and a +0.
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Recall that by s; > s > - - - we have denoted the singular values of the matrix B = [u  A].
Since

u' T T
[u A] AT =uu + AA",
we have
det(uu’ + AAT —s71) =0.

We define N = uu™ + AAT — slz,l. Thus we have detN =0 and N = NT.
By using this notation, and the fact that the determinant of a matrix is the linear function of its
columns and rows, Eq. (6) becomes

2 T 2 T TAT
_ T 29 _ x*+vv—s; xu +v'A
px)=dettMM spI)—det|: XU+ Av N

2 T T 4T T, 2 T TYT
Zdet[iu xXu +vAi|+det|:vv s, Xu +v :|

N Av N
= det [;C; x}z\,t]T:| + det [xou UT]\? T]
raa8) S vaal o AT
= x2det |:2 L;J:I + 2xdet [2 UT]G‘T:| + det |:f?v UTI?T:|
=ax® +bx +c.

Here, in the third equality we have used the fact that detN = 0.
Since N is the symmetric matrix and detN = 0, there exists orthogonal matrix P € RF>* such
that

by 0 0 0
0 b 0 0

T
PNPT = 0 o
0 0 - by O
0 0 0

Let 8 =b1by---br—1 and
uj V1
Pu=|:1|, PAv=
M.k Uk
Then, we have
a=—pui, b=-2Bupvy, c=—Pu}, (8)

which gives b = 4ac as wanted.

Finally, we are left with proving that a # 0.

Suppose that a = 0. Then, from (8), we would have that the matrix [u  N] € RFx (41D hag
the rank strictly less than k. Moreover, since N = uuT + AAT — slz,l , the matrix [y N] is
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equivalent to [u AAT — s,z,l ], and so the matrix AAT — slz,l cannot be of full rank. In other
words,

det(AAT —s21) =0
and so s, is a singular value of A.
However, from the interlacing inequalities, we have
Sp—1 2 8p 2 5p

and so either 5,1 or §,, must be equal to s, which is a contradiction. Thus, we have a # 0, which
concludes our proof. [J

Remark 3. Although we are using SVD forms in the proof, to actually obtain the value x for
which the theoretical minimum for o, is attained, we do not need them.

In fact, by replacing x with 0,1 and —1 in (6), we can obtain the values p(0), p(1) and p(—1)
as the determinants of (k + 1) x (k 4+ 1) matrix:

) T 2 . T T AT
i“+vv—s iu+v' A
) — p Pe [
p() det[ i+ Av MMT+AAT_SIZ71:|7 ie{-1,0,1}.
Thus, the coefficients a, b and ¢ from (7) are
(D) + p(=1)
a= % — p(0), ©)
1) — p(—1
h— p(l) 2P( )’ (10)
c= p(0). (11)
Since we have shown that b> — 4ac = 0 and a # 0, x is given by
b
= ——, 12
* 2a (12)

Remark 4. Note that in the course of the proof, we have obtained that in the generic case when
all s;, si’ and s; are pairwise distinct, each of the numbers s; and slf can be obtained as the singular
value of the matrix M.

In the general case, it may be impossible to define x such that the minimum or maximum
value for o), is attained. However, since every matrix can be approximated arbitrarily well (in
the Frobenius metric) by a matrix that satisfies the conditions from Theorem 2, we obtain the
following

Theorem 5. Let s be arbitrary number such that
max{s,, s} <s < min{s,_1,s,_}.

Then there exists x € R such that the matrix M has s as the pth singular value.
In particular, the theoretical minimum max{s, s;,} can be approximated with arbitrary
precision.

Proof. Let ¢ > 0 be arbitrary positive real number. If matrices A, u and v from (3) do not satisfy
the conditions from Theorem 2, then there exist matrices A’, u’ and v’, such that their distances
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to the matrices A, u and v, respectively, are all less than €, and such that the singular values of the

. /T . ..
matrices A, B'=[u’ A'land C' = [Z,], satisfies the conditions of Theorem 2. Hence, there

exists x € R, such that the matrix

X U/T
i
has pth singular value equal to max{ap(B/ ), 0,(C ")}. Then the matrix
T
x| v
=[]
has pth singular value close to max{c,(B), 0,(C)}, as wanted. [

A particular case is when s, and s, are small.

Corollary 6. If the numerical ranks of the matrices B and C are at most r, then there exists x
such that the numerical rank of M is at most r.

We note that the statement with “precise” ranks is not true in general. For example, the matrix

x 1
[1 0} (13)

has rank equal to 2 for every x. However, as x tends to infinity, the distance of (13) to the set of
rank 1 matrices tends to 0, in accordance with the corollary above.

4. Main result

Let M € R™™™ be a real matrix whose unknown part has a form of Young diagram, i.e., in
the first row the first i; entries of M are unknown, in the second row the first i, entries of M
are unknown,. . ., in the kth row the first iy entries of M are unknown, where iy > ip > --- > i,
while all other entries are prescribed. For example

Yy

, (14)

* | ¥ | *¥|*
| k| % | ¥

where by *’s and y’s we have denoted the unknown entries, while the nonmarked entries are
prescribed. In this example, we have k = 4,i1 =4,i» =i3 =3,is =2 andi5; = 0.

In other words, if the entry (i, j) is known then all the entries (k, ), with k > i and/ > j in
M, are known. Particular cases are when the unknown entries form a submatrix or a triangle.

In the following theorem, by s,(Q) we have denoted the pth singular value of a matrix Q.

Theorem 7. Let M € R™™ be a matrix of the form (14). Let 01 > -+ 2> Ominfn,m) be singular
values of M. Leti € {1,...,n}and j € {1,...,m}. Let M (i, j) be a submatrix of M formed by
therowsi,i +1,...,nand columns j, j+1,...,m.

Then
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k-1 - kel -
max sy (M (), i + 1) < 0p < minspiij, (MG i + D). (15)
j= =

Conversely, if s is such that
k1 - kel -
mai(Sp(M(],l]‘i‘l)) < <mullsp+l—j—ij(M(.]slj+1))9 (16)
J= J=

then there exists a completion of M, such that o = s.

Proof. By interlacing inequalities, we have that forevery j = 1,...,k + 1:
op = sp(M(j,ij+1))

and also that
Op < Spti—j—i; (M(j,ij + 1)),

which gives (15).

For the converse, we shall prove that both ends of the interval in (16) can be numerically
reached (a value w can be numerically reached if for every € > 0, there exists a completion of M
such that difference between s, (M) and w is less than €). In particular, we shall prove this for
the lower bound from (16), while the upper bound can be obtained completely analogously.

To this end, by repeated use of the Corollary 5, we shall obtain the matrix M such that its
pth singular value attains numerically the lower bound. Indeed, choose any unknown entry (i, j)
such that its value is unknown, while the entries (i + 1, j) and (i, j + 1) are known (these are the
“corners" of the Young diagram, and in the example (14), these entries are denoted by y). Then
define the value of that entry to be x, where x is such that s, (M (7, j)) is numerically equal to
max{s,(M@{ + 1, j)),sp(M(, j + 1))}, as in the previous section.

Now, proceed with the process until all entries of the matrix are filled, and such that it has the
wanted pth singular value. [
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