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1 Scope
The Shannon/Nyquist sampling theorem tells us that in order to not lose information when uni-
formly sampling a signal we must sample at least two times faster than its bandwidth. In many
applications, including digital image and video cameras, the Nyquist rate can be so high that we
end up with too many samples and must compress in order to store or transmit them. In other ap-
plications, including imaging systems (medical scanners, radars) and high-speed analog-to-digital
converters, increasing the sampling rate or density beyond the current state-of-the-art is very ex-
pensive.

In this lecture, we will learn about a new technique that tackles these issues using compressive

sensing [1, 2]. We will replace the conventional sampling and reconstruction operations with a
more general linear measurement scheme coupled with an optimization in order to acquire certain
kinds of signals at a rate significantly below Nyquist.

2 Relevance
The ideas presented here can be used to illustrate the links between data acquisition, linear algebra,
basis expansions, inverse problems, compression, dimensionality reduction, and optimization in a
variety of courses, from undergraduate or graduate digital signal processing to statistics and applied
mathematics.

3 Prerequisites
The prerequisites required for understanding and teaching this material are linear algebra, basic
optimization, and basic probability.

4 Problem Statement
Nyquist-rate sampling completely describes a signal by exploiting its bandlimitedness. Our goal
is to reduce the number of measurements required to completely describe a signal by exploiting its
compressibility. The twist is that our measurements are not point samples but more general linear
functionals of the signal.
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Consider a real-valued, finite-length, one-dimensional, discrete-time signal x, which we view
as an N × 1 column vector in RN with elements x[n], n = 1, 2, . . . , N . We treat an image or
higher-dimensional data by vectorizing it into a long one-dimensional vector.

Any signal in RN can be represented in terms of a basis of N ×1 vectors {ψi}N
i=1. For simplic-

ity, assume that the basis is orthonormal. Forming the N ×N basis matrix Ψ := [ψ1|ψ2| . . . |ψN ]

by stacking the vectors {ψi} as columns, we can express any signal x as

x =
N∑

i=1

siψi or x = Ψs (1)

where s is the N × 1 column vector of weighting coefficients si = 〈x,ψi〉 = ψT
i x and where ·T

denotes the (Hermitian) transpose operation. Clearly, x and s are equivalent representations of the
same signal, with x in the time domain and s in the Ψ domain.

We will focus on signals that have a sparse representation, where x is a linear combination of
just K basis vectors, with K � N . That is, only K of the si in (1) are nonzero and (N −K) are
zero. Sparsity is motivated by the fact that many natural and manmade signals are compressible

in the sense that there exists a basis Ψ where the representation (1) has just a few large coef-
ficients and many small coefficients. Compressible signals are well approximated by K-sparse
representations; this is the basis of transform coding [3]. For example, natural images tend to be
compressible in the discrete cosine transform (DCT) and wavelet bases [3] on which the JPEG and
JPEG-2000 compression standards are based. Audio signals and many communication signals are
compressible in a localized Fourier basis.

Transform coding plays a central role in data acquisition systems like digital cameras where the
number of samples is high but the signals are compressible. In this framework, we acquire the full
N -sample signal x; compute the complete set of transform coefficients {si} via s = ΨTx; locate
the K largest coefficients and discard the (N −K) smallest coefficients; and encode the K values
and locations of the largest coefficients. (In practice, we also convert the values and locations to
digital bits.)

Unfortunately, the sample-then-compress framework suffers from three inherent inefficiencies:
First, we must start with a potentially large number of samples N even if the ultimate desired K is
small. Second, the encoder must compute all of the N transform coefficients {si}, even though it
will discard all but K of them. Third, the encoder faces the overhead of encoding the locations of
the large coefficients.

As an alternative, we will study a more general data acquisition approach that condenses the
signal directly into a compressed representation without going through the intermediate stage of
taking N samples. Consider the more general linear measurement process that computes M < N
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Figure 1: (a) Compressive sensing measurement process with (random Gaussian) measurement matrix Φ
and discrete cosine transform (DCT) matrix Ψ. The coefficient vector s is sparse with K = 4. (b) Measure-
ment process in terms of the matrix product Θ = ΦΨ with the four columns corresponding to nonzero si

highlighted. The measurement vector y is a linear combination of these four columns.

inner products between x and a collection of vectors {φj}M
j=1 as in yj = 〈x,φj〉. Stacking the

measurements yj into the M × 1 vector y and the measurement vectors φT
j as rows into an M ×N

matrix Φ and substituting in (1), we can write

y = Φx = ΦΨs = Θs (2)

where Θ := ΦΨ is an M × N matrix. See Figure 1(a) for a pictorial depiction of (2). Note that
the measurement process is non-adaptive; that is, Φ does not depend in any way on the signal x.

Our goal in the following is to design a measurement matrix Φ and a reconstruction algorithm
for K-sparse and compressible signals that require only M ≈ K or slightly more measurements,
or about as many measurements as the number of coefficients encoded in a traditional transform
coder. Our approach is based on the theory of compressive sensing introduced recently in [1, 2].

5 Solution
The solution consists of two steps. In the first step, we design a stable measurement matrix Φ

that ensures that the salient information in any K-sparse or compressible signal is not damaged
by the dimensionality reduction from x ∈ RN down to y ∈ RM . In the second step, we develop
a reconstruction algorithm to recover x from the measurements y. Initially, we focus on exactly
K-sparse signals.

5.1 Stable measurement matrix
First, we design the measurement side of the data acquisition system, which is based around the
matrix Φ. We aim to make M measurements (the vector y) from which we can stably recon-
struct the length-N signal x, or equivalently its sparse coefficient vector s in the basis Ψ. Clearly
reconstruction will not be possible if the measurement process damages the information in x. Un-
fortunately, this is the case in general: Since the measurement process is linear and defined in terms
of the matrices Φ and Ψ, solving for s given y in (2) is just a linear algebra problem, and with
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M < N , there are fewer equations than unknowns, making the solution ill-posed in general.
However, the K-sparsity of s comes to our rescue. In this case the measurement vector y is

just a linear combination of the K columns of Θ whose corresponding si 6= 0 (see Figure 1(b)).
Hence, if we knew a priori which K entries of s were nonzero, then we could form an M × K

system of linear equations to solve for these nonzero entries, where now the number of equations
M equals or exceeds the number of unknowns K. A necessary and sufficient condition to ensure
that this M ×K system is well-conditioned — and hence sports a stable inverse — is that for any
vector v sharing the same K nonzero entries as s we have

1− ε ≤ ‖Θv‖2

‖v‖2

≤ 1 + ε (3)

for some ε > 0. In words, the matrix Θ must preserve the lengths of these particular K-sparse
vectors.

Of course, in practice we are not going to know the locations of the K nonzero entries in
s. Interestingly, one can show that a sufficient condition for a stable inverse for both K-sparse
and compressible signals is for Θ to satisfy (3) for an arbitrary 3K-sparse vector v. This is the
so-called restricted isometry property (RIP) [1].

An alternative approach to stability is to ensure that the measurement matrix Φ is incoher-

ent with the sparsifying basis Ψ in the sense that the vectors {φj} cannot sparsely represent the
vectors {ψi} and vice versa [1, 2, 4]. The classical example features delta spikes and Fourier sinu-
soids playing the roles of {φj} and {ψi}; the Fourier uncertainty principle immediately yields the
incoherence.

So, given a sparsifying basis Ψ, how do we construct a measurement matrix Φ such that Θ =

ΦΨ has the RIP? Unfortunately, merely verifying that a given Θ has the RIP is combinatorially
complex; we must verify (3) for each of the

(
N
K

)
possible combinations of K nonzero entries in the

length-N vector v.
In compressive sensing, we sidestep this issue by selecting Φ as a random matrix. For example,

we draw the matrix elements φj,i as independent and identically distributed (iid) random variables
from a zero-mean, 1/N -variance Gaussian density (white noise) [1, 2, 5]. Then, the measurements
y are merely M different randomly weighted linear combinations of the elements of x (recall
Figure 1(a) and note the random structure of Φ).

A Gaussian Φ has two interesting and useful properties. First, Φ is incoherent with the basis
Ψ = I of delta spikes with high probability, since it takes fully N spikes to represent each row of
Φ. More rigorously, using concentration of measure arguments, an M × N iid Gaussian matrix
Θ = ΦI = Φ can be shown to have the RIP with high probability if M ≥ cK log(N/K), with c a
small constant [1,2,5]. Therefore, we can expect to recover length-N , K-sparse and compressible

4



signals with high probability from justM ≥ cK log(N/K) � N random Gaussian measurements.
Second, thanks to the properties of the iid Gaussian distribution generating Φ, the matrix Θ = ΦΨ

is also iid Gaussian regardless of the choice of (orthonormal) sparsifying basis matrix Ψ. Thus,
random Gaussian measurements Φ are universal in the sense that Θ = ΦΨ has the RIP with high
probability for every possible Ψ.

Among many others, Rademacher matrices with random ±1 entries can also be shown to have
the RIP and universality properties [5].

5.2 Signal reconstruction algorithms
The RIP provides the theoretical guarantee that a K-sparse or compressible signal can be fully
described by the M measurements in y, but it does not tell us how recover it. The signal recon-
struction step must take the measurements y, the random measurement matrix Φ (or the random
seed that generated it), and the sparsifying basis Ψ and regenerate the length-N signal x, or equiv-
alently its sparse coefficient vector s. We again focus initially on K-sparse signals.

Since M < N in (2), there are infinitely many s′ that satisfy Θs′ = y; they all lie on the
(N −M)-dimensional hyperplane H := N (Θ) + s in RN corresponding to the null space N (Θ)

of Θ translated to the true sparse solution s. This is because if Θs = y then Θ(s + r) = y for any
vector r in the null space. Therefore, our goal is to find the signal’s sparse coefficient vector s in
the translated null space.

Define the `p norm of the vector s as (‖s‖p)
p =

∑N
i=1 |si|p. When p = 0 we obtain the `0

“norm” that counts the number of non-zero entries in s; hence a K-sparse vector has `0 norm K.
Minimum `2 norm reconstruction: The classical approach to solving inverse problems of this

type is by least squares; that is, we select the vector in the translated nullspace H with smallest `2
norm (energy):

ŝ = argmin ‖s′‖2 such that Θs′ = y. (4)

There is even a convenient closed-form solution ŝ = ΘT (ΘΘT )−1y. But unfortunately when the
vector s we seek is K-sparse, `2 minimization will almost never find it. What we obtain instead is
a nonsparse ŝ with plenty of ringing (more on this below in Section 6.1).

Minimum `0 norm reconstruction: Since the `2 norm in (4) does not reflect signal sparsity, a
logical alternative is to search for the sparsest vector in the translated null space H:

ŝ = argmin ‖s′‖0 such that Θs′ = y. (5)

It can be shown that with just M = K + 1 iid Gaussian measurements, this optimization will
recover a K-sparse signal exactly with high probability [6]. But unfortunately solving (5) is both
numerically unstable and an NP-complete problem that requires an exhaustive enumeration of all(

N
K

)
possible combinations for the locations of the nonzero entries in s.
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Minimum `1 norm reconstruction: The compressive sensing surprise is that from M ≥
cK log(N/K) iid Gaussian measurements we can exactly reconstructK-sparse vectors and closely
approximate compressible vectors stably with high probability via the `1 optimization [1, 2]

ŝ = argmin ‖s′‖1 such that Θs′ = y. (6)

This is a convex optimization problem that conveniently reduces to a linear program known as
basis pursuit [1, 2] whose computational complexity is about O(N3).

To summarize, a compressive sensing data acquisition system consists of random measure-
ments based on Φ followed by linear programming reconstruction to obtain x.

6 Discussion
6.1 Geometrical interpretation
The geometry of the compressive sensing problem in RN helps us visualize why `1 reconstruction
succeeds where `2 reconstruction fails. First, note that the set of all K-sparse vectors s in RN

is a highly nonlinear space consisting of all K-dimensional hyperplanes that are aligned with the
coordinate axes (see Figure 2(a)). Thus, sparse vectors live close to the coordinate axes in RN .

To visualize why `2 reconstruction fails, note that the translated null spaceH = N (Θ)+s is of
dimension (N −M) and is oriented at a random angle due to the randomness in the matrix Θ. See
Figure 2(b), but beware that in practice N,M,K � 3, so you need to extrapolate your intuition
to high dimensions. The `2 minimizer ŝ from (4) is the point on H closest to the origin. We can
find this point by blowing up a hypersphere (the `2 ball) until it touches H. Due to the random
orientation of H, the closest point ŝ will with high probability live away from the coordinate axes
and hence will be neither sparse nor close to the correct answer s.

In sharp contrast to the `2 ball, the `1 ball in Figure 2(c) is “pointy” with the points aligned
along the coordinate axes (and it becomes pointier as the ambient dimension N grows). Therefore,
when we blow up the `1 ball, it will first touch the translated null space H at a point near the
coordinate axes, which is precisely where the sparse vector s is located.

6.2 Analog signals
While we have focused on discrete-time signals x, compressive sensing also applies to analog
signals x(t) that can be represented sparsely using just K out of N possible elements from some
continuous basis or dictionary {ψi(t)}N

i=1. While each ψi(t) may have large bandwidth (and hence
a high Nyquist rate), the signal x(t) has only K degrees of freedom, and we can apply the above
theory to measure it at a rate below Nyquist. An example of a practical analog compressive sensing
system — a so-called “analog-to-information” converter — is given in [7]; there are interesting
connections to [8].
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(a) (b) (c)

Figure 2: (a) A sparse vector s lies on a K-dimensional hyperplane aligned with the coordinate axes in RN

and thus close to the axes. (b) Compressive sensing recovery via `2 minimization does not find the correct
sparse solution s on the translated nullspace (green hyperplane) but rather the non-sparse vector ŝ. (c) With
enough measurements, recovery via `1 minimization does find the correct sparse solution s.

7 Practical Example
Consider the “single-pixel” compressive digital camera of Figure 3(a) that directly acquires M
random linear measurements without first collecting the N pixel values [9]. The incident light-
field corresponding to the desired image x is not focused onto a CCD or CMOS sampling array but
rather reflected off a digital micromirror device (DMD) consisting of an array of N tiny mirrors.
(DMDs are found inside many computer projectors and projection televisions.) The reflected light
is then collected by a second lens and focused onto a single photodiode (the single pixel). Each
mirror can be independently oriented either towards the photodiode (corresponding to a 1) or away
from the photodiode (corresponding to a 0). Each measurement yj is obtained as follows: The
random number generator (RNG) sets the mirror orientations in a pseudorandom 0/1 pattern to
create the measurement vector φj . The voltage at the photodiode then equals yj , the inner product
between φj and the desired image x. The process is repeated M times to obtain all of the entries
in y.

Figure 3(b) and (c) illustrate a target object and an image x̂ taken by a prototype single-pixel
camera [9] using about 60% fewer random measurements than reconstructed pixels. Here the
reconstruction was performed via a total variation optimization [1], which is closely related to `1
reconstruction in the wavelet domain.

A major advantage of the single-pixel, compressive sensing approach is that this camera can be
adapted to image at wavelengths where it is difficult or expensive to create a large array of sensors.
It can also acquire data over time to enable video reconstruction [9].

8 Conclusions
In this lecture we have learned that sampling is not the only way to acquire signals. When the
signals of interest are compressible or sparse, it can be more efficient and streamlined to employ
random measurements and optimization in order to acquire only the measurements we need. We
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(a) (b) (c)

Figure 3: (a) Single-pixel, compressive sensing camera. (b) Conventional digital camera image of a soccer
ball. (c) 64 × 64 black-and-white image x̂ of the same ball (N = 4096 pixels) recovered from M = 1600
random measurements taken by the camera in (a). The images in (b) and (c) are not meant to be aligned.

have also learned that for reconstruction our old friend least squares fails us, and that we need to
look to other flavors of convex optimization like linear programming (see also [4, 10]). Compres-
sive sensing is still a nascent field, and many interesting research questions remain open. A fairly
exhaustive set of references on the current research directions is available at dsp.rice.edu/cs.
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