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1. ABSTRACT 
 
We present computational methods to extract and model different joints of a generic 
subject, in an automatic way.  The input for our methods is simply a set of trajectories 
of 3D points, obtained from a motion capture system (MOCAP). Due to the piecewise 
rigidity of the skeleton, these trajectories belong to different subspaces (of the space of 
all possible trajectories). We use this knowledge to derive computationally simple 
algorithms that are able to infer joint properties from the trajectories of the 3D points. 
This model-free approach enables analyzing directly specific subjects, rather than 
requiring user-defined a priori models of the skeleton. Such data-driven models are 
useful in the analysis of human walk and the evaluation of joint stress for pathology 
detection. Also, the customized skeleton models, together with physiological muscular 
information, allow to accurately analyze high level performances in sports. 
 

2. INTRODUCTION 
 
Computational models of human articulations are nowadays fundamental to perform an 
accurate analysis of the mechanical motion of a human body. Applications of these 
models span various fields, ranging from engineering to life sciences, where the analysis 
of human motion is crucial to accurate clinical analysis and credible animations of 
skeleton models[1]. Existing approaches to articulated motion analysis require a human 
operator to explicitly construct the model of the skeleton, including the definition and 
characterization of the joints, a costly and time-consuming task [2]. This can be done by 
measuring the dimensions of different body segments and articulation ranges of motion 
of a human subject, which can be troublesome. Alternatively one can use 
anthropometric tables to extract statistical measurements of those quantities and then 
use scale factors to resize the model to better fit a specific subject. However this last 
approach has the disadvantage of scaling the model in a statistical way and not 
modeling a specific individual, which can be required in some applications. 
 
In opposition, we present computational methods to extract and model different joints 
from a generic subject, in an individualized and semi-automatic way.  The only 
assumption made here is the availability of an initial segmentation of each near-rigid 
part composing the body. Such approach has relevant relations with recently developed 
techniques in the Computer Vision field [3,4,5,6] where, given the unpredictability of 
the data extracted from images, unconstrained analysis is often the only viable solution. 
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Fig 1. Four images and relative 3D information extracted from a MOCAP system each color corresponds 
to the set of points lying over the two bodies used to extract the arm joint. 
 
3. A BILINEAR FORMULATION OF STRUCTURE AND MOTION 
 
Our aim is to infer the musco-skeletal properties of a human body directly from the data 
acquired from MOCAP system. The main idea is to fulfill the estimation of these 
anatomical properties independently from the platform used to acquire the data. Such 
approach has the main feature of being independent to a priori models of the body. The 
approach is based on the key fact that a set of points, lying over a 3D object which is 
moving in time, shares common properties. For instance, if the body is moving rigidly, 
a simple rotation and translation can describe the motion of the set of 3D points. 
Similarly, points lying over an articulated structure can be described by the 3D position 
associated to both bodies, their relative translation and rotations and the common axis of 
rotation given the joint. 
 
Interestingly, these properties become evident in a framework where the 3D object 
shape and the respective motion components are modelled as a bilinear form such that: 

jiij SMw =     (1) 

where wij is a 3-vector representing the 3D shape point j captured at the time instant i. 
The 3xr matrix Mi represents the motion components of the 3D object (i.e. rotation and 
translation for a rigid shape) and the rxP matrix Sj collects a parameterisation of the 3D 
shape. If we collect every 3D point in a compact matrix form we obtain that: 
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where W is a 3FxP matrix, M a 3Fxr matrix and S a rxP matrix. The scalars F and P 
are, respectively, the number of frames captured and the number of points belonging to 
the shape. Each 3 x P matrix Wi with i=1…F is such that: 

[ ]iPii wwW L1=  

The value of r, i.e. the dimensionality of the bilinear models, depends by the type of 
shape considered. In the following we show a set of example for these bilinear models 
for the human motion modelling scenario.  
 
3.1 Rigid shapes 
 
A body moving rigidly brings the dimensionality of the bilinear models to either r = 3 



or r = 4, depending if we consider the rotating body with or without a translational 
component. In the case of no translation, the matrices Mi and Sj take the following form:  
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where Mi is a 3x3 rotation matrix and xj, yj and zj represent the three coordinates of  the 
3D point. Thus each point at each frame is given by the product as expressed in eq. (1). 
Given the grouping in eq. (2), we have that M and S are a 2Fx3 and a 3xP full-rank 
matrices respectively. This forces a rank constraint on the measurements W (i.e. 
rank(W) ≤ 3). Given this rank constraint, we can compute an initial factorization of W 
by performing a SVD giving: 
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where Ur is a 2F×r  orthogonal matrix, Σr a r×r diagonal matrix and Vr a P×r orthogonal 
matrix. In the rigid case, we have that σ4 = 0 if no noise and measurements errors are 
present. Thus, by enforcing the singular values after the third equal to zero, we obtain a 
numerical fit of the measurements in the sense of the Frobenius norm. This stage is 
likely to improve the measurements quality since even MOCAP systems have a certain 
uncertainty over the 3D location of points (Some systems provide also an indication of 
this uncertainty, thus a more accurate denoising could be performed). This initial 
decomposition via SVD can provide a first affine fit of the motion and shape 
components M and S such that: 

rUM =~  and T
rrVS Σ=~

. 

Since this transformation is valid up to an affine transformation i.e. SQQMW
~~ 1−=  we 

seek a specific transformation Q which enforces the metric properties of M (see Section 
4 for a detailed description). The further advantage of this procedure is that we obtain a 
metric description of the shape S using the complete 3D information coming from the 
MOCAP system (i.e. all the frames and not only a singular frame). We avoid in such 
way to choose a 3D shape which relies only on a single instance of the captured motion.  
 
Given a translation, the models can be similarly defined as: 
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where tx, ty and tz are the translational component and Sj is now expressed in 
homogeneous coordinates.  
 
3.2 Articulated Shapes – Universal Joint 
 
In order to simplify the formulation, we consider articulated shapes composed by 
pairwise rigid bodies. In this case our measurements are given by the 3D points lying 
over both parts i.e. W = [W(1) | W(2)]. Two types of joints are here considered: the 
universal joint and the hinge joint. When two objects are linked by a universal joint the 
distance between the two centers of mass is constant (for instance, the head and the 
torso of a human body) but they have independent rotation components. At each frame 
the shapes connected by a joint satisfy the following relation: 



( ) ( ) ( ) ( ) ( ) ( )222111 dRtdRt +=+   (3) 
where t(1) and t(2) are the 3D shape centroids of the two objects, R(1) and R(2) the 3×3 
rotation matrices and d(1) and d(2) the 3D displacement vectors of each shape from the 
central joint. The constraint expressed in eq. (3) reduces the dimensionality of the 
model. It is then possible to refer the articulated motion to a common reference frame 
registered on the centroid of the first object thus simplifying the shape matrix S as: 
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where S is a full rank-7 matrix. The motion for a frame i has to be arranged accordingly 
to satisfy equation (3) giving: 

( ) ( )[ ]iiii tRRM 21=
.
 

To obtain the block diagonal structure as in eq. (4) from a SVD of W, we consider the 
two shapes registered to the measured trajectories centroid: 
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which is a full-rank 6 matrix. However, the SVD of W computes the components of V = 
[V(1) V(2)] that are dense. The remedy is to separate the two objects by multiplying the 
row space by a matrix N such that: 
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where null() returns the left null-space of a matrix. The column space U is then 
multiplied by N−1 in order to retain consistency. Given the recovered block structure, 
separate metric constraints can be computed to recover the correct structure and motion. 
 
3.3 Articulated Shapes – Hinje Joint 
 
A hinge joint constrains the relative orientation of the 3D objects since both shapes have 
a common axis that is parallel to the axis of rotation. In this case, the overall rank of W 
drops to 6. To simplify visualization in a matrix form, we have aligned the axis of 
rotation to the x-axis. If R(1) = [p1 p2 p3] and R(2) = [p1 p4 p5] we can write that: 
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Similarly to the solution proposed for the universal joint, we have to compute a first fit 
using SVD and then to accordingly enforce the matrix structure of the row space V. In 
this case, we have to reduce some components of the row space of V to zero. However 
here we have a strong dependency on the x-axis which does not allow to consider the 
shapes separately. Thus we use a matrix N constructed such that: 
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where bT = [1 0 0 0 0]. The column space can be then transformed accordingly with 
N−1. Now a hinge joint is defined as a line which define the axis of rotation and thus its 
center may be localized anywhere on the axis. However, the center lies in the null space 
of [p1 p2 p3 p4 p5 (t2 − t1)], thus it can be extracted from the previous factorization. 
 
4. SHAPE CALIBRATION  
 
In the previous section we have found affine fits for two different types of joints. An 
upgrade to a metric space is necessary in order to compute a 3D shape that resembles 
the metric properties of the bodies. However, this stage is not directly affecting the 
previous computation of the joint position. The upgrade to metric is accomplished by 
imposing that the matrix M is a collection of rotation matrices at each frame. These 
constraints are obtained with the computation of a transformation matrix Q, which can 
correct the matrices at each frame to orthogonal. The motion matrix M can be given as: 
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where each 3×3 block Mi can be written as: 

















T
i

T
i

T
i

m

m

m

M

3

2

1

1 =
~

.  (5) 

Thus, in order to obtain the solution for Q, we explicitly enforce orthonormality 
constraints in (5). These can be expressed as a set of equations in the form of mT

diQ
T 

Qmei = cde where d, e = 1, 2, 3. The value of cde depends explicitly on the given joint. A 
solution is obtained by considering the product H = QT Q, solving linearly for H using 
Least-Squares and then extracting Q with Choleski decomposition. The dimensionality 
of Q depends by the problem considered: Q3×3 for a single rigid body, Q6×6 for a 
universal joint, Q5×5 for a hinge joint. 
 
5. EXPERIMENTS 
 
In order to show the flexibility of our approach, we present results using two different 
databases of 3D points extracted using a VICON system. The first set shows point lying 
over an arm performing unknown motion. The task here is to obtain the location of the 
rotation axis associated to the elbow. The 3D points in Fig. 2 are related to images as 
shown in Fig. 1. The only information we require in order to run the approach is the 
association of each point to the related segment of the 3D body (i.e. a segmentation of 
the point trajectories). 

 
Fig 2. Three sample frames showing an arm and the computed hinge joint at the elbow 

 
The second set of points was obtained from the freely available database of the Graphic 
Lab of Carnegie Mellon University (http://mocap.cs.cmu.edu/). In such experiment, an 



adult is running in an unconstrained environment. We were able to extract universal 
joints at each elbow and two hinge joints for each leg, located at the knee and ankle, as 
it can be seen in Fig. 3 

 
Fig 3. Three sample frames showing an adult human running. Two universal joints (red) and four hinge 
joints (green) are extracted from the full body trajectory. 
  
6. CONCLUSIONS 
 
We have presented a framework for computing the joint positions from a set of 
observations obtained from MOCAP systems. Our analysis is not constrained by the 
specific setup used for the acquisition but it accounts for high degrees of flexibility. As 
future work, we aim to extend these methods to deal with missing entries in the 
measurements and to add consistent modelling of the muscular properties of the body. 
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