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1. ABSTRACT

We present computational methods to extract andeimadifferent joints of a generic
subject, in an automatic way. The input for outhods is simply a set of trajectories
of 3D points, obtained from a motion capture sys{tf@CAP). Due to the piecewise
rigidity of the skeleton, these trajectories beldoglifferent subspaces (of the space of
all possible trajectories). We use this knowledgederive computationally simple
algorithms that are able to infer joint propertiemn the trajectories of the 3D points.
This model-free approach enables analyzing direspgcific subjects, rather than
requiring user-defined a priori models of the staie Such data-driven models are
useful in the analysis of human walk and the euadoaof joint stress for pathology
detection. Also, the customized skeleton modelgettoer with physiological muscular
information, allow to accurately analyze high lepelformances in sports.

2. INTRODUCTION

Computational models of human articulations are adays fundamental to perform an
accurate analysis of the mechanical motion of adwinody. Applications of these
models span various fields, ranging from enginggtanlife sciences, where the analysis
of human motion is crucial to accurate clinical lggig and credible animations of
skeleton models[1]. Existing approaches to artiealanotion analysis require a human
operator to explicitly construct the model of theslston, including the definition and
characterization of the joints, a costly and tino@suming task [2]. This can be done by
measuring the dimensions of different body segmentsarticulation ranges of motion
of a human subject, which can be troublesome. ®Adtierely one can use
anthropometric tables to extract statistical meam@nts of those quantities and then
use scale factors to resize the model to bettea fipecific subject. However this last
approach has the disadvantage of scaling the miodal statistical way and not
modeling a specific individual, which can be reqdiin some applications.

In opposition, we present computational methodextimact and model different joints
from a generic subject, in an individualized ananisautomatic way. The only
assumption made here is the availability of anahgegmentation of each near-rigid
part composing the body. Such approach has relegkations with recently developed
techniques in the Computer Vision field [3,4,5,8)exe, given the unpredictability of
the data extracted from images, unconstrained sisaly/often the only viable solution.
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Fig 1. Four images and relative 3D information asted from a MOCAP system each color corresponds
to the set of points lying over the two bodies ugeextract the arm joint.

3. A BILINEAR FORMULATION OF STRUCTURE AND MOTION

Our aim is to infer the musco-skeletal propertiea buman body directly from the data
acquired from MOCAP system. The main idea is tdilfuhe estimation of these
anatomical properties independently from the ptatfaised to acquire the data. Such
approach has the main feature of being indeperidenpriori models of the body. The
approach is based on the key fact that a set @it9ydying over a 3D object which is
moving in time, shares common properties. For meaif the body is moving rigidly,

a simple rotation and translation can describe rtfwgion of the set of 3D points.
Similarly, points lying over an articulated struatican be described by the 3D position
associated to both bodies, their relative trarmhatind rotations and the common axis of
rotation given the joint.

Interestingly, these properties become evident iinamework where the 3D object

shape and the respective motion components arelledads a bilinear form such that:
W; = MiSj (1)

wherew; is a 3-vector representing the 3D shape pjog#tptured at the time instant

The 3xr matrix M; represents the motion components of the 3D oljjectrotation and

translation for a rigid shape) and thé matrix § collects a parameterisation of the 3D
shape. If we collect every 3D point in a compactrimdorm we obtain that:

w:[W]:[M][sl - s,]=Ms 2)
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whereW is a FxP matrix, M a Fxr matrix andS a rxP matrix. The scalars andP
are, respectively, the number of frames capturedth@ number of points belonging to
the shape. Eachx Pmatrix W, with i=1...F is such that:

VVi = [Wil WiP]
The value ofr, i.e. the dimensionality of the bilinear modelgpdnds by the type of
shape considered. In the following we show a setxaimple for these bilinear models
for the human motion modelling scenario.

3.1 Rigid shapes

A body moving rigidly brings the dimensionality tife bilinear models to either= 3



or r = 4, depending if we consider the rotating body withwethout a translational
component. In the case of no translation, the eeghl; andS take the following form:

ri7 ri8 r.i9 z
whereM; is a3x3 rotation matrix and;, y; andz represent the three coordinates of the
3D point. Thus each point at each frame is givethieyproduct as expressed in eq. (1).
Given the grouping in eq. (2), we have thvatand S are a2Fx3 and a3xP full-rank
matrices respectively. This forces a rank constraim the measurementd/ (i.e.
rank(W)< 3). Given this rank constraint, we can compute atnalrfactorization ofW
by performing a SVD giving:
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whereU, is a2Fxr orthogonal matrix2; arxr diagonal matrix an¥, aPxr orthogonal
matrix. In the rigid case, we have that= 0 if no noise and measurements errors are
present. Thus, by enforcirige singular values after the third equal to zer® obtain a
numerical fit of themeasurements in the sense of the Frobenius norm. stége is
likely to improvethe measurements quality since even MOCAP systews & certain
uncertaintyover the 3D location of points (Some systems pmwltso an indication of
this uncertainty, thus a more accurate denoising co@dpérformed). This initial
decomposition via SVD can provide a first affing 6f the motion and shape
component® andS such that:

M =U, andS=32 V.

Since this transformation is valid up to an affirensformation i.ew = MQQ™'S we
seek a specific transformatiéghwhich enforces the metric propertieshdf(see Section
4 for a detailed description). The further advaatafithis procedure is that we obtain a
metric description of the shaj®using the complete 3D information coming from the
MOCAP system (i.e. all the frames and not onlyraggiar frame). We avoid in such
way to choose a 3D shape which relies only on glsimstance of the captured motion.

Given a translation, the models can be similariyngel as:

X;
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where ty, t, and t, are the translational component agdis now expressed in
homogeneous coordinates.

3.2 Articulated Shapes — Universal Joint

In order to simplify the formulation, we considertieulated shapes composed by
pairwise rigid bodies. In this case our measuremarg given by the 3D points lying
over both parts i.eWw = [W® | W@]. Two types of joints are here considered: the
universal jointandthe hinge joint When two objects are linked by a universal joira
distance between the two centers of mass is cdn@taninstance, the head and the
torso of a human body) but they have independdatiom components. At each frame
the shapes connected by a joint satisfy the foligwelation:
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wheret®™ andt® are the 3D shape centroids of the two objeRf3,and R® the 3x3
rotation matrices and®™ andd® the 3D displacement vectors of each shape from the
central joint. The constraint expressed in eq. r&@uces the dimensionality of the
model. It is then possible to refer the articulatedtion to a common reference frame
registered on the centroid of the first object thusplifying the shape matrix S as:

s o
s=| 0 s¥-d® (4)
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whereSis a full rank-7 matrix. The motion for a frambas to be arranged accordingly
to satisfy equation (3) giving:

M, =[RY R? t|
To obtain the block diagonal structure as in e fidgm a SVD ofW, we consider the
two shapes registered to the measured trajectogigsoid:

W:Mm |VV2]:[R(1) R(z)]{s(l) 02}
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which is a full-rank 6 matrix. However, the SVDWcomputes the components\6f
[V V)] that are dense. The remedy is to separate theobjexts by multiplying the
row space by a matriX such that:

_| null(v @) b/(l) V(Z)]- null(v @)v @ 0

| nullv®) 0 null (v @) @
where null() returns the left null-space of a matrix. The catuspaceU is then
multiplied by N in order to retain consistency. Given the recadds®ck structure,
separate metric constraints can be computed toeetloe correct structure and motion.

3.3 Articulated Shapes — Hinje Joint

A hinge joint constrains the relative orientatidrifee 3D objects since both shapes have
a common axis that is parallel to the axis of iotatln this case, the overall rank of W
drops to 6. To simplify visualization in a matrierin, we have aligned the axis of
rotation to the x-axis. IRY = [py p. ps] andR? = [p; ps ps] we can write that:
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Similarly to the solution proposed for the univéijsant, we have to compute a first fit
using SVD and then to accordingly enforce the magtiucture of the row spadé In
this case, we have to reduce some components obthspace oWV to zero. However
here we have a strong dependency on the x-axishwdoes not allow to consider the

shapes separately. Thus we use a matgenstructed such that:
T
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whereb” = [1 0 0 0 0. The column space can be then transformed acugiydivith
N™*. Now a hinge joint is defined as a line which defthe axis of rotation and thus its
center may be localized anywhere on the axis. Hewdke center lies in the null space
of [p1 p2 Ps P4 Ps (2 — t1)], thus it can be extracted from the previous fazé&tion.

4. SHAPE CALIBRATION

In the previous section we have found affine fds tivo different types of joints. An
upgrade to a metric space is necessary in ordeortpute a 3D shape that resembles
the metric properties of the bodies. However, gtege is not directly affecting the
previous computation of the joint position. The rgue to metric is accomplished by
imposing that the matrid is a collection of rotation matrices at each frambese
constraints are obtained with the computation tasformation matrixQ, which can
correct the matrices at each frame to orthogorta. Motion matriXxM can be given as:

|\/Il
M=| :
M
where eacl3x3 blockM; can be written as:
my
M, =|mj |. (5)
m;

Thus, in order to obtain the solution f@, we explicitly enforce orthonormality
constraints in (5). These can be expressed as @f sefuations in the form of Q'
Qm = cqe Whered, e = 1, 2, 3The value oty depends explicitly on the given joint. A
solution is obtained by considering the proddct Q' Q, solving linearly forH using
Least-Squares and then extract@gvith Choleski decomposition. The dimensionality
of Q depends by the problem consider€@is; for a single rigid bodyQesxs for a
universal jointQsxs for a hinge joint.

5. EXPERIMENTS

In order to show the flexibility of our approachewresent results using two different
databases of 3D points extracted using a VICONesysT he first set shows point lying

over an arm performing unknown motion. The tasleherto obtain the location of the

rotation axis associated to the elbow. The 3D gointFig. 2 are related to images as
shown in Fig. 1. The only information we requiredrder to run the approach is the
association of each point to the related segmetiieoBD body (i.e. a segmentation of
the point trajectories).
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Fig 2. Three sample frames showihg an 'arrun anddhmoated hinge joint at the elbow

The second set of points was obtained from thdyfi@eilable database of the Graphic
Lab of Carnegie Mellon Universityhttp://mocap.cs.cmu.eduin such experiment, an




adult is running in an unconstrained environmene Were able to extract universal
joints at each elbow and two hinge joints for ebet)) located at the knee and ankle, as
it can be seen in Fig. 3
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Fig 3. Three sample frames showing an adult huraaning. Two universal joints (red) and four hinge
joints (green) are extracted from the full bodyetctory.

6. CONCLUSIONS

We have presented a framework for computing thet jpositions from a set of
observations obtained from MOCAP systems. Our amlig not constrained by the
specific setup used for the acquisition but it aedts for high degrees of flexibility. As
future work, we aim to extend these methods to dati missing entries in the
measurements and to add consistent modelling ohtiseular properties of the body.
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