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Abstract— Many problems in control can be modeled as
an optimization problem over a network of nodes. Solving
them with distributed algorithms provides advantages over T o
centralized solutions, such as privacy and the ability to pocess (] /
data locally. In this paper, we solve optimization problemsin a \ (% \ % )
networks where each node requires only partial knowledge of \ /
the problem’s solution. We explore this feature to design a —&— \
decentralized algorithm that allows a significant reductio in I \ /
the total number of communications. Our algorithm is based o \
the Alternating Direction of Multipliers (ADMM), and we app ly o o a \e
it to distributed Model Predictive Control (MPC) and TCP/IP // [ =
congestion control. Simulation results show that the propsed z4 H ——e O
algorithm requires less communications than previous workfor //
the same solution accuracy. o (¥ T3

I. INTRODUCTION

Distributed processing and control techniques have beeg. 1. Example bipartite graph with two types of nodes: @@r(circles)
attracting considerable attention in several communibiesy ~ and peripheral (squares).
applications are requiring scalable distributed techascgue,
for example, to the demand of processing massive amounts of
data, or to the fact that data is generated in spatiallygiffe ~ Notation. We assume a bipartite netwok = (V,¢),
locations, as in sensor networks or the Internet. where the set of node¥ is partitioned into two disjoint

In this paper we address distributed Model Predictivgroups: central nodes ¢ = {1,...,C} and peripheral
Control (MPC) and TCP/IP congestion control. Althoughhodes P = {1,..., P}. The set of edgeg connects the
both problems have been studied extensively (see [1], [2]0des in both groupsi,j} € & means that nodesand j
[3], [4] for centralized and distributed MPC, and [5], [6] (belonging to different groups) are connected and thus can
for congestion control), their distributed implementatitill ~€xchange information. Fig. 1 shows an example of a network
relies on classical techniques, for example, the gradigota Where the nodes i€ and P are represented with circles
rithm [2], [5]. On the other hand, in the optimization field,and squares, respectively. Given a central ngdee denote
it has recently been shown that the Alternating Directiothe set of its neighbors, which are all peripheral nodes,
Method of Multipliers (ADMM) is more appropriate for With P(c); similarly, we denote the set of neighbors of the
distributed or parallel implementations [7], [8], [9]. peripheral node with C(p).

The algorithm we propose here is decentralized and Given a finite sef2 = {wi,ws,...,w,} and a vectorr,,
based on ADMM. It solves optimization problems withindexed by a parametes € €, let {z,}.cq denote the
coupled cost functions in bipartite networks, requiringdmi n-tuple (z., , T, , ..., %y, ). For simplicity, if @ = {w :
assumptions on those cost functions; for example, neithé(w) holds}, we represen{z,, },co With {zu} 4(w) holds
differentiability nor finite-valuedness is assumed, intcast Problem statement. Let G be a bipartite network as
with the majority of the previous work. Furthermore, ourdescribed above. All nodes are interested in solving ant opti
simulations for distributed MPC and congestion controkgho mization problem with a global variable € R™. However,
that the proposed algorithm requires significantly less -congach node is interested in knowing only some components
munications than state-of-the-art algorithms. Beforefalty ~of z, not all of its entries. To model that, we partition
stating the generic optimization problem that our algonith the variable ase = (x1,22,...,2¢), With z. € R,
solves, we introduce some notation. ni + -+ nc = n and assume that each segmentis
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Any solution of (1) will be denoted withe* = (7, ..., z%). Another line of related work has to do with

Although problem (1) has no explicit constraints, these minimize 3 fol(z)

. . . s s n vey JU
can be included by allowing each function to take infinite z€R (2)
values. As Fig. 1 illustrates, the only nodes depending.on subject to z € (,ey Xo,

are {c} U P(c), i.e., the central node and its neighbors. where each functiorf, : R* — R and each seX, c R"

Our goal is:given a bipartite network, design a distributed  are associated with theth node of an arbitrary connected
algorithm solving (1) such that only central node ¢ and network. Problem (1) can be formulated as (2) and thus
its neighbors exchange estimates of z}, ¢ = 1,...,C. By algorithms solving (2) also solve (1). So far, all the algo-
distributed algorithm, we mean that no node in the networkthms designed to solve (2) require the nodes to exchange
except node: (resp. nodep) has access tg. (resp.h,) at  full solution estimates among themselves, i.e., every camm
any time during or before the algorithm. We assume: nication consists of transmitting a vector with the same siz

N ) ) j
AP 1 For 0= ..., LR RULsoc) ST Thereor slgotinsfor () vote out reiement
can bewritten as f. = f.+ix,, where f. is convex over R ging only y P ) ’

and iy, is the indicator function of a closed convex set X.. ¢ consider a state-of-th.e-art algorithm solving (2), (8],
P m for comparison purposes; we will conclude that solving
Smilarly, for p = 1,...,P, h, : R™ — R U {400}, . . ;

. . = . directly (1) with the algorithm we propose here reduces the
with m,, = > ..y ne, €an be written as hy, = h, +ix,, S L

L. c€C(p) - P number of communications significantly.
with h;, convex over R™» and X, closed and convex. Finally, note that the algorithm proposed in [7, §7.2]
Assumption 2. Problem (1) is solvable. cannot be applied to solve our problem, since it would

) ) ) _ require all-to-all communications in each step.
Assumption 1 allows us to consider constraints in (1)

through the use of indicator functions:iiq(w) =0 if w € Il. PROPOSEDALGORITHM

Q, and h(w) = +oo if w ¢ Q. Assumption 2, however, | this section we derive the algorithm. We start by
requires all these constraints to have a nonempty intéosect manipulating (1) in order to make ADMM applicable.
The question of how MPC and congestion control prob- proplem manipulations. Given a central node, the only
lems can be modeled as (1) will be addressed in section I}gges depending on, are nodec and its neighbors(c).
Related work. Most of the literature that has tackledye thus replicate. throughout the nodeB(c), and denote

problems with the format (1) used gradient or subgradiefe copy of node € P(c) with 22. Problem (1) becomes
algorithms. These can be applied directly to (1), as in [6],

[10], or to a dual problem [11], [10]. Both cases require imipimiés) Ycee fel@e) + 2 pep hp({#l}ecc(p)

=(Z1,eees

additional assumptions on the functiofis and h,,. In par- subjectto z. =22, peP(c), c=1,...,C,
ticular, the gradient algorithm is applicable if the costdu 3)
tion is differentiable and its derivative Lipschitz contus; where the new variable i = (71,...,7¢) with z. =

otherwise, a subgradient algorithm has to be used, but (i, {22},cp (). We now rewrite the constraint of (3) in
generally requires too many iterations to converge. Note matrix format. We define the node-arc incidence matrix
that whenever it is possible to apply a gradient algorithmas aP x E matrix where each column is associated with
its faster version (Nesterov's algorithm [12]) can also ban edge{i,j} of the graph: ifi < j, theith (resp.;jth)
applied. To the best of our knowledge, Nesterov’s algorithrantry of that column isl (resp.—1), and vice-versa; the
has never been studied for (1); nevertheless, we considerdimaining entries are zeros. For each central nodet A,
for comparison with the proposed algorithm. be the transpose of the node-arc incidence matrix of the
The work in [10], [11] applied the gradient algorithm subnetwork of nodegc} U P(c): associate thet1 sign
to a dual problem of (1). Their original problem, howeverwith the central node and thel sign with the peripheral
contained an additional constraint coupling all the vdéap nodes. Then, the constraints = 22, p € P(c), can be
as a consequence, their algorithm ran only on networks withritten as (A. ® I,,)z. = 0, where I, is the identity
a central node. If that constraint is absent, as here, their anatrix in R?. Consequently, all the constraints in (3) can
gorithm becomes decentralized. Unfortunately, this apgino be written asBz = 0, where B is the block diagonal
cannot be applied to solve the problems we consider heneatrix Diag By, ..., B¢) with B, = A, ® I,,,.
because it requires all the cost functions in (1) to be $§frict Given a matrix M € R™*"™ and a binary vecton
convex, which is not the case in our applications; hence, rin {0,1}", let M, be the matrix obtained from removing
solution of (1) is recoverable just by solving its dual pexl  the columns ofM corresponding to the zero entries bn
Another approach for solving (1) is with a distributed im-i.e., M; contains theith column of M if b; = 1. We adopt
plementation of the barrier method with Newton’s algorithmthe same notation for vectors;, is the vector obtained
yielding an algorithm with two nested loops; this approaclfrom x € R™ by removing the entries correspondingbto=

was taken in [2] in the context of distributed MPC. Their0. We definev = (vy, ..., vc), wherev, € {0, 1}7(P(@I+1)
simulations show that it slightly improves the convergenckas 1 in the first n. entries and0 in the remaining, for
rate of the gradient method, both algorithms requiring aboall c; let v = (uy, ..., uc), whereu,. € {0, 1}7(P@I+1),

the same number of iterations. be the complementary vector of i.e., u, has a0 in the



first n. entries and ones in the remaining. There hdkds=
B,, + B,T,, and hence (3) is written equivalently as

mm”l“ze ZCGC fC(xc +Zpe7> ({xlcj}ceC(p))
subject to B,Z, + BuZ, =0.

Thetermsy: . fe(zc) andy > ph

(4)

p({2P}cec(p)) are func-

tions of z,, andz,,, respectively. Writing the problem in this

format enables us to apply ADMM, described next.

ADMM. The Alternating Direction Method of Multipliers
(ADMM) [7] is an efficient algorithm for solving

m|n|m|ze 1) + g2(x
o Minimize g1(w1) + g2(z2) 5)
subjectto  Ajxi + Asxo =0,

where, fori = 1,2, g; : R™ — R is a convex functionX;
is a closed convex set, amtl is a full column rank matrix.
ADMM consists of iterating

:v]f“ € arg min Lp(gcl,xg;/\k) (6)
z1€X1

2T € arg min L, 295 AF) @)
T2€X>

)\k—&—l _ )\k +p(A1xk+1 +A2x/2€+1)7 (8)

where L, is the augmented Lagrangian of (5),
Lo(x1, 223 A) := g1(21) + g2(22) + AT (A121 + Ayws)
9)

A is the dual variable, and > 0 is a constant. The following
theorem guarantees the convergence of (6)-(8).

+ §||A1~’01 + Agas|?,

Theorem 1 ([7], [8]). Assume g; R™ — R is
a convex function over R™, X; C R™ is a closed
and convex set, and A; is a full column-rank matrix,
for ¢+ = 1,2. Assume problem (5) is solvable. Then, the
sequence {(x%, x5, \F)} generated by (6)-(8) converges to
(a7, x5, \*), where (z7, x3) solves (5) and A\* solves the dual
problem of (5).

Applying ADMM. We apply ADMM to problem (4)
consideringz, and z, as variables. At iteratiok, zF+!
is found by solving

win 3 (1ot

ceC

> 0wt Ellae—at|?) , (10)

pEP(c)

where A, is the dual variable associated to the constrair#

xz. = 2. We assume there is a copy #&f, both in central
nodec and in peripheral nodg. Similarly, after the central
nodes transmit"*+! to their neighborsz, is updated with
the solution of

mln Z(

peEP

Vece) + 3 (=AE, Ta?

ceC(p)

p
+Lllakt —at)?) . @y
Next, the copies of the dual variables are updated as

)\k+1 ( lg+1_z€,k+1)7 p€EP(c), ceC. (12)

)\k

Since none of the terms in the objective of (10) is coupled,
this problem decomposes infd problems that can be solved
in parallel. Namely, central nodesolves

(% Py x”’“) T+

pEP(c)

, (13)

min fe(z.)+
ze

where D. := |P(c)| and v} = ZPGP(C) <p- Regarding
the z,, update, problem (11) also decomposes iRtparallel
problems. Namely, peripheral nogesolves
({xg}CEC(p)) eptoee ™ Y eem (28} eec)

min h
{:c }CEC(p)

P 2

Note that peripheral nodg needs to know the individ-
ual components of the vectq\}, }.cc(,), Whereas central
nodec only needs to know the sunf = 3= _p ) A, The
consequence is that, while peripheral nodes have to keep
track of the neighbors’ variables.,, which can be done
without any additional communication, the central nodes
updatey. instead of the components afthey depend on. In
fact replacmg (12) into the definition of* yields yA+1 =
vF + pDoakt — P2 pep(e) T k+1_We name the resulting
algorithm, descnbed in AIgorlthm 1, Cluster-ADMM (C-
ADMM). Note that C-ADMM has different procedures for
the central nodes and for the peripheral nodes because we
simplified the dual variable updates at the central nodes (se
step 4). Apart from this, the algorithm is very similar for
both types of nodes. The nodes exchange between themselves
only the components of the variable that are of interest
for them, not full solution estimates. Nevertheless, tgiou
cooperation, they solve (1). Its convergence is guarariiged

Theorem 2. Let Assumptions 1-2 hold, let the given graph
be connected and bipartite, and consider problem (4). Then,
e fe and Zpeph are convex over the full space, the
sets X, c e C, and X,,, p € P, are closed and convex, and
the matrices B,, and B,, have full column rank. Furthermore,
problem (4) is solvable.

Proof. Except the full column rankness aB, and B,,
all conclusions of Theorem 2 follow directly from As-
sumptions 1-2. To see why3, and B, have full col-

umn rank, first partitionB. as [(B.)s, (Be)u.| =
(Ac®In,)v, (Ac® 1y, )u,], for eache = 1,...,C.
he matrix (A. ® I, )., (resp. (Ac ® In.)u.) has full

column rank because it corresponds to a partitioning
of a node-arc incidence matrix of a connected (star)
graph (note that the Kronecker product by the identity
matrix does not affect the result because it preserves
ranks). SinceB, = Diag((B1)v,,---, (Bc)v.) and B, =
Diag((B1)uy,- - -, (Bc)ue ), the result follows. O

IIl. APPLICATIONS

We now describe how distributed Model Predictive Con-
trol and TCP/IP congestion control can be formulated as (1).



Algorithm 1 C-ADMM and we assume all these matrices to be block diagonal:

Algorithm for centrall nodle cecC Q = Diag(Q1,...,Qp), Qs = Diag(Qy,,...,Qsp), R =
'”l't_'ar'('azpfgft”- Sety. = 2. =0andk =1 Diag(Ry, ..., R¢). Our assumptions enable decomposing

2 Setvf — 4k — P erie 2% and find the constraints of (15) as

spt+1) = Apsp(t) + > Bpeme(t), t=0,....,.7 -1
25— argmin fo(z) + o 2o + ”TDcchH? c&Clp)
e SP(O) = Sg ’
3 Sendzf*t! to P(c)
4 Updateye ™ = 7¢ + pDeae ™ — p3  p(oy 22 for eachp = 1,..., P, where B;; € R"*™ is the ijth
5 k< k+1 o block of the matrixB (corresponding to the influence that
6: until some stopping criterion is met actuator;j exerts on systen), s,(t) € R is thepth block
0 np i 0 it
Algorithm for peripheral node p € P: of s(t), _and_sp € R_ » is the pth bIock_ of s*. W_rltlng the_se _
Initialization: setAl, =0 for c € C(p) andk = 1 constraints in matrix form and replacing them in the objexti
7: repeat of (15) yields a problem with the format of (1):
8  Setv) = —{\F, — pakT'}.ccp and find
: =T h = =T g7 7 {~
. T min T, RCIC + ({xc}c C H Q o {xc}CEC )
(e} {iley = argminky (zy) + of @, + £l | ; ;3 e e (”
Tp
A
9o: forall ceC(p)do +25)Gy QpHp{Ze}ece)), (16)
. D p1k+1
10: Send COf:flonenic of {Icgﬁec(”)}:ilcemral node\ith variable (z1, ... ,Zc), wherez, = (z.(0), ..., (T —
11: Update., :Acwp(fvc -z ) 1)) € R™T. In (16), R. = It ® R, Q, = Diag(lr ®
12: end for ~ 2 T
130 k< k41 @ Qs Gp=[In, 4 Ay - 4] and
14: until some stopping criterion is met
B, 0 o0
i,=| 4By By - 01 17)

Model Predictive Control. Consider Fig. 1 and view the
central nodesC as actuators and the peripheral nodes T_51 o
as dynamical systems. Such network can be represented by A, " By A,°By oo By

a matrix E € R”*¢, where E,. = 1 if actuatorc is |n (17), B, is the horizontal concatenation of the matri-
connected to system and0 otherwise. The goal is to control cesB,. for ¢ € C(p). Having the format of (1), problem (16)

a global process modeled byt + 1) = As(t) + Bz(t), can be solved either with C-ADMM or with gradient meth-
wheres(t) € R™ andz(t) € R™ are, respectively, the state ods. While formulating (15) as (16) allows a distributed
vector and the input at timg andA € R™*" andB € R"*™  go|ution, it also makes the Lipschitz constant of the gnaidie
are fixed matrices. We decompose the global stdt¢ of (16) large, due to (17). Consequently, gradient methods
as (s1(t),...,sp(t)), wheres,(t) € R" is the state of have difficulties handling problem (16). C-ADMM, on the
systemp. Of coursep +- - - +np = n. We also decompose gther hand, has little sensitivity to Lipschitz constantsl a
the inputz(t) as (z1(t), ..., zc(t)), wherex.(t) € R™ is  thus it solves (16) efficiently.

associated with theth actuator. Agaifin; +---+mg = m. Other approaches for distributed MPC have been proposed

Th's model was considered in [13], vyhere a d'Str'.b.Ute%efore, but assume different models. For example, [4] pro-
linear controlleru(t) = Kux(t) was designed to stabilize jo . o0 algorithm for solving (15), where each node is

the system. The network topology was encoded by imposi multaneously a system and an actuator: and [3] proposes

T .
on K the same nonzero paftern #'. This means that an heuristic to solve (15) for coupled systems, assuming

actuators only aﬁ?Ct nelghbormg systems. We \.N'" m‘?lk%ommunication links between interdependent systems.
the same assumption here, but instead of designing a linear

controller, we will design a Model Predictive Control (MPC) Congestion control. Congestion control is very impor-
scheme. We also assume decoupled dynamics, Ae= tant in networking since it prevents overloading networks

Diag(A1, ..., Ap). The MPC problem we solve is with (lost) packets. Many congestion control protocolg(e.
TCP Vegas) have been modeled as a distributed solution,
minimize /' (s(t)TQs(t) +x(t)TRx(t)) usually the gradient algorithm, for a utility maximization
+s(T)TQys(T) problem [5], [6]. We propose C-ADMM as an alternative.
subjectto s(t+1) = As(t) + Bz(t), t=0,...,7—1
5(0) = s°, Consider a network with three types of nodes: source
(15) nodesS, recipient node®, and intermediate node¥, as in
where (s(0),...,s(T)) € (R")T*! and (x(0),...,2(T — Fig. 2. Each linkl in the network has finite capacity > 0
1)) € (R™T are the variablesT is the prediction hori- and, for simplicity, only supports flows in one direction.eTh
zon, ands® is the observed state @t = 0. MatricesQ case of flows in both directions can be easily generalized.
and Qs are positive semidefiniteR is positive definite, Consider also a set of predetermined routes from the source



example, in Fig. 2, node Nmanages both\, and A;. The
communication between neighboring nodes in the bipartite
graph of Fig. 2(b) is carried out along the routes drawn in
Fig. 2(a), and it can be implicit (e.g., missing acknowledg-
ment packets from intermediate nodecan be seen as a
raise in the price);) or explicit (e.g., by adding specific
fields to the packets for price negotiation). In a C-ADMM

(a) Original network implementation, while the node managing lihkwould only
require the aggregate sum of the rates of the sources using
e A link [ (step 8 of Algorithm 1), each soureewould have to
Ao A s s know the full vector{ \i; };c¢(s)- In @ gradient method imple-
‘ : mentation [6], both the sources and the intermediate nodes
0—=2—0 0—a—0 i e
only require knowledge of aggregate quantities. C-ADMM,
(b) Bipartite graph obtained from (a) however, provides faster convergence rates, as shown next.
Fig. 2. (a) network with|S| = |R| = |N/| = 3; each source transmits IV. SIMULATIONS
packets to a single recipient; (b) graph obtained from @ghdink from (a) . . .
with a capacity associated is represented as a circular inofs. We now present some simulation results comparing C-

ADMM'’s performance with other algorithms. We consider
the ordinary gradient method, Nesterov's method, and D-
MM [8], which was designed to solve the more general
blem (2), not (1). D-ADMM thus requires exchanging
ull solution estimates between the nodes. This will be iake
ri]n account in our measure of performance: communication
steps. A communication step occurs after all nodes exchange
their current estimate of the componentsagf. Note that
nlgx}imize Y ses Wslogx, (18) computation time inside each node is about the same in all
s}ses _ algorithms and, many times, negligible with respect to the
Subject t0 3 ses @ Sty I=1-o L, communication times. In D-ADMM, each communication
wherew, > 0 is a parameter associated to souscandS(l)  step will count as” communication steps, since the vectors
is the set of sources that use lihkSince the objective of (18) exchanged ar€’ times larger.
is strictly concave, we can solve its dual problem instead: Network models. We generated random bipartite graphs

nodes to the recipient nodes such that each source has oﬁ‘rf%
one recipient for its packets. Our goal is to compute th
“optimal” sending rater; for each source € S such that
the link capacity constraints are satisfied. For example, t
TCP Vegas protocol was modeled as solving [5], [6]:

L following an Erdds-Rényi model: each pair of nodes (be-
minimize Al — sl A . . . : o
)\:(I)\ll,...l.g\L) Dier AN = Xses W5 108(2ie(s) M) longing to different groups) is linked with probabiligy We
subjectto N >0, leL, considerech = 0.25 andp = 0.75.
(19) Congestion control.We considered networks with several

where L is the set of links,L := |£|, and L(s) is the set sjzes, ranging from x 5 to 40 x 50, whereC' x P means that
of links that sources uses in its route. Once a solution  the network hag” central nodes an# peripheral nodes. Re-
of (19) is found, the optimal rate for soureecan be found garding the weightss, for each source (central) node, they

asx} = ws/ Y cp(s) A - Problem (19) has the same formatwere generated randomly betweerand11. All algorithms

of (1) if we see each link as a central node and each souré@pped whenevefz* — 2*||/||z*|| < 1073, wherez*F =

as a peripheral node. To make this connection clearer, wek .,zk) is the global estimate at iteratioh and z*
construct a bipartite graph from the original network thgvas computed beforehand in a centralized way, or witén
following way: if I € £, create a central node type with thecommunication steps were achieved. For the augmented La-
label I, and let the source nodese S be the peripheral grangian algorithms (C-ADMM and D-ADMM), we selected
nodes; if source node uses linki, connect peripheral the constantp from the set{0.01,0.05,0.1,0.5,1,5,10}
nodes to central nodé. Fig. 2(b) shows the bipartite graph and considered always the that yielded the best result.
obtained from 2(a) by considering only the links marked similar scheme was adopted for choosing the Lipschitz
with capacities. Now the connection between (19) and (1) igonstantL. for the gradient and Nesterov algorithms, foEe
clearer: each central nodéholds \; and has a linear objec- {1072,1071,1,5,10,15,20}. The reason for “guessing” a

tive fi(A1) = A5 each peripheral node has an objective | jpschitz constant for these methods is because the grtadien
that depends on the variables of the central nodes to whigh the objective of (19) is not Lipschitz continuous.

it is connected, i.e.hs({Ai}ies(s)) = ws1og(Xocpisy M)- Fig. 3 shows the simulation results, depicting the commu-
Therefore, C-ADMM can be applied and it provides a nevpjcation steps as a function of the network. These communi-
protocol in the scope of the interpretation of [6]. cation steps are counted in the bipartite network (Fig.)2(b)

According to that interpretation, who manages the dualot in the original network (Fig. 2(a)). Of course, each
variable )\;, which can be seen as a price for using lihk communication occurring in the bipartite network may cor-
is the intermediate node that has lilkas an output. For respond to several communications in the original network.
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Fig. 3. Results of the simulations for the TCP/IP congestiontrol application in Er@ls-Rényi networks with parameters ¢a)}= 0.25 and (b)p = 0.75.

The results for sparsely connected networks, Fig. 3(a), and

V. CONCLUSIONS ANDFUTURE WORK

for densely connected networks, Fig. 3(b), are very similar e proposed an efficient algorithm for solving objective-
the proposed algorithm (C-ADMM) required always lesgoupled optimization problems in bipartite networks. The
communication steps than competing algorithms, yet it Wasroposed algorithm is based on the Alternating Direction

closely followed by Nesterov’s algorithm.

Relative error: ||zF — z*||/||=*|

Method of Multipliers and is proved to converge to the
same solution as if the problem were solved in a central-

10° cradient  1zed way. We applied the algorithm to distributed model
~~Nesterov  predictive control and to TCP/IP congestion control. Thylou
ot numerical simulations, we showed that the algorithm is more
communication-efficient than previous algorithms, making
attractive to energy-constrained environments.
1072 Future work consists of extending the algorithm to more
general networks and to address large-scale problems.
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