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Abstract— Many problems in control can be modeled as
an optimization problem over a network of nodes. Solving
them with distributed algorithms provides advantages over
centralized solutions, such as privacy and the ability to process
data locally. In this paper, we solve optimization problemsin
networks where each node requires only partial knowledge of
the problem’s solution. We explore this feature to design a
decentralized algorithm that allows a significant reduction in
the total number of communications. Our algorithm is based on
the Alternating Direction of Multipliers (ADMM), and we app ly
it to distributed Model Predictive Control (MPC) and TCP/IP
congestion control. Simulation results show that the proposed
algorithm requires less communications than previous workfor
the same solution accuracy.

I. I NTRODUCTION

Distributed processing and control techniques have been
attracting considerable attention in several communities. New
applications are requiring scalable distributed techniques due,
for example, to the demand of processing massive amounts of
data, or to the fact that data is generated in spatially different
locations, as in sensor networks or the Internet.

In this paper we address distributed Model Predictive
Control (MPC) and TCP/IP congestion control. Although
both problems have been studied extensively (see [1], [2],
[3], [4] for centralized and distributed MPC, and [5], [6]
for congestion control), their distributed implementation still
relies on classical techniques, for example, the gradient algo-
rithm [2], [5]. On the other hand, in the optimization field,
it has recently been shown that the Alternating Direction
Method of Multipliers (ADMM) is more appropriate for
distributed or parallel implementations [7], [8], [9].

The algorithm we propose here is decentralized and
based on ADMM. It solves optimization problems with
coupled cost functions in bipartite networks, requiring mild
assumptions on those cost functions; for example, neither
differentiability nor finite-valuedness is assumed, in contrast
with the majority of the previous work. Furthermore, our
simulations for distributed MPC and congestion control show
that the proposed algorithm requires significantly less com-
munications than state-of-the-art algorithms. Before formally
stating the generic optimization problem that our algorithm
solves, we introduce some notation.
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Fig. 1. Example bipartite graph with two types of nodes: central (circles)
and peripheral (squares).

Notation. We assume a bipartite networkG = (V , E),
where the set of nodesV is partitioned into two disjoint
groups: central nodes C = {1, . . . , C} and peripheral
nodes P = {1, . . . , P}. The set of edgesE connects the
nodes in both groups:{i, j} ∈ E means that nodesi and j
(belonging to different groups) are connected and thus can
exchange information. Fig. 1 shows an example of a network
where the nodes inC and P are represented with circles
and squares, respectively. Given a central nodec, we denote
the set of its neighbors, which are all peripheral nodes,
with P(c); similarly, we denote the set of neighbors of the
peripheral nodep with C(p).

Given a finite setΩ = {ω1, ω2, . . . , ωn} and a vectorxω,
indexed by a parameterω ∈ Ω, let {xω}ω∈Ω denote the
n-tuple (xω1 , xω2 , . . . , xωn

). For simplicity, if Ω = {ω :
A(ω)holds}, we represent{xω}ω∈Ω with {xω}A(ω) holds.

Problem statement. Let G be a bipartite network as
described above. All nodes are interested in solving an opti-
mization problem with a global variablex ∈ R

n. However,
each node is interested in knowing only some components
of x, not all of its entries. To model that, we partition
the variable asx = (x1, x2, . . . , xC), with xc ∈ R

nc ,
n1 + · · · + nC = n and assume that each segmentxc is
assigned to the central nodec ∈ C, which also has associated
a cost functionfc(xc). Each peripheral nodep, in turn,
does not have a variable associated, but its cost functionhp

depends on the variables of the central nodes to which it is
connected, i.e.,hp({xc}c∈C(p)). We aim to solve

minimize
x=(x1,...,xC)

∑

c∈C

fc(xc) +
∑

p∈P

hp({xc}c∈C(p)) . (1)



Any solution of (1) will be denoted withx⋆ = (x⋆
1, . . . , x

⋆
C).

Although problem (1) has no explicit constraints, these
can be included by allowing each function to take infinite
values. As Fig. 1 illustrates, the only nodes depending onxc

are {c} ∪ P(c), i.e., the central nodec and its neighbors.
Our goal is:given a bipartite network, design a distributed
algorithm solving (1) such that only central node c and
its neighbors exchange estimates of x⋆

c , c = 1, . . . , C. By
distributed algorithm, we mean that no node in the network
except nodec (resp. nodep) has access tofc (resp.hp) at
any time during or before the algorithm. We assume:

Assumption 1. For c = 1, . . . , C, fc : Rnc −→ R ∪ {+∞}
can be written as fc = f̃c+iXc

, where f̃c is convex over Rnc

and iXc
is the indicator function of a closed convex set Xc.

Similarly, for p = 1, . . . , P , hp : R
mp −→ R ∪ {+∞},

with mp =
∑

c∈C(p) nc, can be written as hp = h̃p + iXp
,

with h̃p convex over R
mp and Xp closed and convex.

Assumption 2. Problem (1) is solvable.

Assumption 1 allows us to consider constraints in (1)
through the use of indicator functions iΩ: iΩ(ω) = 0 if ω ∈
Ω, and iΩ(ω) = +∞ if ω 6∈ Ω. Assumption 2, however,
requires all these constraints to have a nonempty intersection.

The question of how MPC and congestion control prob-
lems can be modeled as (1) will be addressed in section III.

Related work. Most of the literature that has tackled
problems with the format (1) used gradient or subgradient
algorithms. These can be applied directly to (1), as in [6],
[10], or to a dual problem [11], [10]. Both cases require
additional assumptions on the functionsfc andhp. In par-
ticular, the gradient algorithm is applicable if the cost func-
tion is differentiable and its derivative Lipschitz continuous;
otherwise, a subgradient algorithm has to be used, but it
generally requires too many iterations to converge. Note
that whenever it is possible to apply a gradient algorithm,
its faster version (Nesterov’s algorithm [12]) can also be
applied. To the best of our knowledge, Nesterov’s algorithm
has never been studied for (1); nevertheless, we consider it
for comparison with the proposed algorithm.

The work in [10], [11] applied the gradient algorithm
to a dual problem of (1). Their original problem, however,
contained an additional constraint coupling all the variables;
as a consequence, their algorithm ran only on networks with
a central node. If that constraint is absent, as here, their al-
gorithm becomes decentralized. Unfortunately, this approach
cannot be applied to solve the problems we consider here
because it requires all the cost functions in (1) to be strictly
convex, which is not the case in our applications; hence, no
solution of (1) is recoverable just by solving its dual problem.

Another approach for solving (1) is with a distributed im-
plementation of the barrier method with Newton’s algorithm,
yielding an algorithm with two nested loops; this approach
was taken in [2] in the context of distributed MPC. Their
simulations show that it slightly improves the convergence
rate of the gradient method, both algorithms requiring about
the same number of iterations.

Another line of related work has to do with

minimize
x∈Rn

∑

v∈V fv(x)

subject to x ∈
⋂

v∈V Xv ,
(2)

where each functionfv : Rn −→ R and each setXv ⊂ R
n

are associated with thevth node of an arbitrary connected
network. Problem (1) can be formulated as (2) and thus
algorithms solving (2) also solve (1). So far, all the algo-
rithms designed to solve (2) require the nodes to exchange
full solution estimates among themselves, i.e., every commu-
nication consists of transmitting a vector with the same size
asx⋆. Therefore, algorithms for (2) violate our requirement
of exchanging only the necessary components. Nevertheless,
we consider a state-of-the-art algorithm solving (2), [8],
for comparison purposes; we will conclude that solving
directly (1) with the algorithm we propose here reduces the
number of communications significantly.

Finally, note that the algorithm proposed in [7, §7.2]
cannot be applied to solve our problem, since it would
require all-to-all communications in each step.

II. PROPOSEDALGORITHM

In this section we derive the algorithm. We start by
manipulating (1) in order to make ADMM applicable.

Problem manipulations. Given a central nodec, the only
nodes depending onxc are nodec and its neighborsP(c).
We thus replicatexc throughout the nodesP(c), and denote
the copy of nodep ∈ P(c) with xp

c . Problem (1) becomes

minimize
x̄=(x̄1,...,x̄C)

∑

c∈C fc(xc) +
∑

p∈P hp({xp
c}c∈C(p))

subject to xc = xp
c , p ∈ P(c) , c = 1, . . . , C ,

(3)
where the new variable is̄x = (x̄1, . . . , x̄C) with x̄c =
(xc, {xp

c}p∈P(c)). We now rewrite the constraint of (3) in
a matrix format. We define the node-arc incidence matrix
as aP × E matrix where each column is associated with
an edge{i, j} of the graph: if i < j, the ith (resp.jth)
entry of that column is1 (resp.−1), and vice-versa; the
remaining entries are zeros. For each central nodec, let Ac

be the transpose of the node-arc incidence matrix of the
subnetwork of nodes{c} ∪ P(c): associate the+1 sign
with the central node and the−1 sign with the peripheral
nodes. Then, the constraintsxc = xp

c , p ∈ P(c), can be
written as (Ac ⊗ Inc

)x̄c = 0, where Iq is the identity
matrix in R

q. Consequently, all the constraints in (3) can
be written asBx̄ = 0, where B is the block diagonal
matrix Diag(B1, . . . , BC) with Bc = Ac ⊗ Inc

.
Given a matrix M ∈ R

m×n and a binary vectorb
in {0, 1}n, let Mb be the matrix obtained from removing
the columns ofM corresponding to the zero entries inb,
i.e., Mb contains theith column ofM if bi = 1. We adopt
the same notation for vectors:xb is the vector obtained
from x ∈ R

n by removing the entries corresponding tobi =
0. We definev = (v1, . . . , vC), wherevc ∈ {0, 1}nc(|P(c)|+1)

has 1 in the first nc entries and0 in the remaining, for
all c; let u = (u1, . . . , uC), whereuc ∈ {0, 1}nc(|P(c)|+1),
be the complementary vector ofv, i.e., uc has a0 in the



first nc entries and ones in the remaining. There holdsBx̄ =
Bvx̄v +Bux̄u, and hence (3) is written equivalently as

minimize
x̄v,x̄u

∑

c∈C fc(xc) +
∑

p∈P hp({xp
c}c∈C(p))

subject to Bvx̄v +Bux̄u = 0 .
(4)

The terms
∑

c∈C fc(xc) and
∑

p∈P hp({xp
c}c∈C(p)) are func-

tions of x̄v andx̄u, respectively. Writing the problem in this
format enables us to apply ADMM, described next.

ADMM. The Alternating Direction Method of Multipliers
(ADMM) [7] is an efficient algorithm for solving

minimize
x1∈X1 , x2∈X2

g1(x1) + g2(x2)

subject to A1x1 +A2x2 = 0 ,
(5)

where, fori = 1, 2, gi : Rni −→ R is a convex function,Xi

is a closed convex set, andAi is a full column rank matrix.
ADMM consists of iterating

xk+1
1 ∈ arg min

x1∈X1

Lρ(x1, x
k
2 ;λ

k) (6)

xk+1
2 ∈ arg min

x2∈X2

Lρ(x
k+1
1 , x2;λ

k) (7)

λk+1 = λk + ρ(A1x
k+1
1 +A2x

k+1
2 ) , (8)

whereLρ is the augmented Lagrangian of (5),

Lρ(x1, x2;λ) := g1(x1) + g2(x2) + λ⊤(A1x1 +A2x2)

+
ρ

2
‖A1x1 +A2x2‖

2 , (9)

λ is the dual variable, andρ > 0 is a constant. The following
theorem guarantees the convergence of (6)-(8).

Theorem 1 ([7], [8]) . Assume gi : R
ni −→ R is

a convex function over R
ni , Xi ⊂ R

ni is a closed
and convex set, and Ai is a full column-rank matrix,
for i = 1, 2. Assume problem (5) is solvable. Then, the
sequence {(xk

1 , x
k
2 , λ

k)} generated by (6)-(8) converges to
(x⋆

1, x
⋆
2, λ

⋆), where (x⋆
1, x

⋆
2) solves (5) and λ⋆ solves the dual

problem of (5).

Applying ADMM. We apply ADMM to problem (4)
consideringx̄v and x̄u as variables. At iterationk, x̄k+1

v

is found by solving

min
x̄v

∑

c∈C

(

fc(xc)+
∑

p∈P(c)

(λk
cp

⊤
xc+

ρ

2
‖xc−xp,k

c ‖2)
)

, (10)

whereλcp is the dual variable associated to the constraint
xc = xp

c . We assume there is a copy ofλcp both in central
nodec and in peripheral nodep. Similarly, after the central
nodes transmitxk+1

c to their neighbors,̄xu is updated with
the solution of

min
x̄u

∑

p∈P

(

hp

(

{xp
c}c∈C(p)

)

+
∑

c∈C(p)

(−λk
cp

⊤
xp
c

+
ρ

2
‖xk+1

c − xp
c‖

2)
)

. (11)

Next, the copies of the dual variables are updated as

λk+1
cp = λk

cp+ρ
(

xk+1
c −xp,k+1

c

)

, p ∈ P(c) , c ∈ C . (12)

Since none of the terms in the objective of (10) is coupled,
this problem decomposes intoC problems that can be solved
in parallel. Namely, central nodec solves

min
xc

fc(xc)+
(

γk
c − ρ

∑

p∈P(c)

xp,k
c

)⊤

xc +
ρDc

2
‖xc‖

2 , (13)

where Dc := |P(c)| and γk
c =

∑

p∈P(c) λ
k
cp. Regarding

the x̄u update, problem (11) also decomposes intoP parallel
problems. Namely, peripheral nodep solves

min
{xp

c}c∈C(p)

hp

(

{xp
c}c∈C(p)

)

−{λk
cp+ρxk+1

c }⊤c∈C(p){x
p
c}c∈C(p)

+
ρ

2

∥

∥

∥
{xp

c}c∈C(p)

∥

∥

∥

2

. (14)

Note that peripheral nodep needs to know the individ-
ual components of the vector{λk

cp}c∈C(p), whereas central
nodec only needs to know the sumγk

c =
∑

p∈P(c) λ
k
cp. The

consequence is that, while peripheral nodes have to keep
track of the neighbors’ variablesλcp, which can be done
without any additional communication, the central nodes
updateγc instead of the components ofλ they depend on. In
fact, replacing (12) into the definition ofγk

c yields γk+1
c =

γk
c + ρDcx

k+1
c − ρ

∑

p∈P(c) x
p,k+1
c . We name the resulting

algorithm, described in Algorithm 1, Cluster-ADMM (C-
ADMM). Note that C-ADMM has different procedures for
the central nodes and for the peripheral nodes because we
simplified the dual variable updates at the central nodes (see
step 4). Apart from this, the algorithm is very similar for
both types of nodes. The nodes exchange between themselves
only the components of the variable that are of interest
for them, not full solution estimates. Nevertheless, through
cooperation, they solve (1). Its convergence is guaranteedby:

Theorem 2. Let Assumptions 1-2 hold, let the given graph
be connected and bipartite, and consider problem (4). Then,
∑

c∈C f̃c and
∑

p∈P h̃p are convex over the full space, the
sets Xc, c ∈ C, and Xp, p ∈ P , are closed and convex, and
the matrices Bv and Bu have full column rank. Furthermore,
problem (4) is solvable.

Proof. Except the full column rankness ofBv and Bu,
all conclusions of Theorem 2 follow directly from As-
sumptions 1-2. To see whyBv and Bu have full col-
umn rank, first partitionBc as

[

(Bc)vc (Bc)uc

]

=
[

(Ac ⊗ Inc
)vc (Ac ⊗ Inc

)uc

]

, for each c = 1, . . . , C.
The matrix (Ac ⊗ Inc

)vc (resp. (Ac ⊗ Inc
)uc

) has full
column rank because it corresponds to a partitioning
of a node-arc incidence matrix of a connected (star)
graph (note that the Kronecker product by the identity
matrix does not affect the result because it preserves
ranks). SinceBv = Diag((B1)v1 , . . . , (BC)vC ) and Bu =
Diag((B1)u1 , . . . , (BC)uC

), the result follows.

III. A PPLICATIONS

We now describe how distributed Model Predictive Con-
trol and TCP/IP congestion control can be formulated as (1).



Algorithm 1 C-ADMM
Algorithm for central node c ∈ C:
Initialization: Setγ1

c = x1
c = 0 andk = 1

1: repeat
2: Setvkc = γk

c − ρ
∑

p∈P(c) x
p,k
c and find

x
k+1
c = argmin

xc

fc(xc) + v
k
c

⊤
xc +

ρDc

2
‖xc‖

2

3: Sendxk+1
c to P(c)

4: Updateγk+1
c = γk

c + ρDcx
k+1
c − ρ

∑

p∈P(c) x
p,k+1
c

5: k ← k + 1
6: until some stopping criterion is met

Algorithm for peripheral node p ∈ P:
Initialization: setλ1

cp = 0 for c ∈ C(p) andk = 1
7: repeat
8: Setvkp = −{λk

cp − ρ xk+1
c }c∈C(p) and find

{xp
c}

k+1
{c∈C(p)} = argmin

xp

hp(xp) + v
k
p

⊤
xp +

ρ

2
‖xp‖

2

9: for all c ∈ C(p) do
10: Send componentxp

c of {xp
c}

k+1
{c∈C(p)} to central nodec

11: Updateλk+1
cp = λk

cp + ρ
(

xk+1
c − xp,k+1

c

)

12: end for
13: k ← k + 1
14: until some stopping criterion is met

Model Predictive Control. Consider Fig. 1 and view the
central nodesC as actuators and the peripheral nodesP
as dynamical systems. Such network can be represented by
a matrix E ∈ R

P×C , where Epc = 1 if actuator c is
connected to systemp, and0 otherwise. The goal is to control
a global process modeled bys(t + 1) = As(t) + Bx(t),
wheres(t) ∈ R

n andx(t) ∈ R
m are, respectively, the state

vector and the input at timet, andA ∈ R
n×n andB ∈ R

n×m

are fixed matrices. We decompose the global states(t)
as (s1(t), . . . , sP (t)), where sp(t) ∈ R

np is the state of
systemp. Of course,n1+ · · ·+nP = n. We also decompose
the inputx(t) as (x1(t), . . . , xC(t)), wherexc(t) ∈ R

mc is
associated with thecth actuator. Again,m1+ · · ·+mC = m.
This model was considered in [13], where a distributed
linear controlleru(t) = Kx(t) was designed to stabilize
the system. The network topology was encoded by imposing
on K the same nonzero pattern asE⊤. This means that
actuators only affect neighboring systems. We will make
the same assumption here, but instead of designing a linear
controller, we will design a Model Predictive Control (MPC)
scheme. We also assume decoupled dynamics, i.e.,A =
Diag(A1, . . . , AP ). The MPC problem we solve is

minimize
∑T−1

t=0

(

s(t)⊤Qs(t) + x(t)⊤Rx(t)
)

+ s(T )⊤Qfs(T )
subject to s(t+ 1) = As(t) +Bx(t) , t = 0, . . . , T − 1

s(0) = s0 ,
(15)

where (s(0), . . . , s(T )) ∈ (Rn)T+1 and (x(0), . . . , x(T −
1)) ∈ (Rm)T are the variables,T is the prediction hori-
zon, ands0 is the observed state att = 0. Matrices Q
and Qf are positive semidefinite,R is positive definite,

and we assume all these matrices to be block diagonal:
Q = Diag(Q1, . . . , QP ), Qf = Diag(Qf 1, . . . , QfP

), R =
Diag(R1, . . . , RC). Our assumptions enable decomposing
the constraints of (15) as
{

sp(t+ 1) = Apsp(t) +
∑

c∈C(p)

Bpcxc(t) , t = 0, . . . , T − 1

sp(0) = s0p ,

for eachp = 1, . . . , P , whereBij ∈ R
ni×mj is the ijth

block of the matrixB (corresponding to the influence that
actuatorj exerts on systemi), sp(t) ∈ R

np is thepth block
of s(t), ands0p ∈ R

np is thepth block of s0. Writing these
constraints in matrix form and replacing them in the objective
of (15) yields a problem with the format of (1):

min
∑

c∈C

x̄⊤
c R̄cx̄c +

∑

p∈P

({x̄c}
⊤
c∈C(p)H̄

⊤
p Q̄pH̄p{x̄c}c∈C(p)

+ 2s0pḠ
⊤
p Q̄pH̄p{x̄c}c∈C(p)) , (16)

with variable(x̄1, . . . , x̄C), wherex̄c = (xc(0), . . . , xc(T −
1)) ∈ R

mcT . In (16), R̄c = IT ⊗ Rc, Q̄p = Diag(IT ⊗

Qp, Qfp), Ḡp =
[

Inp
Ap A2

p · · · AT
p

]⊤
, and

H̄p =















0 0 · · · 0
Bp 0 · · · 0

ApBp Bp · · · 0
...

...
. . .

...
AT−1

p Bp AT−2
p Bp · · · Bp















. (17)

In (17), Bp is the horizontal concatenation of the matri-
cesBpc for c ∈ C(p). Having the format of (1), problem (16)
can be solved either with C-ADMM or with gradient meth-
ods. While formulating (15) as (16) allows a distributed
solution, it also makes the Lipschitz constant of the gradient
of (16) large, due to (17). Consequently, gradient methods
have difficulties handling problem (16). C-ADMM, on the
other hand, has little sensitivity to Lipschitz constants and
thus it solves (16) efficiently.

Other approaches for distributed MPC have been proposed
before, but assume different models. For example, [4] pro-
poses an algorithm for solving (15), where each node is
simultaneously a system and an actuator; and [3] proposes
an heuristic to solve (15) for coupled systems, assuming
communication links between interdependent systems.

Congestion control. Congestion control is very impor-
tant in networking since it prevents overloading networks
with (lost) packets. Many congestion control protocols (e.g.,
TCP Vegas) have been modeled as a distributed solution,
usually the gradient algorithm, for a utility maximization
problem [5], [6]. We propose C-ADMM as an alternative.

Consider a network with three types of nodes: source
nodesS, recipient nodesR, and intermediate nodesN , as in
Fig. 2. Each linkl in the network has finite capacitycl > 0
and, for simplicity, only supports flows in one direction. The
case of flows in both directions can be easily generalized.
Consider also a set of predetermined routes from the source
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Fig. 2. (a) network with|S| = |R| = |N | = 3; each source transmits
packets to a single recipient; (b) graph obtained from (a): each link from (a)
with a capacity associated is represented as a circular nodein (b).

nodes to the recipient nodes such that each source has only
one recipient for its packets. Our goal is to compute the
“optimal” sending ratexs for each sources ∈ S such that
the link capacity constraints are satisfied. For example, the
TCP Vegas protocol was modeled as solving [5], [6]:

maximize
{xs}s∈S

∑

s∈S ws log xs

subject to
∑

s∈S(l) xs ≤ cl , l = 1, . . . , L ,
(18)

wherews > 0 is a parameter associated to sources, andS(l)
is the set of sources that use linkl. Since the objective of (18)
is strictly concave, we can solve its dual problem instead:

minimize
λ=(λ1,...,λL)

∑

l∈L clλl −
∑

s∈S ws log(
∑

l∈L(s) λl)

subject to λl ≥ 0 , l ∈ L ,
(19)

whereL is the set of links,L := |L|, andL(s) is the set
of links that sources uses in its route. Once a solutionλ⋆

of (19) is found, the optimal rate for sources can be found
asx⋆

s = ws/
∑

l∈L(s) λ
⋆
l . Problem (19) has the same format

of (1) if we see each link as a central node and each source
as a peripheral node. To make this connection clearer, we
construct a bipartite graph from the original network the
following way: if l ∈ L, create a central node type with the
label l, and let the source nodess ∈ S be the peripheral
nodes; if source nodes uses link l, connect peripheral
nodes to central nodel. Fig. 2(b) shows the bipartite graph
obtained from 2(a) by considering only the links marked
with capacities. Now the connection between (19) and (1) is
clearer: each central nodel holdsλl and has a linear objec-
tive fl(λl) = clλl; each peripheral nodes has an objective
that depends on the variables of the central nodes to which
it is connected, i.e.,hs({λl}l∈L(s)) = ws log(

∑

l∈L(s) λl).
Therefore, C-ADMM can be applied and it provides a new
protocol in the scope of the interpretation of [6].

According to that interpretation, who manages the dual
variableλl, which can be seen as a price for using linkl,
is the intermediate node that has linkl as an output. For

example, in Fig. 2, node N2 manages bothλ2 andλ3. The
communication between neighboring nodes in the bipartite
graph of Fig. 2(b) is carried out along the routes drawn in
Fig. 2(a), and it can be implicit (e.g., missing acknowledg-
ment packets from intermediate nodel can be seen as a
raise in the priceλl) or explicit (e.g., by adding specific
fields to the packets for price negotiation). In a C-ADMM
implementation, while the node managing linkl would only
require the aggregate sum of the rates of the sources using
link l (step 8 of Algorithm 1), each sources would have to
know the full vector{λls}l∈C(s). In a gradient method imple-
mentation [6], both the sources and the intermediate nodes
only require knowledge of aggregate quantities. C-ADMM,
however, provides faster convergence rates, as shown next.

IV. SIMULATIONS

We now present some simulation results comparing C-
ADMM’s performance with other algorithms. We consider
the ordinary gradient method, Nesterov’s method, and D-
ADMM [8], which was designed to solve the more general
problem (2), not (1). D-ADMM thus requires exchanging
full solution estimates between the nodes. This will be taken
in account in our measure of performance: communication
steps. A communication step occurs after all nodes exchange
their current estimate of the components ofx⋆. Note that
computation time inside each node is about the same in all
algorithms and, many times, negligible with respect to the
communication times. In D-ADMM, each communication
step will count asC communication steps, since the vectors
exchanged areC times larger.

Network models. We generated random bipartite graphs
following an Erd̋os-Rényi model: each pair of nodes (be-
longing to different groups) is linked with probabilityp. We
consideredp = 0.25 andp = 0.75.

Congestion control.We considered networks with several
sizes, ranging from2×5 to 40×50, whereC×P means that
the network hasC central nodes andP peripheral nodes. Re-
garding the weightsws for each source (central) node, they
were generated randomly between1 and11. All algorithms
stopped whenever‖xk − x⋆‖/‖x⋆‖ ≤ 10−3, wherexk =
(xk

1 , . . . , x
k
C) is the global estimate at iterationk and x⋆

was computed beforehand in a centralized way, or when103

communication steps were achieved. For the augmented La-
grangian algorithms (C-ADMM and D-ADMM), we selected
the constantρ from the set{0.01, 0.05, 0.1, 0.5, 1, 5, 10}
and considered always theρ that yielded the best result.
A similar scheme was adopted for choosing the Lipschitz
constantL for the gradient and Nesterov algorithms, forL ∈
{10−2, 10−1, 1, 5, 10, 15, 20}. The reason for “guessing” a
Lipschitz constant for these methods is because the gradient
of the objective of (19) is not Lipschitz continuous.

Fig. 3 shows the simulation results, depicting the commu-
nication steps as a function of the network. These communi-
cation steps are counted in the bipartite network (Fig. 2(b)),
not in the original network (Fig. 2(a)). Of course, each
communication occurring in the bipartite network may cor-
respond to several communications in the original network.
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Fig. 3. Results of the simulations for the TCP/IP congestioncontrol application in Erd̋os-Rényi networks with parameters (a)p = 0.25 and (b)p = 0.75.

The results for sparsely connected networks, Fig. 3(a), and
for densely connected networks, Fig. 3(b), are very similar:
the proposed algorithm (C-ADMM) required always less
communication steps than competing algorithms, yet it was
closely followed by Nesterov’s algorithm.

Relative error: ‖xk − x⋆‖/‖x⋆‖
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Fig. 4. Results for the MPC in an Erdős-Rényi network with parameterp =
0.25. There wereC = 5 actuators, each with a scalar variable (mc = 1),
andP = 10 systems, each with a state of dimensionnp = 2.

MPC. For the MPC problem, we just present results for
the second network of Fig. 3(a), i.e., a5×10 network created
with an Erd̋os-Rényi model withp = 0.25. The results for
the other networks of Fig. 3 are very similar. All the vectors
and matrices were generated randomly: we setnp = 2,
mc = 1, and T = 10 for the time horizon. In this case,
the Lipschitz constant for the gradient and Nesterov method
were computed exactly, and we added50 and100 to the set
of possible values forρ.

Fig. 4 shows the results of the simulations by depicting
the relative error along the communication steps. C-ADMM
required always less iterations than the other algorithms
to achieve any value for the relative error. This time both
the gradient and Nesterov methods performed poorly; we
attribute that to the large Lipschitz constant for this problem,
in this case3×107. Only the augmented Lagrangian methods,
C-ADMM and D-ADMM, performed well, probably because
they are not as sensitive to Lipschitz constant values.

V. CONCLUSIONS ANDFUTURE WORK

We proposed an efficient algorithm for solving objective-
coupled optimization problems in bipartite networks. The
proposed algorithm is based on the Alternating Direction
Method of Multipliers and is proved to converge to the
same solution as if the problem were solved in a central-
ized way. We applied the algorithm to distributed model
predictive control and to TCP/IP congestion control. Through
numerical simulations, we showed that the algorithm is more
communication-efficient than previous algorithms, makingit
attractive to energy-constrained environments.

Future work consists of extending the algorithm to more
general networks and to address large-scale problems.
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