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Abstract

In this paper we present a new approach to the modelling of non-rigid 3D surfaces
from the observation of 2D motion in images captured by an orthographic camera. Our
aim is to characterize strong variations of the shape due, for instance, to bending motions.
Such motions are hard to describe with previously used deformation models, such as the
linear basis shapes model, which would tend to overestimate the dimensionality of the
deformable data. Our approach uses a quadratic deformation model which is able to rep-
resent non-linear non-rigid motions such as bending, stretching, shearing and twisting.
The model is bilinear and thus fits easily into previous schemes for Non-Rigid Structure
from Motion (NRSfM). We formulate the NRSfM problem using a non-linear optimiza-
tion scheme to minimize image reprojection error and recover the camera parameters,
the 3D shape at rest and the quadratic deformation transformations. Our experiments
with synthetic and real data show examples in which methods based on the linear basis
shape model perform poorly or do not converge and instead the quadratic model is able
to achieve accurate 3D reconstructions.

1 Introduction
In this paper we address the problem of reconstructing a 3D deformable surface from a set of
2D correspondences across an image sequence, a problem also known as Non-Rigid Struc-
ture from Motion (NRSfM). The most common assumption, made originally by Bregler et
al. [5] and later adopted by most NRSfM methods, is that the deformable 3D shape can be
represented as a linear combination of rigid basis shapes, or modes of deformation, with
time varying coefficients. This linear shape model has allowed the development of a num-
ber of algorithms which can be seen as extensions of Tomasi and Kanade’s classical rigid
factorization algorithm [2, 3, 4, 6, 9, 13, 16, 18, 19].

Due to its simplicity, the linear basis shape model has proved a very successful represen-
tation, allowing solutions that can achieve good reconstructions under certain assumptions.
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However, the problem of NRSfM is inherently under-constrained and remains open. In par-
ticular, although this low-rank shape model is well suited to representing the deformations
of many common objects that exhibit small variations, such as faces, most methods have
difficulties modelling strong deformations, since the underlying linear basis shapes model
is restrictive. In this paper we are interested in modelling non-linear deformations (such as
stretching and bending) that a linear basis shape model may have difficulty in explaining
since the deformed surfaces may not lie on a low-dimensional linear shape manifold.

Inspired by previous work in the fields of computer graphics [11] and 3D human motion
modelling [12], we depart from the linear setup by proposing a quadratic model for non-rigid
deformations that uses geometric constraints. The 3D shape coordinates are augmented with
quadratic and mixed terms allowing the model to represent non-linear local deformations
such as stretching, bending and twisting motions. In this paper we show that the new model
can deal with challenging sequences where algorithms based on the former linear bases
model sometimes fail to converge. Moreover, since the formulation is bilinear, the quadratic
model fits nicely into the NRSfM framework.

The main contribution of this paper is to introduce a physically grounded deformation
model into the NRSfM formulation, which allows the 3D reconstruction of local non-linear
deformations viewed by an orthographic camera. We then formulate the NRSfM problem
using a non-linear optimization scheme to minimize image reprojection error and recover
the camera parameters, the 3D shape at rest and the quadratic deformation transformations.

2 Previous Work
In their pioneering work to extend structure from motion to the case of non-rigid objects,
Bregler et al.’s key insight [5] was to use a low-rank shape model to represent a deforming
shape as a linear combination of k basis shapes which encode the main modes of deformation
of the object. Based on this model, they proposed a non-rigid factorization method for an
affine camera that exploited the rank constraint on the measurement matrix and enforced
orthonormality constraints on camera rotations to recover the motion and the non-rigid 3D
shape. Different iterative optimization schemes were later introduced by Torresani et al. [15]
and Brand [3] to improve the computation of the metric upgrade.

Although the low-rank linear shape model has proved a successful representation, the
NRSfM problem is inherently under-constrained. Recent approaches have focused on over-
coming the problems caused by inherent ambiguities and degeneracies by proposing the
use of generic priors or different optimization schemes. Aanaes et al. [1] impose the prior
knowledge that the reconstructed shape does not vary much from frame to frame while Del
Bue et al. [6] impose the constraint that some of the points on the object are rigid. Both
approaches use bundle adjustment to refine all the parameters of the model simultaneously.
Bartoli et al. [2] on the other hand, use a coarse to fine shape model where new deformation
modes are added iteratively to capture as much of the variance left unexplained by previous
modes as possible. Torresani et al. [16] propose to place a Gaussian prior distribution on
the deformation weights which represents an explicit assumption that these will be similar
to each other for each pose. They then generalise the model to represent linear dynamics in
the deformations.

One advantage of the linear subspace model is that it has allowed closed form solutions
to be proposed, for the cases of both affine [19] and perspective [9, 18] viewing conditions.
However, closed form solutions have been reported to be very sensitive to noise [4, 16]
and to the selection of the number of bases. Moreover, none of the closed form solutions
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proposed so far can deal with missing data which becomes crucial when dealing with real
video sequences.

Previous attempts to move away from the low-rank shape model within the NRSfM
framework include work by Rabaud and Belongie [13] who define the set of possible 3D
shapes as a smooth and low-dimensional manifold. Their approach assumes a non-linear
optimization scheme imposing smoothness constraints on the deformations and enforcing a
manifold dimensionality constraint on the 3D shapes.

Quadratic deformation models have been used before in the context of computer graph-
ics [11] and human motion modelling using motion capture data [8, 12]. In the first case [11],
the quadratic model was used to produce realistic simulations of deformable objects for com-
puter games while in the second [8, 12], it was used to model skin deformations and demon-
strated by capturing flexing muscles. However, both these approaches deal directly with 3D
data. This paper proposes a new algorithm that extends the use of the quadratic deformation
models to the problem of inferring 3D deformable models from 2D data using a NRSfM
approach.

The paper is organised as follows. In Section 3 we review the problem formulation for
NRSfM and describe the low-rank shape model. Section 4 describes the quadratic deforma-
tion model in detail including the physical meaning of its components. Section 5 describes
our new NRSfM algorithm based on the quadratic shape model and finally Section 6 shows
results on synthetic, motion capture and real sequences.

3 Non-rigid Structure from Motion

Consider the set of 2D image trajectories obtained when p points lying on the surface of a
3D object are viewed by a moving orthographic camera. In the case of a rigid object, the
3D coordinates of a world point S j = [X jYjZ j]

T are projected on the image following the
orthographic projection equation:

wi j =
[

ui j
vi j

]
=
[

ri1 ri2 ri3
ri4 ri5 ri6

] X j
Yj
Z j

+Ti (1)

where wi j = (ui j vi j)T are the non-homogeneous coordinates of point S j in frame i; Ri is
a 2×3 orthographic camera matrix that contains the first two rows of a rotation matrix (i.e.
RiRT

i = I2×2) and Ti is the 2×1 translation vector.
Structure from Motion (SfM) can be defined as the problem of combined inference of

the camera matrices (Ri and Ti) and the 3D shape S j when only the 2D positions of the tracks
wi j are known.

3.1 Low-Rank Linear Shape Model

In the case of deformable objects the observed 3D points change as a function of time.
The low-rank shape model was first used in the context of NRSfM by Bregler et al. [5].
According to this model the 3D points deform as a linear combination of a fixed set of
k rigid shape bases according to time varying coefficients. In this way, Si = ∑

k
d=1 lidBd

where Si = [Si1, · · ·Sip] is the 3× p matrix that contains the 3D coordinates of the p points
of the object at frame i, the 3× p matrices Bd are the shape bases and lid are the coefficient
weights. Assuming an orthographic projection model, the coordinates of the 2D image points
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observed at each frame i are then given by:

Wi =
[

u11 . . . u1p
v11 . . . v1p

]
= Ri

(
k

∑
d=1

lidBd

)
+Ti , (2)

where Ri is a 2× 3 orthographic camera matrix and the 2× p matrix Ti aligns the image
coordinates to the image centroid. When the image coordinates are registered to the centroid
of the object and we consider all the frames in the sequence, we may write the measurement
matrix W as

W =

 w11 . . . w1p
...

. . .
...

w f 1 . . . w f p

=

 l11R1 . . . l1kR1
...

. . .
...

l f 1R f . . . l f kR f


 B1

...
Bk

=MS . (3)

It is clear that the rank of W is constrained to be at most 3k. This rank constraint has allowed
the extension of the classical rigid factorization framework [14] to the case of non-rigid
objects. The factorization of the measurement matrix is not unique since the alternative
factorization W = (M̂Q)(Q−1Ŝ) is also possible. The NRSfM problem is that of finding the
matrix Q that removes the affine ambiguity, upgrading the reconstruction to a metric one and
rendering the correct repetitive structure to the motion matrix.

4 Quadratic Deformation Model for Non-Rigid Bodies

4.1 Quadratic model formulation
The quadratic deformation model for non-rigid bodies augments the rigid shape matrix with
quadratic and cross-term components to account for the deformations of the object. Let us
first define the shape matrix for the quadratic model as

S =



X1 X2 . . . Xp
Y1 Y2 . . . Yp
Z1 Z2 . . . Zp

X2
1 X2

2 . . . X2
p

Y 2
1 Y 2

2 . . . Y 2
p

Z2
1 Z2

2 . . . Z2
p

X1Y1 X2Y2 . . . XpYp
Y1Z1 Y2Z2 . . . YpZp
Z1X1 Z2X2 . . . ZpXp


=

 S(Γ)

S(Ω)

S(Λ)

 , (4)

where S(Γ) is the 3× p linear shape matrix which contains the 3D coordinates of the shape at
rest and S(Ω) and S(Λ) are simply the 3× p matrices that contain the quadratic and cross terms
respectively. We now define Ai, the quadratic deformation transformation matrix at frame i,
as follows

Ai =
[
Γi Ωi Λi

]
, (5)

where Γi, Ωi and Λi are the 3×3 transformation matrices associated respectively with the lin-
ear, quadratic and cross-term deformations at frame i. Applying the quadratic transformation
to the shape matrix S we obtain the 3D coordinates of the deforming body at each frame i as

Si = AiS =
[
Γi Ωi Λi

]
S . (6)
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Figure 1: (a) Synthetic cube at rest. (b) Linear extension mode from the diagonal entries of Γ.
(c) Bending deformation caused by the off-diagonal entries of Ω. (d) Twisting deformations
caused by some entries of Λ. (e) Planar interpenetration caused by the diagonal entries of Ω.

Notice that the shape matrix S, which encodes the augmented coordinates of the shape at
rest, is fixed for all the frames while the deformation matrix Ai varies frame-wise. This for-
mulation assumes that the reference frame of the 3D shape S(Γ) is aligned with the principal
axes of deformation of the object and centered at its centre of deformation. Figure 1 shows
some examples of possible transformations applied to a synthetic cube. It is easy to observe
that the linear transformation Γi accounts for stretching and shearing while the quadratic
transformation Ωi accounts for bending and the cross-term transformation Λi for twists.

4.2 Physical constraints on the quadratic model

One of the interesting features of the quadratic deformation model is that the entries of the
transformation matrices have a physical meaning. Therefore, if prior knowledge exists about
the physical properties of an object which could affect the way in which it deforms, this
information could be used to pre-define some of the entries in the transformation matrices.
For instance, when dealing with sequences of objects that cannot stretch, one should not
consider the entries that account for it in Γ. On the other hand, if the object were not able to
twist then entries Λ12, Λ23 and Λ13 should be set to zero.

Moreover, if numerical bounds were not applied to the coefficients of the deformation
matrices, the model could represent unrealistic deformations such as infinite extensions, or
compressions to the point where the object would collapse onto a plane. Exercising all the
degrees of freedom of the deformation matrices Γi, Ωi and Λi reveals that some values of
the coefficients of these matrices are not consistent with what is expected when modelling
natural objects. For instance, deformations that involve interpenetration of the shapes are not
physically plausible. An example of this kind of deformation is shown in Figure 1(e). These
configurations can be avoided by setting the diagonal values in the quadratic transformation
matrix Ω to zero.

An important observation concerning the linear deformation matrix Γ is that it can be
decomposed using QR decomposition into the product of a rotation times an upper triangular
matrix. Since the Γ must be expressed in the local referential, to avoid ambiguities the
rotation matrix should be the identity and therefore Γ can be parameterized as an upper
triangular matrix.

An alternative parameterization could be achieved by decomposing Γ via the polar de-
composition, following the approach taken in the theory of elasticity in physics. In this case,
to avoid ambiguities, Γ would be parametrized as a symmetric matrix. We carried out ex-
periments to compare the performance of both parameterizations and found no difference
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between them.

5 Non-Rigid SfM with a Quadratic Deformation Model
If we assume the deforming shape is viewed by an orthographic camera, the 2D image

coordinates of the jth world point in the ith image will be given by

wi j = ΠQi [Γi Ωi Λi]S j +Ti , (7)

where the orthographic camera matrix Π is defined as

Π =
[

1 0 0
0 1 0

]
, (8)

Qi is the 3×3 rotation matrix for frame i, Ti is the 2D translation vector and S j is the vector
that holds the 3D coordinates of point j when the object is at rest. Equation (7) can be
rewritten as wi j = RiAiS j +Ti where Ri is the 2×3 truncated rotation matrix for frame i and
Ai is the quadratic deformation matrix. Assuming that the 2D coordinates are registered to
the centroid we can stack all the sub-block matrices for each frame obtaining:

W=


R1

R2
. . .

R f




Γ1 Ω1 Λ1
Γ2 Ω2 Λ2
...

...
...

Γ f Ω f Λ f


 S(Γ)

S(Ω)

S(Λ)

=MS, (9)

where W is the 2 f × p measurement matrix. Note that if Γi = I3×3, Ωi = 03×3 and Λi = 03×3
for every i = 1 . . . f , the formulation will reduce to the classical rigid factorization model [14]
with rank(W)≤ 3. Also note that while the coefficients in Ri, Λi, Ωi and Γi vary from frame to
frame to encode the rotations and the deformations, the shape matrix is fixed for all frames.

The rank of the measurement matrix W is at most 9. This property could be used to
factorize W into W = MS where M would encapsulate the rotation and deformation matrices
and S the augmented shape matrix. However, this factorization would be ambiguous and
problem would therefore consist of computing the transformation that renders the correct
rotation and deformation matrices which would result in a non-linear problem.

5.1 Non-linear optimization
In order to fit the quadratic model to our data, we need to deal with the non-linearities of
the model. An alternating approach such as power-factorization [10] would not be suitable
in this case since the motion and shape matrices are intrinsically non-linear. Instead we
have used non-linear optimization to minimize image reprojection error, or bundle adjust-
ment [17]. This approach combines efficient minimization using a Levenberg-Marquardt
optimization algorithm together with faster computation exploiting the sparse properties of
the Jacobian and Hessian matrices computed at each iteration of the minimization.

The 2D coordinates of point j at frame i given by our quadratic model can be written as

ŵi j = Ri [Γi Ωi Λi]S j +Ti. (10)

The parameters of the camera matrices, the quadratic deformations and the 3D shape are
then estimated by minimizing image reprojection error, defined as the difference between
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Figure 2: Results on synthetic data for varying deformation strengths. Top-left: Average
3D error plot for experiments that converged to a valid solution. Box-plots are provided to
illustrate the rate of convergence of the three different algorithms. Notice the high rate of
convergence failure of the EM-LDS and BA-Lin algorithms.

the measured and estimated image points:

argmin
Ri,Ti,Γi,Ωi,Λi,S j

f ,p

∑
i, j

∣∣∣∣wi j− ŵi j
∣∣∣∣2 = argmin

Ri,Ti,Γi,Ωi,Λi,S j

f ,p

∑
i, j

∣∣∣∣wi j−Ri [Γi Ωi Λi]S j−Ti
∣∣∣∣2 . (11)

One of the most important advantages of using a non-linear minimization scheme to min-
imize image reprojection error is that any prior information available about the nature of
object being observed that has an effect on the values that the deformation matrices Γi, Ωi
and Λi can take may be incorporated into the cost function. Some possible constraints or ex-
plicit values of the parameters were discussed in Section 4.2. We have added a regularization
term that enforces smoothness constraints on the frame-wise 3D shapes.
Initialization: Bundle adjustment methods rely on the initial estimates being close to the
global minimum to avoid falling into local solutions. In our minimization problem we must
provide adequate initial values for the rotation matrices, the coefficients of the 3 deformation
matrices and the matrix containing the shape at rest. The rotations are initialized using the
rigid motion given by the Tomasi-Kanade [14] rigid factorization of the sequence. The defor-
mation matrices Γ Ω and Λ are initialized to represent a rigid shape, i. e. Γi = I3×3, Ωi = 03×3
and Λi = 03×3 for every i = 1 . . . f . In this work we assume that the sequence starts with the
body at rest for some initial frames and Tomasi and Kanade’s rigid factorization is used on
those frames to obtain an initial estimate of the 3D shape matrix S. Finding an initialization
for the 3D shape at rest for general sequences requires further research. Since our formula-
tion assumes that the 3D shape is aligned and centered with the principal deformation axes
an estimate of these must be provided. We assume the axes of deformation are aligned with
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Figure 3: Left: Examples of the woggle used in the experiments with motion capture data.
Right: Average 3D error plot for experiments that converged to a valid solution for increasing
levels of noise. The experiments show that BA-Quad outperforms EM-LDS and BA-Lin.

BA-Quad

BA-Lin

EM-LDS

Figure 4: Example frames of the 3D reconstructions of the real woggle mocap data sequence
obtained with the 3 different algorithms.

the principal axes of intertia which we compute using SVD on the 3D coordinates of the
initial estimate of the shape at rest and the deformation centre at the centroid of the object.
In the sequences we have analysed in our experiments the axes and centre of deformation
remain fixed and therefore we do not estimate the parameters. However, they could be easily
added to the cost function and optimized in the bundle adjustment process.

6 Experiments
Synthetic cylinder sequence
The 3D shape used in the synthetic sequences was generated to simulate a thin but long
cylinder (similar to the object depicted in Figure 3) to allow strong bending motions. We
then applied deformations of increasing maximum strength to the object, using deformation
matrices Γ, Ω and Λ with random coefficients ranging in maximum magnitude from 0 to 1.
We generated 50 random tests for each level of deformation, keeping all the other parameters
unchanged. The 3D points were projected onto the image using an orthographic camera
model. The sequences start with the object at rest for some initial frames.

We compare the results of our new algorithm based on the quadratic shape model (BA-
Quad) with Torresani et al.’s state of the art algorithm [16] (EM-LDS) and with a Bundle
Adjustment algorithm (BA-Lin) [7], both of which are based on the linear low-rank shape
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BA-Quad

EM-LDS

Figure 5: Top: Selected frames from the video sequence of a cushion bending and stretching.
Rows 2 and 3: Front and top views of the 3D shapes for the selected frames using our new
quadratic model. Rows 4 and 5: 3D reconstructions using EM-LDS

model. Both bundle adjustment algorithms were initialized using Tomasi and Kanade’s al-
gorithm on the first 10 frames of the sequence, in which the shape was at rest. We computed
the 3D error as the sum of the squared differences between the estimated 3D shapes and the
ground truth divided by the norm of the shape. Figure 2 shows results of the average 3D
error as well as box-plots for each of the algorithms. The average error plot was generated
after removing the results from tests that failed to converge (outliers marked as red crosses
in the box-plots). Our new algorithm outperforms the other methods in two important as-
pects. First, the box plots show a superior convergence rate to the other algorithms. With
BA-quad 3.09% of all the tests converged while with EM-LDS as many as 8.91% of the tests
failed to converge and 9.45% with BA-Lin. Secondly, amongst the tests that converged, the
average error plot (Figure 2 top left) shows that the smallest 3D error was given by our new
algorithm.

Experiments with real deformations from mocap data
In these experiments we used 3D motion capture data of a water woggle (or swimming
noodle) which is a long and thin polystyrene cylinder that can undergo strong bending defor-
mations. The 3D data was captured using a VICON system by tracking 30 markers. Figure 3
shows a few images of the object (with the markers) deforming. The 3D points were then
projected onto an image sequence 676 frames long using an orthographic camera model. We
evaluated the performance of the algorithm with respect to noise in the image measurements.
Zero mean additive Gaussian noise was applied with standard deviation σ = n×s/100 where
n is the noise percentage and s is defined as the diameter of the woggle in pixels. Noise levels
of up to 30% were added. Figure 3 (right), shows the plot comparing the results obtained
with our algorithm with those achieved using EM-LDS and BA-Lin. The plot depicts the
3D error averaged over 50 random runs after removing the results from tests that failed to
converge showing an improved performance of the quadratic algorithm versus EM-LDS and
BA-Lin. Figure 4 shows the ground truth (circles) and reconstructed 3D shapes (dots) for
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five frames of the sequence in the absence of noise using the three different algorithms where
our new algorithm shows consistent improved reconstructions.

Real experiments
Figure 5 shows a few frames of a real sequence of a cushion bending and stretching, in
which 90 points were tracked. Front and top views of the reconstructions achieved using our
new quadratic model and Torresani et al.’s EM-LDS algorithm are shown for comparison.
Best results are obtained with the new Bundle Adjustment algorithm using the quadratic
deformation model.

7 Conclusions
The main contribution of this paper is to introduce a physically grounded deformation model
into the NRSfM formulation, which allows the 3D reconstruction of non-linear deformations
viewed by an orthographic camera. The focus of this paper is to show examples where the
proposed quadratic model provides a better representation in the case of strong physical non-
linear deformations than algorithms based on the low-rank linear model. In our comparative
tests, these algorithms have shown to have a higher rate of convergence failure and to pro-
vide less accurate 3D reconstructions than those obtained with our new quadratic algorithm.
Future work includes using piecewise models to cope with higher dimensional deformations.
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