Sinais e Sistemas – 2º teste – 30/5/2018 – Exemplo de resolução

Questão 1 $\omega_M = 8\pi$; $2\pi/T > 16\pi \Leftrightarrow T < 1/8$.

Questão 2 $\omega_M = 5$; $\omega_s = 2\pi/0.2 = 10\pi > 2\omega_M$. $H_c(j5) = H_d(e^{j5\times0.2}) = H_d(e^{j1}) = 1$. $y(t) = \cos(5t)$.

Questão 3.1 RC: Re(s) > 1 não contém eixo imaginário \Rightarrow SLIT instável.

Questão 3.2 $H(s) = (s+1)/(s^3+2s^2-3s) \Leftrightarrow y'''(t) + 2y''(t) - 3y'(t) = x'(t) + x(t)$.

Questão 4.1 $|H(j1)| \simeq 100 = 40 dB \Rightarrow A = 60$

Questão 4.2 Zero na origem, pólo em -10, pólo em -1000 $\Rightarrow H(s) = \frac{ks}{[(s+10)(s+1000)]}$.

Questão 5 Pólos: $H_1: -3; H_2: -2 \pm j\alpha; H_3: -3, -3; H_4: -1, -4$. Demora mais a estabilizar a resposta de H_4 .

Problema 1 A TF de
$$x(n)$$
 é: $X(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} x(n)e^{-j\omega n} = \sum_{n=-\infty}^{+\infty} \left[7\delta(n) - 2\delta(n-1)\right]e^{-j\omega n} = 7 - 2e^{-j\omega}$.

A resposta em frequência do SLIT é imediata a partir da equação às diferenças: $H(e^{j\omega}) = \frac{1}{1 - e^{-j\omega} + \frac{1}{4}e^{-j2\omega}}$

Assim, tem-se
$$Y(e^{j\omega}) = \frac{-8z + 28}{(z-2)^2} = \frac{A}{(z-2)^2} + \frac{B}{z-2}$$

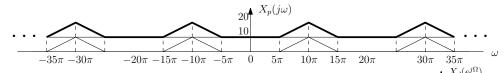
Pela propriedade da convolução, $Y(e^{j\omega}) = Xe^{j\omega})H(e^{j\omega}) = \frac{7-2e^{-j\omega}}{1-e^{-j\omega}+\frac{1}{4}e^{-j2\omega}} = \frac{-8z+28}{z^2-4z+4}$, onde $z=e^{-j\omega}$. [Raízes do denominador: $\frac{4\pm\sqrt{4^2-4\times4}}{2}=2$] Assim, tem-se $Y(e^{j\omega}) = \frac{-8z+28}{(z-2)^2} = \frac{A}{(z-2)^2} + \frac{B}{z-2}$, com $A=-8\times 2+28=12$ e $A+B(z-2)=-8z+28 \Rightarrow B=-8$, ou seja, $Y(e^{j\omega}) = \frac{3}{(1-\frac{1}{2}e^{-j\omega})^2} + \frac{4}{1-\frac{1}{2}e^{-j\omega}}$. Usando linearidade e TF conhecidas, $y(n)=3(n+1)\left(\frac{1}{2}\right)^n u(n)+4\left(\frac{1}{2}\right)^n u(n)=(3n+7)\left(1/2\right)^n u(n)$.

Problema 2 A função de transferência do sistema $x(t) \to y(t)$ é $H(s) = \frac{K(s+1)/(s^2-4)}{1-K(s+1)/(s^2-4)} = \frac{K(s+1)}{s^2-4-K(s+1)}$. Para K = 0, tem-se H(s) = 0, pelo que o sistema é estável.

Para $K \neq 0$, o sistema é estável se e só se os pólos estão no semiplano complexo esquerdo. Pólos: $s = \frac{K \pm \sqrt{K^2 + 4K + 16}}{2}$. Como $K^2 + 4K + 16 > 0$, os pólos são reais, pelo que o sistema é estável se e só se o pólo mais à direita é negativo

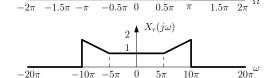
$$K + \sqrt{K^2 + 4K + 16} < 0 \iff \sqrt{K^2 + 4K + 16} < -K \iff K^2 + 4K + 16 < K^2 \iff K < -4.$$

Problema 3.1 $\omega_M = 15\pi$ e $\omega_s = 2\pi/0.1 = 20\pi$, pelo que há aliasing. É conveniente começar por esboçar a TF de $x_p(t) = \sum_{n=-\infty}^{+\infty} x_c(t)\delta(t-nT)$, que se sabe ser $X_p(j\omega) = (1/T)\sum_{k=-\infty}^{+\infty} X_c(j(\omega-k\omega_s)) = 10\sum_{k=-\infty}^{+\infty} X_c(j(\omega-k20\pi))$:



A TF de $x_d(n)$ é simplemente $X_d(e^{j\Omega}) = X_p(j\Omega/T) = X_p(j10\Omega)$:

A TF de $x_r(t)$ é $X_r(j\omega) = X_p(j\omega)H_r(j\omega)$, onde H_r é passa-baixo ideal de frequência de corte $\omega_s/2=10\pi$ e ganho T=0.1, ou seja:



Problema 3.2 Recorra a uma aula de dúvidas.