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Abstract

In this paper, a novel approach for contour-based 2D
shape recognition is proposed, using a recently intro-
duced class of information theoretic kernels. This kind
of kernels, based on a non-extensive generalization of
the classical Shannon information theory, are defined
on probability measures. In the proposed approach,
chain code representations are first extracted from the
contours; then n-gram statistics are computed and used
as input to the information theoretic kernels. We tested
different versions of such kernels, using support vector
machine and nearest neighbor classifiers. An experi-
mental evaluation on the chicken pieces dataset shows
that the proposed approach outperforms the current
state-of-the-art methods.

1. Introduction

Object recognition is undoubtely an important and
still open research area in computer vision and pattern
recognition. The classification of three-dimensional
(3D) objects has been addressed using different ap-
proaches [6, 12], many of which are based on the analy-
sis of two-dimensional (2D) aspects of objects, namely,
2D shapes. Many recognition tasks are addressed using
only features of the boundary or the 2D shape. In this
context, many contour representations have been pro-
posed, like Fourier descriptors and chain code [12]. Ac-
tually, object contours have shown to be very expressive
in many contexts, and they have been often exploited
in several approaches proposed in the past, exhibiting
different characteristics: robustness to noise and oc-
clusions, invariance to translation, rotation, and scale,
computational requirements, and accuracy [12, 18].

In this paper, a novel method for contour-based 2D
shape recognition is proposed, using a class of infor-
mation theoretic kernels recently introduced [13]. This
type of kernels, based on a non-extensive generaliza-
tion of the classical Shannon information theory, are
defined on (possibly unnormalized) probability mea-
sures. In [13], these kernels were used in text catego-
rization tasks, by being specifically applied to different
types of multinomial representations of the texts: rela-
tive term frequencies (also known as bags of words) and
n-gram statistics (relative frequencies of subsequences
of n symbols).

In the approach herein presented, we begin by ex-
tracting chain code representations of the contours,
which yields sequences of symbols. From these se-
quences, n-gram statistics are then computed, which are
used as input to the information theoretic kernels.

The proposed approach has been tested on the
chicken pieces dataset [1], a challenging testbed com-
posed by silhouettes of different chicken parts (wings,
backs, drumsticks, thighs, and breasts). We tested dif-
ferent information theoretic kernels, ranging from the
classic Jensen-Shannon divergence kernel, to different
versions of the recently introduced Jensen-Tsallis ker-
nels [13]. These kernels are used in support vector ma-
chine and nearest neighbor classifiers. A study of the
performance of these classifiers, as a function of the
kernel parameters, has been carried out, as well as an
evaluation of fully automatic versions, where the pa-
rameters are automatically computed from the training
set. The results presented in Sect. 3 show that the clas-
sifiers based on the Jensen-Tsallis kernels significantly
outperform the current state-of-the-art methods. Before
presenting such results, the method characteristics are
detailed in Sect. 2, and final remarks are summarized in
Sect. 4.



2. The proposed method

In this section, the proposed methodology is pre-
sented. In particular, after describing how to obtain the
probability measure from the contours, the information
theoretic kernels are described.

2.1. From contours to probability measures

To extract a probability measure from a contour, we
have different options, e.g., using hidden Markov mod-
els (HMM) [3]. Here, we adopt a simpler technique,
based on statistics of n-grams extracted from chain code
representations of the contours. For a given n, the n-
gram statistics correspond to a multinomial distribution.
This choice opens the door to the use of information
theoretic kernels, which are defined on pairs of multino-
mial distributions. Although other, more complex mod-
els, such as HMM, could be considered, the correspond-
ing kernels can not be computed in closed form. Be-
cause the information theoretic kernels defined in [13]
can also be applied on unnormalized measures, they can
be used either directly with the raw n-gram counts or
with the corresponding normalized versions (multino-
mials).

2.2. Information theoretic kernels

Kernels on probability measures have been shown
very effective in classification problems involving text,
images, and other types of data [9, 8, 10, 11]. Given
two probability measures p1 and p2, representing two
objects, the following information theoretic kernels can
be defined (for more details, see [13]):

• Jensen-Shannon kernel,

k JS(p1, p2) = ln(2)− JS(p1, p2), (1)

with JS(p1, p2) being the Jensen-Shannon diver-
gence

JS(p1, p2) = H

(
p1 + p2

2

)
− H(p1) + H(p2)

2
,

(2)
where H(p) is the usual Shannon entropy.

• Jensen-Tsallis kernel,

k JT
q (p1, p2) = lnq(2)− Tq(p1, p2), (3)

where lnq(x) = (x1−p − 1)/(1 − q) is the q-
logarithm and Tq(p1, p2) is the Jensen-Tsallis q-
difference, defined as:

Tq(p1, p2) = Sq

(
p1 + p2

2

)
− Sq(p1) + Sq(p2)

2q
,

(4)

and Sq(r) is the Jensen-Tsallis entropy, defined,
for a multinomial r = (r1, r2, ..., rL), with ri ≥ 0
and

∑
i ri = 1, as

Sq(r1, r2, ..., rL) =
1

q − 1

(
1−

L∑

i=1

rq
i

)
.

q represents the free parameter of the kernel, which can
be chosen for example by cross validation.

In [13], versions of these kernels applicable to un-
normalized measures were also defined. Let µ1 = ω1p1

and µ2 = ω2p2 be two unnormalized measures, where
p1 and p2 are the normalized counterparts (probability
measures) and ω1 and ω2 arbitrary positive real numbers
(weights). The weighted versions of the Jensen-Tsallis
kernel are defined as follows:

• Weighted Jensen-Tsallis kernel (version 1),

k(1)
q (µ1, µ2) = Sq(π)− Tπ

q (p1, p2), (5)

where π = (π1, π2) =
(

ω1
ω1+ω2

, ω2
ω1+ω2

)
and

Tπ
q (p1, p2) = Sq (π1p1 + π2p2)

− (πq
1Sq(p1) + πq

2Sq(p2)) .

• Weighted Jensen-Tsallis kernel (version 2),

k(2)
q (µ1, µ2) =

(
Sq(π)− Tπ

q (p1, p2)
)
(ω1 + ω2)q. (6)

It was shown in [13] that k(1)
q is a positive definite kernel

for q ∈ [0, 1], while k
(2)
q is a positive definite kernel for

q ∈ [0, 2].

3. Experimental Results

We test the proposed approach on the publicly avail-
able chicken pieces dataset1 [1]. This dataset contains
446 binary images (silhouettes) of chicken pieces, each
belonging to one of five classes representing specific
chicken parts: wing (117 samples), back (76), drum-
stick (96), thigh and back (61), and breast (96) – some
examples may be found in Fig. 1. This constitutes a
challenging classification task, which has been studied
by several authors [1], [5], [15].

From binary silhouettes, contour descriptions are ex-
tracted: notice that these contour descriptions com-
pletely specify the underlying shape. These contours
are then encoded using the (8 directions) chain code,
leading to a sequence of symbols (on an alphabet of 8

1http://algoval.essex.ac.uk:8080/data/sequence/chicken/.



Figure 1. Examples from the chicken
pieces dataset (rows 1 to 5: wings, backs,
drumsticks, thighs, and breasts).

symbols) for each contour. From the sequence of sym-
bols corresponding to each shape contour, we compute
statistics of n-grams (for n = 2, n = 3, and n = 4),
that is, we count how many times each possible sub-
sequence of length n exists in each contour. This can
be seen as a bag-of-words representations of the se-
quences, where the dictionary contains all the 8n pos-
sible length-n sequences/“words”. In summary, each
shape is represented by a 8n-dimensional vector of non-
negative numbers (which may or may not be normalized
to unit sum) that will serve as arguments for the kernels
defined in the previous section subsequently used by a
kernel-based classifier.

We consider two types of classifiers: support vector
machines (SVMs) and K-nearest neighbors (K-NN).
Parameter C of the SVM learning algorithm is opti-
mized by 10-fold cross validation (CV). For the K-NN
classifiers, we consider both the simplest version 1-NN
as well as K chosen by 10-fold CV. Concerning param-
eter q of the Jensen-Tsallis kernels, we report results
both with the best performing value and with the value
selected by 10-fold CV. Finally, we found that the best
choices of n were n = 4, in the case of the SVM, and
n = 3 for the K-NN classifiers.

Table 1 reports the average accuracy results, ob-
tained using 10 repetitions of holdout CV. The superi-
ority of the information theoretic kernel over the linear
kernel is evident, in particular for the K-NN classifiers.

Figure 2 plots the accuracies of the SVM on 4-grams,
for different kernels, as a function of parameter q. The
plot also shows the accuracy obtained with q chosen by
cross-validation. In line with the results from [13], the
best results are obtained with q < 1. Although we
do not have, at this moment, a formal justification for
this fact, it may be due to the following behavior of the
Jensen-Tsallis kernels. For q < 1, the maximizer of

kernel SVM 1-NN K-NN
Linear 0.827(0.009) 0.305(0.014) 0.355(0.005)
k JS 0.886(0.005) 0.775(0.008) 0.757(0.005)
k JT

q (auto q) 0.882(0.009) 0.781(0.008) 0.783(0.008)
k JT

q (best q) 0.890(0.042) 0.791(0.037) 0.805(0.038)
k

(1)
q (auto q) 0.886(0.010) 0.636(0.006) 0.685(0.012)

k
(1)
q (best q) 0.891(0.042) 0.636(0.030) 0.682(0.032)

k
(2)
q (auto q) 0.884(0.006) 0.791(0.011) 0.787(0.008)

k
(2)
q (best q) 0.895(0.042) 0.801(0.038) 0.814(0.039)

Table 1. Average accuracy rate, with stan-
dard deviation in parenthesis.

k JT
q (p, v) with respect to p is not v, but another distri-

bution closer to uniform. This is not the case for the
Jensen-Shannon kernel k JS, which coincides with J JT

1 ,
for which the minimizer of k JS(p, v) with respect to p is
precisely v. This behavior of k JT

q plays the role of a reg-
ularizer (favoring uniform distributions) on the n-gram
statistics.
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Figure 2. Accuracies of different kernels
as a function of q.

Table 2 compares our best results against other pub-
lished results on the same dataset [2], [4], [5], [7], [14],
[15], [16], [17]. Although the experimental procedure
is not the same in all those references, the results sug-
gest that the proposed method performs better than the
others.

4. Conclusions

In this paper, a novel approach for contour-based 2D
shape recognition has been proposed. In the presented



Methodology Accuracy Ref.
K-NN Classifiers
1-NN + Levenshtein edit distance ≈ 0.67 [14]
1-NN + approximated cyclic distance ≈ 0.78 [14]
K-NN + cyclic string edit distance 0.743 [15]
1-NN + mBm-based features 0.765 [5]
1-NN + HMM-based distance 0.738 [5]
Our best K-NN (k(2)

q , 3-gram) 0.814
SVM Classifiers
Edit distance-based kernel 0.811 [15]
HMM-based entropic features 0.812 [16]
HMM + Fisher Kernel 0.817 [17]
HMM + Top Kernel 0.808 [17]
HMM + FESS-embedding + RBF 0.830 [17]
HMM + Trans embedding + RBF 0.811 [4]
HMM + Marginalized kernel 0.775 [7]
HMM + Cluster-based Fisher kernel 0.858 [2]
HMM + Non linear Marginalized kernel 0.855 [7]
Our best SVM (k(2)

q , 4-gram) 0.895

Table 2. Comparative results with other
methods.

method, chain code representations are extracted from
the contours and n-gram statistics are then computed.
These statistics are used as argument for non-extensive
information theoretic kernels, based on which kernel-
based classifiers are built. We tested different versions
of such kernels, using support vector machine and near-
est neighbor classifiers. An experimental evaluation on
the chicken pieces dataset showed that the proposed ap-
proach outperforms the current state-of-the-art meth-
ods.
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