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Abstract. The vast majority of methods that successfully recover 3D
structure from 2D images hinge on a preliminary identification of cor-
responding feature points. When the images capture close views, e.g.,
in a video sequence, corresponding points can be found by using local
pattern matching methods. However, to better constrain the 3D infer-
ence problem, the views must be far apart, leading to challenging point
matching problems. In the recent past, researchers have then dealt with
the combinatorial explosion that arises when searching among N ! possi-
ble ways of matching N points. In this paper we overcome this search by
making use of prior knowledge that is available in many situations: the
orientation of the camera. This knowledge enables us to derive O(N2)
algorithms to compute point correspondences. We prove that our ap-
proach computes the correct solution when dealing with noiseless data
and derive an heuristic that results robust to the measurement noise and
the uncertainty in prior knowledge. Although we model the camera using
orthography, our experiments illustrate that our method is able to deal
with violations, including the perspective effects of general real images.

1 Introduction

Methods that infer three-dimensional (3D) information about the world from
two-dimensional (2D) projections, available as ordinary images, find applications
in several fields, e.g., digital video, virtual reality, and robotics, motivating the
attention of the image analysis community. Using single image brightness cues,
such as shading and defocus, researchers have proposed methods that work in
highly controlled environments, like laboratories, but result sensitive to the noise
and are unable to deal with more general scenarios. Consequently, the effort of
the past decades was mainly on the exploitation of a much stronger cue: the
motion of the brightness pattern between images. In fact, the image projections
of objects at different depths move differently, unambiguously capturing the 3D
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shape of the scene. This lead to the so-called 3D Structure-from-Motion (SfM)
methods.

SfM splits the problem into two separate steps: i) 2D motion estimation, from
the images; ii) inference of 3D structure (3D motion of the camera and 3D shape
of the scene), from 2D motion. Usually, the 3D shape of the scene is represented
in a sparse way, by a set of pointwise features, thus the 2D motion is represented
by the corresponding set of trajectories of image point projections. When dealing
with video sequences, consecutive images correspond to close views, and those
trajectories can be obtained through tracking, i.e., by using local motion estima-
tion techniques. However, since very distinct viewpoints are required to better
constrain the 3D inference problem, in many situations there is the need to pro-
cess a single pair of distant views. In this scenario, the 2D motion estimation
step i), i.e., the problem of matching pointwise features across views, becomes
very hard and, in fact, the bottleneck of SfM (step ii) has been extensively
studied and efficient methods are available [1]).

Researchers have then addressed the problem of computing point correspon-
dences in a global way, by incorporating the knowledge that the feature points be-
long to a 3D rigid object. However, the space of correspondences to search grows
extremely fast: considering N feature points, there exist N ! ways to match them.
Due to this combinatorial explosion, only sub-optimal methods have been pro-
posed to solve the problem, see, e.g., [2], for an iterative approach that strongly
depends on the initialization. Curiously, in the simpler scenario of dealing with
noisy observations of geometrically equal point clouds, the optimal solution can
be efficiently obtained as the solution of a convex problem [3]. The challenge in
SfM is that the point clouds from which we must infer the correspondences have
distinct shape because they are different 2D projections of the (unknown) 3D
shape.

In this paper, we overcome the difficulty pointed out in the previous para-
graph by using as prior knowledge the orientation of the camera. In fact, in
many situations, that knowledge is available from camera calibration or can be
computed without using feature points and their correspondences. For example,
in scenarios where many edges are aligned with three orthogonal directions, e.g.,
indoor or outdoor urban scenes, the orientation of the camera can be reliably
obtained from the vanishing lines of a single image, see, e.g., [1], or even directly
from the statistics of the image intensities [4]. We show how the knowledge of
camera orientation simplifies the problem, enabling us to derive an algorithm
of complexity O(N2). We prove that this algorithm computes the optimal set
of correspondences for the orthographic camera projection model in a noiseless
scenario and propose a modified version that results robust to uncertain mea-
surements and violations of orthography.

2 Problem Formulation

Consider the scenario of Fig. 1, where two cameras C1 and C2 (or, equivalently,
the same camera in two different positions) capture two different views of the



212 J.F.C. Mota and P.M.Q. Aguiar

world. As usual when recovering SfM, we assume that a set of N feature points
was extracted from each of the images, and their coordinates in the image plane
are represented by

I1 :=

[
x

(1)
1 x
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2 · · · x

(1)
N

y
(1)
1 y

(1)
2 · · · y
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]
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[
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1 x
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2 · · · x
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1 y
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2 · · · y
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N

]
, (1)

where the superscript (i) indexes the points to Ci, for i = 1, 2. Each feature point
has 3D coordinates (Xn, Yn, Zn), with respect to some fixed coordinate frame.
Let that frame be attached to C1 such that: 1) the axes X and Y are parallel
to the axes x and y of the camera frame; 2) the optical center of the camera C1

is aligned with the axis Z (see Fig. 1). The major challenge when attempting
to recover {(Xn, Yn, Zn), n = 1, . . . , N} from I1 and I2 is the correspondence
problem. In fact, we do not know the pairwise correspondences between the
columns of I1 and I2 in (1) because there is not a “natural” way to automatically
order the feature point projections. Although estimating this ordering leads to a
combinatorial problem whose solution, in general, becomes a quagmire for large
N , we show in this paper that, when the relative orientation of the cameras is
known and the perspective projection is well approximated by the orthographic
projection model, an efficient solution can be found.

Consider the orthographic model of a camera [1]: x = PX, where X ∈ P
3

and x ∈ P
2 are, respectively, the homogeneous coordinates of the points in space

and in the image plane. The matrix P ∈ R
3×4 is given by

P =
[

R t
0T
3 1

]
, (2)

where R ∈ R
2×3 contains the first two rows of a 3D rotation matrix, t ∈ R

2 is a
translation vector and 03 is the zero vector in R

3. With the choice of reference

x

y

zC1

C2

Fig. 1. Our scenario, with a choice for the reference frame
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frame of the previous paragraph, it is straightforward to see that camera C1

captures the first two coordinates of the feature points, i.e., that (x(1)
n , y

(1)
n ) =

(Xn, Yn), n = 1, . . . , N . Naturally, camera C2 captures projections that depend
on the relative position of the cameras, the 3D coordinates of the points, and
their correspondences:

[
I2

1T
N

]
=

[
R t
0T
3 1

] ⎡
⎢⎢⎣
X1 X2 · · · XN

Y1 Y2 · · · YN

Z1 Z2 · · · ZN

1 1 · · · 1

⎤
⎥⎥⎦ Π, (3)

where 1N ∈ R
N has all its entries equal to 1, and Π ∈ R

N×N is a permutation
matrix, i.e., a matrix with exactly one entry equal to 1 per row and per column
and the remaining entries equal to 0 (when we multiply a matrix M by Π , we
get a matrix with the same entries of M but with the columns arranged in a
possibly different order).

By using (3), we obtain the model relating the projections of the feature points
in images I1 and I2 with all the unknowns:

I2 =
[
R̂I1 + r̂ZT + t1T

N

]
Π, (4)

where Z = [Z1, Z2, . . . , ZN ]T and R was decomposed as R = [R̂, r̂], with R̂ ∈
R

2×2 and r̂ ∈ R
2×1. When the relative orientation of the cameras is known

(which, as discussed in the previous section, occurs in several practical situa-
tions), i.e., when R̂ and r̂ are known, the problem becomes to find a permutation
matrix Π , a set of 3D point depths {Z1, . . . , ZN}, and a translation vector t that
solve (4). In general, the problem is hard due to the huge cardinality of the set
of all N × N permutation matrices: N !.

3 Closed-form Solution for Translation

The choice of the reference frame in the previous section leaves one degree
of freedom: we can place the frame at any point along the axis Z. We now
choose this position in such a way that the problem is simplified: let it be such
that

∑N
n=1 Zn = 1T

NZ = 0, i.e., that the plane XY contains the center of mass
of the feature points.

Multiplying both sides of (4) by 1N and simplifying, we get

I21N =
[
R̂I1 + r̂ZT + t1T

N

]
1N (5)

= R̂I11N + Nt. (6)

where (5) uses the fact that Π 1N = 1N (permutation of a vector with all equal
entries) and (6) uses equalities ZT 1N = 0 (from the choice of reference frame)
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and 1T
N1N = N . From (6), we see that the solution for the translation vector t

does not depend on the remaining unknowns (Π, Z):

t =
1
N

(
I2 − R̂I1

)
1N . (7)

By removing the (now known) translation from the problem, i.e., by replacing
the solution (7) in (4) (and using 1T

N Π = 1T
N ), we get

I2 =
[
R̂I1 + r̂ZT

]
Π +

1
N

(
I2 − R̂I1

)
1N1T

N . (8)

To simplify notation, we re-define our observations by introducing matrices Ĩ1

and Ĩ2, both computed from known data:

Ĩ2 := I2 − 1
N

(
I2 − R̂I1

)
1N1T

N , Ĩ1 := R̂I1. (9)

With these definitions, problem (4) is re-written as

Ĩ2 =
[
Ĩ1 + r̂ZT

]
Π, (10)

where the unknowns are the depths Z1, . . . , ZN , in Z, and the correspondences,
coded by Π .

4 Optimal Solution for Noiseless Data

We first present an efficient algorithm to compute the solution to our problem
when there is no noise, meaning that there exists at least one pair (Z, Π) that
solves (10).

Naturally, the solution for the permutation matrix Π is given by the asso-
ciation of each column of Ĩ1 with a column of Ĩ2, for the correct value of Z.
Let column n of Ĩ1 (resp. Ĩ2) be represented by [X̃n, Ỹn]T (resp. [x̃n, ỹn]T ) and
consider the error Eij of associating column j of Ĩ1 with column i of Ĩ2, i.e.,

Eij = min
Zj

[
x̃i − X̃j − r̂1Zj

]2

+
[
ỹi − Ỹj − r̂2Zj

]2

, (11)

where r̂ = [r̂1, r̂2]T . The minimizer Z∗
j solving (11) is straightforwardly obtained

in closed-form:

Z∗
j =

r̂1(x̃i − X̃j) + r̂2(ỹi − Ỹj)
‖r̂‖2

. (12)

Our algorithm, detailed and analyzed in the sequel, computes for each column i
of Ĩ2, the column j∗ of Ĩ1 that minimizes error Eij (11) with respect to j (without
noise, for each i there exists at least one j∗ such that Eij∗ = 0). In the algorithm
description below, the N × N permutation matrix Π is simply parameterized
by a N × 1 vector perm: the jth column of Π has entry permj equal to 1 (and,
obviously, the others equal to zero); also, |S| denotes the cardinality of set S
and S1\S2 the set of elements of S1 that do not belong to S2.
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Algorithm 1

Inputs Matrices Ĩ1 and Ĩ2, organized into the corresponding sets of columns
B1 = {[X̃1, Ỹ1]T , . . . , [X̃N , ỸN ]T } and A =

{
[x̃1, ỹ1]T , . . . , [x̃N , ỹN ]T

}
, and

vector r̂.
Procedure For i = 1, . . . , N (N = |A|)

– For all j = 1, . . . , |Bi|, compute Z∗
j (12) and Eij (11);

– j∗ = argminj Eij;
– permj∗ = i, Zj∗ = Z∗

j∗ ;
– Bi+1 = Bi\[X̃j∗ , Ỹj∗ ]T .

Outputs Vectors perm and Z.

Algorithm 1 consists of N loops where, in each loop, a column of Ĩ2 is assigned to
a column of Ĩ1. Each assignment requires a search over, at most, N possibilities.
It is then clear that our algorithm has complexity of O(N2), in particular, we
obtain the total number of floating point operations (flops) as 7N2 + 7N − 14.
Before proving optimality of Algorithm 1, we interpret it in a geometric way.
Defining each possible “displacement” Ĩ1 → Ĩ2 as aij := [x̃i − X̃j , ỹi − Ỹj ]T , the
cost minimized in (11) can be written as ‖aij−Zj r̂‖2. So, for each column [x̃i, ỹi]T

of Ĩ2, our algorithm searches the column [X̃j , Ỹj ]T of Ĩ1 that minimizes ‖aij −
Zj r̂‖2 for all possible values of Zj . Since this expression achieves its minimum
(zero) when aij is collinear with r̂ (which we synthetically denote by aij//r̂),
Algorithm 1 assigns pairs of columns such that their difference is “as parallel as
possible” to r̂. This collinearity is a re-statement of the fact that epipolar lines
are parallel in an orthographic stereo pair [1] (more generally, the trajectories of
image projections of a rigid scene can be represented in a rank 1 matrix [5]).

Theorem 1 (Optimality of Algorithm 1). If there exists at least one pair
(Z, Π), such that (10) holds, then the outputs of Algorithm 1 determine a pair
(Z̄, Π̄) that solves (10).

Proof. Suppose the pair (Z∗, Π∗) is such that (10) holds. For each i = 1, . . . , N ,
there exists one and only one k such that

Π∗
ki = 1 (13)

(because Π∗ is a permutation matrix). We now denote by j∗(i) the assignment
produced by Algorithm 1, i.e., we make explicit the dependence of j∗ on i.
Obviously, if j∗(i) = k for all i = 1, . . . , N , then the algorithm returned an
optimal solution. So, for the remaining of the proof, we assume there is an
index i such that j∗(i) �= k. We will see that, even in this case, (10) holds for
the solution provided by the algorithm, because Eij∗(i) = 0, for all i.

A simple way to complete the proof is using contradiction. Assume i is the
smallest index such that Eij∗(i) > 0 (obviously j∗(i) �= k). If Eij∗(i) > 0, then
[X̃k, Ỹk]T �∈ Bi (at the ith loop). Thus, there exists an index l (1 ≤ l < i) such
that [x̃l, ỹl]T //[X̃k, Ỹk]T (because Elj∗(l) = 0 for all 1 ≤ l < i). According to the
assignment defined by (13), we have [X̃k, Ỹk]T //[x̃i, ỹi]T , thus [x̃l, ỹl]T //[x̃i, ỹi]T .
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Also, since Π∗ is a permutation matrix, there exists an index m (1 ≤ m ≤
N), such that Π∗

ml = 1, or, equivalently, such that [X̃m, Ỹm]T //[x̃l, ỹl]T , thus,
[X̃m, Ỹm]T //[x̃i, ỹi]T . We now consider two cases: 1) if [X̃m, Ỹm]T ∈ Bi, there is
a contradiction because Eim = 0; 2) if [X̃m, Ỹm]T �∈ Bi, it is straightforward to
find a vector [X̃m′ , Ỹm′ ]T ∈ Bi such that [X̃m′ , Ỹm′ ]T //[x̃i, ỹi]T , by performing
steps like the ones above, which brings us back to case 1).

5 Approximate Solution for Noisy Data

In practice, not only the knowledge of the camera orientation is uncertain but
also the feature point projections are noisy. Since Algorithm 1 is based on the
collinearity of a vector that depends on the camera orientation (r̂) with vectors
that depend on the feature point projections ([x̃i − X̃j , ỹi − Ỹj ]T ), its behavior is
sensitive to disturbances affecting these vectors. We now propose a modification
of this algorithm, which results robust not only to the noise but also to violations
of the orthographic projection model.

From model (10) we note that the clouds of points in Ĩ1 and Ĩ2 differ by r̂ZT .
Since r̂ contains entries of a rotation matrix, thus with magnitude smaller than
1, in practice, the patterns of points in Ĩ1 and Ĩ2 will almost coincide when the
depth of the scene is not too large (more rigorously, when r̂ZT is negligible if
compared to the minimum distance between points), even if the corresponding
points in I1 and I2 are very distant (see an insightful example in Fig. 4). This
motivated us to use the matching criterion of minimizing the Euclidean distance
between points in Ĩ1 and Ĩ2,

E′
ij =

∥∥∥∥
[
x̃i

ỹi

]
−

[
X̃j

Ỹj

]∥∥∥∥
2

, (14)

rather than the less robust collinearity implicit in (11).

Algorithm 2

Inputs Matrices Ĩ1 and Ĩ2, organized into the corresponding sets of columns
B1 = {[X̃1, Ỹ1]T , . . . , [X̃N , ỸN ]T } and A =

{
[x̃1, ỹ1]T , . . . , [x̃N , ỹN ]T

}
, and

vector r̂.
Procedure For i = 1, . . . , N (N = |A|)

– For all j = 1, . . . , |Bi|, compute E′
ij (14);

– j∗ = argminj E′
ij;

– permj∗ = i, Zj∗ = Z∗
j∗ (12);

– Bi+1 = Bi\[X̃j∗ , Ỹj∗ ]T .
Outputs Vectors perm and Z.

Our experiments, some of them singled out in the following section, demonstrate
that Algorithm 2 successfully infers correct feature point correspondences when
dealing with real images. In spite of correctly determining correspondences, the
accuracy of the depth estimates in Z strongly depends on the magnitude of the
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components of r̂. In fact, assuming the correspondences are known, for example,
Π = IN×N (for simplicity), model (10) becomes Ĩ2 − Ĩ1 = r̂ZT , making clear
that the accuracy in the estimation of Z depends not only on the accuracy of
the measurements (Ĩ1, Ĩ2, r̂) but also on the magnitude of the components of
r̂. In particular, we obtain an upper-bound for the depth estimation error as
ρZ = max |Ĩ2 − Ĩ1|/ min |r̂|. Naturally, when the ratio ρZ is large, we can still
use our algorithm to estimate the correspondences between the feature points
(the bottleneck of the problem), whose accuracy is not affected by ρZ , and then
use a standard algorithm to recover SfM, eventually using a larger set of images
to reduce ambiguity, see, e.g., [1].

6 Experiments

To test the algorithms with ground truth, we synthesized data. In particular, we
generated the 3D world as a set of 50 points randomly distributed in [−200, 200]3

and relative orientations between the cameras by specifying random rotation ma-
trices. Then, we synthesized measurements according to the model in expression
(3), for random permutation matrices. As expected, according to our theoretical
derivation of Section 4, Algorithm 1 always produced the correct result: it suc-
cessfully recovered the permutation, i.e., the correct correspondences between
the points, and their depth. To test robustness to disturbances, we then ran ex-
periments by considering inaccurate knowledge of camera orientation and noisy
feature point projections. As anticipated in Section 5, we observed that Algo-
rithm 2 results more robust than Algorithm 1. The plot in Fig. 2 illustrates this
point by showing the average number of wrong correspondences as functions
of the (white Gaussian) measurement noise standard deviation (st.dv.). Note
that, even for noise st.dv. of 5 pixels, Algorithm 2 almost always recovers to-
tally correct correspondences. In what respects to depth estimation accuracy, the
magnitudes of the errors were smaller than the magnitudes of the measurement
noise.

We tested our algorithms with real images. Two examples are shown in Fig. 3,
which contains the two pairs of images with feature points superimposed. Note
that, in both examples, corresponding features are far from being close to each
other, preventing thus the usage of “local” methods. We used standard cali-
bration techniques to compute camera orientation [6] and then run our algo-
rithms. The plots in Fig. 4 provide insight over our approach: while the feature
point projections of corresponding features in I1 and I2 are in general far apart,
their “versions” in Ĩ1 and Ĩ2 are close. As a consequence, Algorithm 2 recovered
the correct correspondences in both cases. We emphasize that these examples
strongly depart from the assumed orthographic projection (see the perspective
effects between the pairs of images in Fig. 3), thus, that our approach is able to
deal with a wide range of real life scenarios.
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Fig. 2. Number of incorrect correspondences, for a 3D world of 50 points, as functions
of the noise power (mean over 1000 runs)
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Fig. 3. Two pairs of real images with feature points superimposed
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Fig. 4. Left: feature point coordinates in I1 and I2, extracted from the pair of images
in the top of Fig. 3 (the blue circles are from the left image and the red crosses from
the right one). Right: corresponding entries of Ĩ1 and Ĩ2, computed from known data,
see (9).

7 Conclusion

We proposed efficient algorithms for finding simultaneously the correspondences
between points in two images and their depth in the 3D world. Our approach
is based on the facts that, in many situations, the relative orientation of the
cameras is available, or can be easily inferred, and the camera model can be
approximated by an orthographic projection. The resulting complexity is O(N2),
where N is the number of feature points (compare with N !, the number of
possible correspondences). We prove the optimality of a first algorithm when
dealing with noiseless data and develop a modified version that results more
robust to uncertainty in the measurements.
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