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K. Arczewski, J. Frączek, M. Wojtyra (eds.)

Warsaw, Poland, 29 June–2 July 2009

A WEIGHTED FACTORIZATION APPROACH FOR ARTICULATED
MOTION MODELLING

João K. Fayad?, Alessio Del Bue† and Pedro M. Q. Aguiar†

?School of Electronic Engineering and Computer Science, Queen Mary University of London
Mile End Road, E1 4NS London, UK
e-mail: jrkf@dcs.qmul.ac.uk,

web page: http://www.dcs.qmul.ac.uk/~jrkf

†Institute for Sistems and Robotics / Instituto Superior Técnico
Av. Rovisco Pais, 1049-001 Lisboa, Portugal

e-mails: adb@isr.ist.utl.pt, aguiar@isr.ist.utl.pt,
web pages: http://www.isr.ist.utl.pt/~adb,

http://www.isr.ist.utl.pt/~aguiar

Keywords: Human Body modelling, Biomechanics, Structure from Motion, Factorization.

Abstract. Human body models and their analysis are nowadays used in a wide range of ap-
plications, spanning from medicine to security and surveillance. In this work we focus on the
automatic creation of biomechanical human models for clinical and sports applications.

State of the art motion capture systems are nowadays able to measure the 3D coordinates
of reflective markers placed above the skin with sufficient accuracy. Clinical gait analysis is
currently facing problems like the repeatability of the measurements, the creation of subject-
specific models, and the compensation for soft-tissue movement.

Recent developments on structure from motion approaches have allowed the efficient recov-
ery of articulated bodies from a set of 2D images. In a similar mathematical framework, we
present a set of computational tools able to create subject specific 3D models form motion cap-
ture data. Our aim is to obtain fully data-driven algorithms for the localization of the joints and
their properties.

Specifically, our goal is to obtain a 3D model of the body parts, which is able to deal with the
soft-tissue artifacts that are very common in this type of inference. The proposed approach has
the distinguishing feature of being able to deal with marker occlusions that may occur during
the extraction of the measurements from the motion capture system.

Finally, we use synthetic data to assess the performance of the algorithms and compare the
results with ground truth data. Qualitative analysis of real data sequences are also presented.
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1 INTRODUCTION

A human body model is a mathematical description of its anthropometry, physiology and
topology [33]. For instance, models can be built to test the human physiological response
on crashworthiness tests [13], or to predict bone remodelling behavior under different stress
conditions [19]. In this work we focus on the development of models for full body motion.

A Motion Capture (MOCAP) system is a device able to recover a full description of the mo-
tion on a scene, in order to analyze or transfer it to a digital model of the object performing the
motion [18]. MOCAP systems are subdivided in mechanical, magnetic, ultrasonic or optical
systems, being the categorization given by the physical principle by which the motion is de-
tected and captured. Although the setup may be distinct among the different types of systems,
they all have in common the fact that they detect the spatial location of a set of feature points
in order to describe the motion of the scene. Given all the different types of MOCAP systems,
optical systems have emerged as the primary choice for most of the applications as this setup
provides a precision of the order of 1 mm for the 3D position of the feature points [3, 7, 18].
The most usual setup for optical MOCAP systems is composed of calibrated infrared cameras
(at least 2, but typically more then 6) arranged around the area to be captured, and passive (re-
flective) markers, with diameter between 9 to 25 mm, placed on the surface of the object [7].
The output of the system is the set of 3D coordinates of the tracked markers over time.

The output of MOCAP systems is usually applied to animate previously existent digital
models. However this approach not only requires great effort in building the model, but also
limits the accuracy and versatility of the analysis, as it is bounded to adjust the existent model
to the current application. In opposition, we will focus on the problem of creating a human
model based on data acquired by MOCAP systems, as this approach guarantees subject specific
modeling.

1.1 Motivation

Nowadays MOCAP systems are used to capture human motion in a variety of fields such as
medicine [7], sports [22, 16], computer vision [27], character animation [29], or recognition,
security and surveillance [28]. In this work we will focus on biomechanical models of the
human body i.e. on models that accurately describe the motion of the articulations, in order to
predict the forces and momenta associated with it. This is in contrast with other applications
such as character animation, where the focus is on the visual aspect of synthetic 3D shape [12]
and its natural motion.

Biomechanics is the discipline that uses mechanical principles in order to study living or-
ganisms [22]. In sports, where the technique is a dominant factor, an analysis of the human
motion can lead to an improvement of the performances, based on the information about artic-
ulations and muscles [23]. The information can also be used to evaluate the effect of a given
motion in the muscles and articulations, in order to prevent injuries or generate preventive and
rehabilitative therapies [22].

In medicine, gait analysis is the main application of motion analysis tools. The study of
the alterations in normal gait patterns are very important on areas such as cerebral palsy or
prosthetic limbs, orthoses and total joint replacements, providing information both for diagnosis
and treatment options [7, 17, 32].

When performing biomechanical studies on the human body, building accurate human mod-
els is one of the key steps for achieving meaningful results. When a generic study about a
given motion is being conducted, the model can be built based on anthropometric data. How-
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ever, when applying biomechanics in clinical cases or sports, models must be subject specific
in order to have accurate results. When we consider the universe of clinical patients that would
benefit from this technology, the amount of resources dedicated just to build the custom models
would be unbearable. Consequently, there is a strong need for finding methods to automatically
create subject-specific reliable models.

One of the major source of error in MOCAP analysis are the soft-tissue artifacts [12, 10, 26].
In fact, although the relevant information about articulations used to build human models is
given by the skeleton, the reflective markers used by MOCAP systems are placed above the
skin. When examining a subject, there is an inherent relative motion between the soft-tissues
surrounding the bone and the bone itself. These relative motions create artifacts on the data
that degrade performances. This occurs especially when the non-rigid motion is directional (i.e.
like the bending of a muscle). In such case, any inference algorithm solely based on rigidity
assumption will produce a bias in the estimation.

Our aim is thus to tackle this issue and to introduce an algorithm which minimizes the ef-
fect of deformations from the observed 3D data. This will provide a reliable tool for clinical
applications, which can aid in diagnosis and rehabilitation, and a method that can be applied to
sports, in order to enhance performances and prevent injuries. Nevertheless, we must not forget
that MOCAP systems and human models are used in a wider range of applications that will also
benefit from these improvements.

1.2 Prior work

As stated before, systems used to capture human motion are generally optical MOCAP sys-
tems, based on markers placed over the skin of the subject performing the motion. Most of the
existent clinical systems for gait analysis use markers placed at specific anatomic landmarks.
Regression techniques are then used to fit this data to a Conventional Gait Model (sometimes
called Helen Hayes model), which models the hip, knee and ankle articulations as joints with
three degrees of freedom [7]. As stated above, a disadvantage of this setup is the fact that it uses
a small number of feature points that have to be accurately placed over anatomic landmarks,
which in some cases are not very well defined in patients with specific medical conditions [7].
Besides, evidence has been brought up that most common equations used for regression provide
unsatisfying results [24].

Other approaches use a method called anatomical calibration [7], which relies on a previ-
ously existent model of the joints. The joint parameters are then computed by fitting the data
from the MOCAP systems, acquired while performing predetermined actions, to the existing
model. For instance, markers attached to a body segment belonging to an articulation modelled
as a ball and socket joint, would have their coordinates lying on a sphere centered at the joint
center. The joint centers are then computed by fitting the data to the ball and socket model
using, for instance, least-squares optimization techniques [7]. The disadvantage of this method
is that in some cases the performance of the test movements is impossible due to the medical
conditions of the patients.

As mentioned previously, one of the major sources of error in these measurements are the
soft-tissue artifacts, and so several attempts have been made to cope with this problem. Using
optimization techniques to fit the motion capture data to a model, is one of them. For instance,
attempts have been made to describe the real bone movement as a function of the observed
soft-tissue movement, over all the range of motion [4, 25]. However, this approach suffers
from an ambiguity in the definition of the true bone motion, as there is no consensus about a
gold-standard for these measurements [7].
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With the evolution of MOCAP systems, the number of feature points that can be tracked has
increased since the very first systems were created. This allowed the layout of new methods
such as Point Cluster Techniques (PCTs). PCTs rely on the fact that, when using a higher
number of features than the minimum number required, there is a redundancy in information,
which will make soft-tissue artifacts less relevant [5]. This technique was later extended to deal
directly with soft-tissues artifacts by reformulating the problem as a chi-squared estimation.
However, the functional form which model the relative displacement between bone and the skin
has to be explicitly provided [4] and it is subject to the action performed by the patient.

Recovering the structure of general objects based on information about their motion is a
subject of interest in the field of computer vision, originating the family of algorithms desig-
nated structure from motion (SfM). These algorithms were first developed aiming to recover
3D shapes from a set of 2D images with multiple views of the scene. Factorization meth-
ods for SfM are computational methods that use the unique rank properties of a measurement
matrix to factorize it in a motion and shape factors. The first factorization methods for SfM
were able to recover the shape and motion of a rigid object moving in a scene [34, 30]. Later,
the approach was extended to deal with objects moving independently [11] and deformable
shapes [9, 8, 36, 14]. Until recently this set of techniques was upgraded to deal with articulated
structures as the one appearing in the context of human motion modelling [35, 38].

Although marker-based MOCAP systems are the most popular systems in clinical research,
alternative approaches have also been considered. Among them, there are methods such as
stereo radiography, bone pins, external fixation devices, and single or double plane fluoroscopy.
However these methods are either invasive, or they limit motion range, or they require the
exposure of the subject to radiation [7]. Models based on magnetic resonance imaging (MRI)
have also been used [31, 6]. Although they can provide a detailed image of bones and muscles,
this technique only works within small volumes and so their application is limited.

1.3 Objective and proposed approach

The objective of this work is to develop an algorithm to automatically compute biomechan-
ical models of the human body using the data provided by MOCAP systems. We seek an
algorithm that can be independent of the given MOCAP system’s setup, only requiring a rela-
tively high number of markers on each body segment. We also assume that the segmentation
of the data is known (i.e. to which body segment belongs a given set of points). The algorithm
we propose is particularly tuned to deal with the case of soft-tissue artifacts corrupting the mea-
sured data. This effect could produce a consistent bias both for the 3D structure computation
and the motion estimation of the articulated model.

Our novel contribution proposed in Section 3 is a PCT-like approach. Since in the context
of human motion modelling we are normally dealing with non-rigid objects, our approach ex-
plicitly penalize the 3D trajectories that are strongly deforming. The idea is to first compute a
coarse rigid approximation based on least-squares optimization. Then, we switch to a weighted
inference that automatically decrease the weights associated to the measured 3D data which
present higher degrees of deformation. This weighted inference has the property to achieve a
3D rigid shape which is less affected by the bias given by the deforming motion. Moreover,
we do not assume any specific prior over the property of the deformation as in [4]. Finally, we
combine these results with an extension of the method for articulated SfM to 3D data [15], to
provide a final 3D articulated model of the human skeleton.

We perform experiments using both synthetic and real data. Model validation is done solely
by using synthetic data. Validating these models with real data requires the knowledge of the
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real locations of joint centers and bone motions, which are not trivial to obtain since it requires
specific equipment [12]. Therefore, validating with real data will be left as future work. How-
ever, we apply the algorithm to real data with the purpose of illustrating real applications of
these algorithms, from which a first qualitative evaluation of performance can be done.

2 FACTORIZATION METHODS FOR STRUCTURE FROM MOTION

Factorization methods for structure from motion are a family of image based algorithms that
model moving objects as a product of two factors: motion and shape. The shape components
define the 3D geometric properties of the object; the motion components define the time-varying
parameters of the motion (e.g. rotations and translations of the rigid body) that the object
performs in a metric space. Factorization methods were pioneered by Tomasi and Kanade in
[34], where they successfully recovered the motion of the camera motion and the geometry (i.e.,
the shape) of a rigid object, based on a stream of 2D images. In [34], a number of feature points
were selected and tracked across a stream of images, providing the input for the factorization
algorithm. In our case, instead of 2D images, we work with the 3D coordinates provided by the
MOCAP system, thus we start by re-formulating the factorization method to accommodate this
scenario.

We assume a set of P 3D points being tracked over F frames by a MOCAP system. The
factorization methods rely on the key fact that the 3D trajectories of points belonging to the
same body share global properties. The 3D trajectories provided by the MOCAP system are
arranged in a 3F × P measurement matrix W, given by

W =

 w11 . . . w1P
... . . . ...

wF1 . . . wFP

 , (1)

where wij are the 3D coordinates of point j at frame i.

2.1 Single rigid body

When all the feature points lie on a single rigid body, their coordinates wij can be written as

wij =

 rT
1i txi

rT
2i tyi

rT
3i tzi




xj

yj

zj

1

 =
[
Ri ti

] [ sj

1

]
, (2)

where sj is a 3-vector that has the 3D coordinates of point j, describing the shape, on a local
coordinate system; Ri and ti are, respectively, the 3 × 3 rotation matrix and 3-vector of the
translation parameters that describe sj on a global coordinate system (see the illustration in
Figure 1). Stacking these equalities for all the F frames and P points, results in the matrix
equation

W =


W1

W2
...
WF

 =


R1

R2
...
RF


 x1 x2 · · · xP

y1 y2 · · · yP

z1 z2 · · · zP

+


T1

T2
...
TF

 = MS + T, (3)

where Ti = ti1
T
P , with 1T

P being a P -vector with all entries equal to 1.
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Figure 1: Graphical representation of the physical meaning of the motion and shape factors. The shape matrix S
contains the 3D coordinates of the (blue) points that define the body, on the local (red) coordinate system. The
rotation matrix Ri and translation vector ti represent the coordinate transformations that describe S on the global
(black) coordinate system, resulting in Wi.

The translational component of the motion, ti, is given by the coordinates of the centroid of
the point cloud at each frame Wi. Thus, it can be easily eliminated by registering the point cloud
at each frame to the origin i.e at each frame we subtract to the coordinates of every point the
mean of the point cloud coordinates. In this scenario, it frequently occurs that, instead of W, we
consider a registered form of this matrix called W̄ such that

W̄ = W− T = M S. (4)

Let us consider the model defined in Eq. (3). Since M is a 3F × 3 matrix, and usually
F � 3, by the properties of the rank of a matrix, rank(M) ≤ 3. On the other hand, since
S is a 3 × P matrix, and usually P � 3, we also know that rank(S) ≤ 3. Although T is
a 3F × P matrix we know that all its columns are equal. Thus, as it only has one linearly
independent column, rank(T) = 1. From these considerations on the rank of M, S and T and
according to Eq. (3), it becomes clear that rank(W) ≤ 4. For the model defined by Eq. (4),
since we have no translations, only M and S contribute to the rank of W̄ and we get rank(W̄) ≤ 3.
However, the rank properties are only valid in the ideal case with no noise. When performing
real experiments there will be noise affecting the coordinates, which will increase the rank of
W̄. Noise can originate for instance from the MOCAP system’s uncertainty in the position of the
tracked feature points or non-rigidity of the tracked object.

Consider the singular value decomposition (SVD) of the registered matrix W̄, defined by

W̄ = U3F×3FΣ3F×PV
T
P×P , (5)

where U and V are orthogonal matrices, and Σ is a diagonal matrix whose entries are the singular
values σi of W̄. Singular values are by definition non-negative (σi ≥ 0) and non-increasingly
ordered in Σ. Also there are as many positive singular values in a matrix as its rank i.e. if
r = rank(W̄), σi > 0,∀i ≤ r.

The truncated SVD is a version of the decomposition that constraints the result to a rank−k
matrix. This is done by setting to zero all but the first k singular values. Consequently we can
use only the first k columns of U and V to compute the transformation. Specifically, the rank−k
truncated SVD is given by

Ŵ = Uk Σk V
T
k , (6)
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where Uk is a 3F × k matrix with only the first k columns of U, Vk a P × k matrix with only the
first k columns of V, and Σk k× k the diagonal matrix with the first k diagonal entries of Σ. The
matrix Ŵ in Eq. 6 is the best rank − k approximation of W̄ in the Frobenius norm sense. Since
the ideal (noise-free) value for rank(W̄) is 3, we use a rank − 3 truncated SVD as a first global
optimal fit to the measurements.

The rank− 3 truncated SVD is not only useful in noise reduction but it can also be used the
starting point for the factorization algorithm. In fact, considering the expected dimensions of M
and S we can compute a first estimate of these as

M̂ = U3 Σ
1/2
3 ; (7)

Ŝ = Σ
1/2
3 VT

3 . (8)

Naturally, there exists an ambiguity in this solution, since any 3 × 3 invertible matrix A will
satisfy the equality

M̂ Ŝ = M̂ A A−1 Ŝ. (9)

Being A an invertible matrix, it can be shown that it has an QR factorization, i.e, that it can be
factorized as A = QR, where R is a 3 × 3 orthogonal matrix, and Q is a 3 × 3 upper triangular
matrix. This implies that

A A−1 = Q R R−1 Q−1 = Q Q−1, (10)

with the ambiguity being now expressed in terms of the matrix product of an upper triangular
matrix and its inverse.

To resolve the ambiguity, we remark that the initial factorization proposed in Eqs. (7) and (8)
does not guarantee that M̃ is in fact a collection of F 3×3 rotation matrices. Thus the ambiguity
stated in Eq. (10) is solved by finding the matrix Q that will map each 3 × 3 matrix M̂i to a
rotation (orthogonal) matrix Ri. This can be conputed by imposing orthogonality constraints on
M̂iQ, which is done by solving the following set of linear equations, for all the F frames:

mT
ik H mik = 1, (11)

mT
ik H mil = 0, l 6= k, (12)

with k, l = 1, 2, 3, mik and mil are respectively the k-th and l-th row of matrix M̂i, and H = Q QT

is a symmetric matrix (since Q is upper triangular). Q is recovered from H by using Cholesky
decomposition. We thus update the factorization in Eqs. (7) and (8) to:

M = M̂ Q; (13)

S = Q−1 Ŝ. (14)

While some algorithms solve this ambiguity in a frame-by-frame analysis, by using all the data
available in W̃ to compute Q, we are actually taking in consideration all the frames to compute
S. In this way we can find the factors M and S that are more consistent with the whole motion.
Finally, we can reconstruct Ŵ as the product of the two factors estimated by Eqs. (13) and (14).
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2.2 Multiple rigid bodies

When the scene is composed of N rigid objects, moving independently, the considerations
above are valid for each object. The model is thus simply expanded, accommodating the inde-
pendent objects, with S showing a blockwise diagonal structure:

W̄ =
[
M1 M2 . . . MN

]


S1

S2

. . .
SN

 . (15)

In this case, we have rank(W̄) ≤ 3N , when translations for each bodies are not considered.
If we consider translations, each model will increase its rank by 1, leading to rank(W) ≤ 4N .

2.3 Articulated objects

As just seen, when N rigid objects are moving independently, the rank of the measurement
matrix W̄ grows proportionally to N . However if the rigid objects are linked by joints, their
motions are not independent, and there is a loss in the degrees of freedom of the system. This
constraint on the movement manifests itself in the measurement matrix W as a decrease in rank,
see e.g., [35, 37]. We now detail this scenario for systems described by two rigid bodies, linked
by either an universal joint or a hinge joint. The constraints below are easily extended to the
cases of a linked chain of rigid bodies.

2.3.1 Universal joint

By universal joint we mean a joint for which each of the two bodies is at a fixed distance from
the joint center, being the relative position of the bodies constrained. Naturally, their rotations
remaining independent. In mechanics literature, this kind of joint is also termed spherical joint.
A scheme of this joint is presented in Figure 2.

d(1) d(2) 

 

Figure 2: Scheme of a universal joint. The first body is represented by the red points, while the second body is
represented by the blue points. The joint centre is shown as a black point. The 3-vector d(1) stands for the 3D
coordinates of the joint center, in the local coordinate system of the first body. The 3-vector d(2) stands for the 3D
coordinates of the joint center, in the local coordinate system of the second body.

Let d(1) = [u, v, w]T be the 3D coordinates of the joint center, in the local coordinate system
of the first body; −d(2) = [u′, v′, w′]T be the 3D coordinates of the joint center, in the local
coordinate system of the second body; R(1) and R(2) be the 3F × 3 matrices corresponding to
a collection of 3 × 3 global rotation matrices over F frames, for the first and second bodies,
respectively; and t(1) and t(2) be the 3F -vectors corresponding to the global translation vectors
of the first and second bodies, respectively.

8



J. Fayad, A. Del Bue, P. Aguiar

The joint center can thus be seen as a point that belongs to both bodies. In other words, its
position can be described using either the motion equations for the first or the second body. With
these considerations, a geometrical analysis of the joint structure reveals that we can factorize
the measurement matrix W as

W =
[
W(1) W(2)

]
=
[
R(1) R(2) t(1)

]  S(1) D(2)

03×P1 S(2) + D(2)

1T
P1

1T
P2

 , (16)

where W(1) and W(2) are, respectively, the measurement matrices for the first and second body;
D(2) = d(2) 1T

P2
, 1P1 a P1-vector with all entries equal to 1 and 1P2 a P2-vector with all entries

equal to 1, where P1 and P2 are the number of points belonging the first and second bodies,
respectively; and 03×P1 is a 3 × P1 zero matrix. In this case, we have that rank(W) ≤ 7.
Naturally, in order to separate W into W(1) and W(2), we must assume the body segmentation is
known. Details on how to factorize W can be found in Ref. [15].

2.3.2 Hinge joint

In a hinge joint, two bodies can rotate around an axis in such way that the distance to that
rotation axis remains constant. Therefore, their rotation matrices R(1) and R(2) are not completely
independent. A scheme of the hinge joint is presented in Figure 3.

 

x 

d(2) 
d(1) 

Figure 3: Scheme of a hinge joint. The first body is represented by the red points, while the second body is
represented by the blue points. The joint center is shown as a black point. The x-axis represents the rotation axis.
The 3-vector d(1) stands for the 3D coordinates of the joint center, in the local coordinate system of the first body.
The 3-vector d(2) stands for the 3D coordinates of the joint center, in the local coordinate system of the second
body.

We use the same notation as for the universal joint.
By analyzing the geometry of the joint, we see that every vector belonging to any of the two

bodies, that is parallel to the joint axis, must remain so throughout the movement. Without loss
of generality, let us choose an appropriate local coordinate system, where the axis of rotation
of the joint is coincident with the x-axis. To comply with the joint constraints, the first column
of R(1) must be equal to the first column of R(2). We can now define the rotation matrices as
R(1) = [c1 c2 c3] and R(2) = [c1 c4 c5]. In this case, the measurement matrix W is given by

W =
[

c1 c2 c3 c4 c5 t(1)
]


x
(1)
1 · · · x

(1)
P1

x
(2)
1 · · · x

(2)
P2

y
(1)
1 · · · y

(1)
P1

0 · · · 0

z
(1)
1 · · · z

(1)
P1

0 · · · 0

0 · · · 0 y
(2)
1 · · · y

(2)
P2

0 · · · 0 z
(2)
1 · · · z

(2)
P2

1T
P2

1T
P2


, (17)
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Again, details about the factorization of W can be found in Ref. [15].

3 QUASI-RIGID OBJECTS AND WEIGHTED FACTORIZATION

The algorithm described in Section 2.1 solves the problem in closed-form when the observed
body is exactly rigid. When dealing with non-rigid bodies they can still be used as a coarse rigid
approximation of the data. As mentioned in Section 1, the meaningful information about how
the human body articulates is given by modelling the skeleton, which, at this level of analysis,
can be considered rigid. Still, MOCAP systems work with markers placed above the skin, and
they are affected by the relative motions between soft-tissue and bone that happen while the
subject is moving. Dealing with non-rigid bodies is thus one of the main challenges when
developing algorithms for this purpose.

When using an SVD to estimate the motion and shape parameters, the resulting shape will
be the one that minimizes the error in a least-squares sense over all the frames. Nonetheless
this might not be the best representation of the rigid shape since the estimation could be biased
towards the deformation estimation. Inspired by previous approaches [1, 20, 2], what we present
here is an approach that uses a weighted estimation in order to penalize the contribution of the
points which deform most. By doing so we will attenuate the contribution of the deformations,
obtaining a more accurate rigid representation of the body.

3.1 The weighted factorization algorithm

Let us assume that the best global rigid shape is given, and that its registered 3D coordinates
over time are described by a matrix W̄

(r). Let the matrix W̄ represent the data matrix resulting
from tracking the quasi-rigid body with a MOCAP system, also registered. A measure of the
non-rigidity of a given point on the matrix W̄ can be given by how distant its trajectory is from
the best rigid description given by W̄

(r). Based on this idea, we will rearrange the data matrix
defined in Eq. (1) as:

W̃ =


w̄T

11 w̄T
12 . . . w̄T

1P

w̄T
21 w̄T

22 . . . w̄T
2P

...
...

...
w̄T

F1 w̄T
F2 . . . w̄T

FP

 , (18)

where W̃ is an F × 3P matrix, with P is the number of feature points tracked over F frames
by the MOCAP system. The matrix corresponding to the best global rigid shape W̃

(r) will be
arranged similarly as in Eq. (18). The 3D trajectories of a generic point j are thus described in
the F × 3 matrix W̃j defined by:

W̃j =


w̄T

1j

w̄T
2j
...

w̄T
Fj

 , (19)

with j = 1, . . . , P . We define W̃(r)
j as the 3D trajectories of the same generic point j in the best

global rigid shape description. We can now define a non-rigid error matrix Ej as:

Ej = W̃
(r)
j − W̃j, (20)

with Ej being a F × 3 matrix. As described above, this matrix indicates how distant the rigid
and non-rigid trajectories of a generic point j are. Thus, for deformable points, ||Ej|| will be
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higher than for rigid points. A weight matrix that assigns higher weights to rigid points and
lower weights to deformable points can now be defined as:

Cj = cov(Ej)
−1, (21)

as deformable points are bound to originate higher covariance values. Given this weight matrix,
a better rigid description of the deformable body can be found by solving the least-squares
problem given by:

arg min
Mi,sj

F∑
i=1

P∑
j=1

(w̄
(r)
ij − Misj)

T Cj (w̄
(r)
ij − Misj). (22)

What we propose here is a two-step iterative algorithm that, from an initial estimation of the data
for the best rigid shape, will compute a better global rigid shape description based on Eq. (22).
If we have an estimation for W̄(r) the weight matrix Cj can be computed. However, neither W̄(r)

nor Cj are known. Thus, the registered measurement matrix W̃ will be used as an estimation of
W̄

(r). With this, we intend to find the factors M and S that minimize the Frobenius distance of the
measurement matrix to the weighted rigid body description. We will now rewrite Eq. (22) as:

arg min
Mi,sj

F∑
i=1

P∑
j=1

(w̄ij − Misj)
T Cj (w̄ij − Misj). (23)

Still Eq. (23) is not trivial to solve as it is a bilinear minimisation of two matrices. However,
if we first keep constant the values for M, we can find a solution for S by rearranging Eq. (23)
as:

sj = (
F∑

i=1

MT
i Cj Mi)

−1

F∑
i=1

Miw̃ij. (24)

This equation computes S using simple matrix products and the matrix inversion of a small
matrix.

On the other hand, if we assume S fixed , a similar solution can be found for M. Nonetheless,
we must first rearrange Mi into a 9-vector mi defined by:

mi =

 r1i

r2i

r3i

 , (25)

and also rearrange sj into a 3× 9 block diagonal matrix Sj defined by:

Sj =

 sT
j

sT
j

sT
j

 . (26)

Based on Eq. (23) we can now compute each vector mi as:

mi = (
P∑

j=1

ST
j Cj Sj)

−1

P∑
j=1

Sj w̃ij. (27)

Each 9-vector mi can now be rearranged into a 3 × 3 matrix Mi. However there is again no
guarantee that Mi will be a rotation matrix. We chose to project each known affine matrix Mi

11
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into its closest rotation matrix. This can be done optimally [21] by decomposing each matrix Mi

using an SVD (Mi
SV D
= U Σ VT ) and imposing Σ = I3×3, where I3×3 is the identity matrix. If we

denote the projection by M̂i, it can be defined as:

M̂i = U VT . (28)

Eqs. (24) and (27) form an iterative method for the computation of M and S as the output of
one step is the input of the other one. All we need now is an initial estimate of W to compute the
weight matrix Cj , an initial estimate of M and S, and a stoppage criterion.

For the initial estimations of W, M and S we will use the aforementioned rigid body factoriza-
tion defined in Section 2.1. For the stopping criterion, we have chosen to use the convergence
of the Frobenius norm of the global error matrix E defined by:

||E|| = ||[E1 E2 · · · EP ]|| . (29)

Finally the algorithm can be summarized into the following steps:

1. Initialization: Compute the rank− 3 approximation of W and factorize into M and S using
the method described in Section 2.1.

2. With the current estimations of M and S compute the weight matrices Cj using Eq. (21).

3. Using the current estimation of M, compute S by using Eq. (24).

4. Based on the current estimation of S from Step 3, compute M by using Eq. (27).

5. Apply the orthogonality constrains to Mi as defined in Eq. (28).

6. Repeat Steps 2 to 5 until convergence of the Frobenius norm of E is reached.

3.2 Weighted factorization and translation

In Section 3.1 we defined a weighted algorithm to estimate a better rigid representation of the
global shape, based on the registered data. Still, if the deformations are strongly directional (e.g.
muscular contraction) the rigid translation may be biased towards the deformation direction.
Here we present a new version of the weighted factorization algorithm summarized at the end
of Section 3.1, that incorporates an estimation for the translation. Based on Eq. (2) we can
update Eq. (25) to:

mi =


r1i

txi

r2i

tyi

r3i

tzi

 , (30)

where mi is now a 12-vector. The matrix Sj can be accordingly updated as:

Sj =

 sT
j 1

sT
j 1

sT
j 1

 , (31)

12
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where Sj is now a 3 × 12 block diagonal matrix. Now we can rewrite Eq. (27) to use the
unregistered data matrix W:

mi = (
P∑

j=1

ST
j Cj Sj)

−1

P∑
j=1

Sj wij, (32)

where Sj is defined by Eq. (31) and mi defined by Eq. (30). The estimation of the global shape
parameters is still done by Eq. (24) using the registered data matrix W̃. However, since we have
defined a new way to compute the translation, this registration is made by subtracting to every
3D point coordinates at each frame, not the mean of the point cloud, but the new translational
component ti = [ txi tyi tzi ]T extracted from mi as given in Eq. (32). Summarizing, the
weighted algorithm to compute a better representation for the global shape parameters and
estimate the rotations and translations of the motion can be described by the following steps:

1. Initialization: Compute the initial estimations for M, S and t using the rigid body factor-
ization method described in Section 2.1.

2. Use the current estimates of ti for i = 1 · · ·F to register the data matrix W.

3. With the current estimate of M and the registered matrix Ŵ, compute a new estimation for
S using Eq. (24).

4. Based on the estimate of S from Step 3, compute a new M and ti based on Eq. (32).

5. Apply the orthogonality constrains to Mi as defined in Eq. (28).

6. Repeat Steps 2 to 5 until convergence of the Frobenius norm of E is achieved.

3.3 Weighted factorization with occlusion

When using MOCAP systems one of the problems that might occur is the occlusion of the
markers (this problem is also named as the missing data problem). This can happen for several
reasons, such as self-occlusion, markers detaching from the object, etc. When this happens,
there is no information on all the points over all the frames, causing W to have fewer 3D point
coordinates.

However, the algorithm presented in Section 3.1 and Section 3.2 can be easily modified to
handle occlusions, as long as it is assumed to be know exactly which points are missing on a
given frame. Let us define a F × P binary matrix Z such that:

zij =

{
1, if wij is available.

0, if wij is occluded.
(33)

Now all we need to do is use Z to set to zero the contributions of the missing data. This can be
done by updating equations (32) and (24) as:

mi = (
P∑

j=1

zij S
T
j Cj Sj)

−1

P∑
j=1

zij Sj wij; (34)

sj = (
F∑

i=1

zij M
T
i Cj Mi)

−1

F∑
i=1

zij Miw̃ij. (35)

13
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When wij is missing, Ej can still be computed. However, entries corresponding to missing data
will not be used on the computations, making Cj independent of missing data. With this ap-
proach, we simply disregard the contribution of a missing point to the estimation of the factors,
using only the information that is available. The resulting algorithm has the same outline as
the one described at the end of Section 3.2, but with equations (32) and (24) being replaced
respectively by (34) and (35).

4 EXPERIMENTAL RESULTS

4.1 Synthetic Experiments

The weighted factorization algorithm is able to reduce noise and it estimates a more accurate
rigid shape representation of a non-rigid body. To test its performance, we built a synthetic test
representing a cubic object, containing 26 feature points and performing random motions on a
scene. We tested the algorithm with different levels of additive white Gaussian noise (AWGN),
and later performed a statistical analysis of the accuracy of the reconstruction. Finally, we
applied the algorithm to real data obtained by a MOCAP system.

4.1.1 Performance measurements

The cubic object used in the synthetic data is represented in Figure 4, with its feature points
represented in red. Performances were measured based not only on the accuracy of the recon-
struction of the shape matrix, but also on the error over the reconstructed trajectories given the
measured data. Notice that the shape is always recovered up to a rotation matrix Rp, as

W = MS(gt) = MRP RT
PS

(gt) = M̃S(rec), (36)

where S(gt) is the ground truth shape matrix and S(rec) the reconstructed shape matrix. However,
to compare the matrices one needs to register them to the same referential. Rp is computed by
performing a Procrustes analysis on the data [21].

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−2

0

2
−3 −2 −1 0 1 2

Figure 4: MATLAB plots of the cubic object used for the synthetic tests. The synthetic feature points are repre-
sented as red dots. The edges are shown to aid visualisation and they are not included in computations.

Another factor that prevents straight forward comparison between S(gt) and S(rec) is the scale
of the objects. A solution is given by defining lgt as the length of the edge of the ground truth
cubic object. This value is a useful parameter to use with cubic objects as all the edges have
equal length. On the other hand, the reconstructed object is not necessarily cubic. Thus we
define lr as the mean value of the length of all the edges of the reconstructed object. The scaling
factor can now be defined as:

ls =
lgt

lr
. (37)
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Let us also define a residual error matrix E(S) as:

E(S) = S(gt) − R(P ) S(rec). (38)

We can now use equations (37) and (38) to define the measurement of the root means squared
(RMS) error for the global shape matrix as:

ε(S) =

√√√√ 1

P × ls

P∑
j=1

∣∣∣∣∣∣E(S)
j

∣∣∣∣∣∣2, (39)

where
∣∣∣∣∣∣E(S)

j

∣∣∣∣∣∣ represents the error on the global shape for point j. The factor
1

P
is a normalising

factor for the number of points in the shape.
However, this error measurement is still depending on the shape size. In order to have system

independent error measurement, some kind of normalisation must be done. For this purpose,
we chose to normalize the RMS error by the norm of the ground truth shape matrix. We finally
define the error measurement as:

ε(S)
n =

ε(S)

||S(gt)||
. (40)

We defined similarly the error for the data matrix as:

E(W ) = W(gt) − W(rec), (41)

with W(gt) the ground truth data matrix and W(rec) the reconstructed data matrix. The RMS error
for the data matrix can thus be defined as:

ε(W ) =

√√√√ 1

P × F

F∑
i=1

P∑
j=1

∣∣∣∣∣∣E(W )
ij

∣∣∣∣∣∣2, (42)

where
∣∣∣∣∣∣E(W )

ij

∣∣∣∣∣∣ is the residual error for the feature point j at frame i in the global data matrix.

Again, the RMS error is normalized by ||S(gt)||:

ε(W )
n =

ε(W )

||S(gt)||
. (43)

4.1.2 Weighted factorization with additive Gaussian noise

Now that we have defined how to compute the error for the algorithm, we can carry out an
analysis of its performance. Using the test battery we created, we tested the accuracy of retriev-
ing the shape matrix and reconstructing the original motion, defined respectively by Eqs. (40)
and (43), on 1000 completely random motions using 7 different levels of AWGN. The noise
levels were defined based on the variance of the Gaussian distribution, and had the following
values: σ2 = 0, 0.01, 0.05, 0.1, 0.2, 0.4, and 0.6. In order to avoid the algorithm being stuck
on a local minima, we limited the iterations to 500 on every test. To compare the performance,
we also tested the non-weighted factorization approach presented as in Section 2.1 to the same
experiments. The box plot analysis of the error for the shape matrix reconstruction is repre-
sented in Figure 5. The mean error values versus the noise levels for the shape and data matrix
reconstructions can be found in Table 1.
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Figure 5: On the left, the box plot for the analysis of the shape matrix reconstruction using the simple factor-
ization method. On the right the box plot for the analysis of the shape matrix reconstruction using the weighted
factorization method.

Table 1: Mean error values for shape and measurement matrix reconstruction using normal and Weighted Factor-
ization algorithms

Simple Factorization Weighted Factorization
σ2 ε

(S)
n (%) ε

(W )
n (%) ε

(S)
n (%) ε

(W )
n (%)

0 2.24× 10−13 1.31× 10−4 5.16× 10−14 3.16× 10−15

0.01 0.017 0.00057 0.027 0.00040
0.05 0.090 0.028 0.120 0.020
0.1 0.197 0.056 0.217 0.031
0.2 0.491 0.112 0.387 0.076
0.4 1.54 0.229 0.738 0.159
0.6 3.23 0.333 1.13 0.232

In Figure 5 and on Table 1 is shown that while both algorithms, weighted and non-weighted,
find the global solution for the shape matrix in the ideal case (σ2 = 0), their performances vary
when the data is subject to noise. When the variance of the AWGN is small (σ2 = 0.01 and
0.05), the non-weighted algorithm performs better then our weighted approach. The number of
outliers is also higher on the weighted algorithm, suggesting that in those cases the algorithm
may be trapped in local minima. Still, the performance of our weighted algorithm matches the
non-weighted algorithm approximately when σ2 = 0.1, surpassing it for higher noise levels
(σ2 = 0.2, 0.4 and 0.6), both in median error and in number of outliers.

The box plot analysis of the reconstructed data matrix is presented in Figure 6. In this case,
for small levels of noise (σ2 = 0, 0.01, 0.05 and 0.1) the weighted and non-weighted algorithms
have similar performances. Still, for higher noise levels (σ2 = 0.2, 0.4 and 0.6) the weighted
algorithm has, again, a better performance.

The difference between the performances with noisy data is not as significant for the data
matrix as it is for the shape matrix case. This can be explained by the fact that, when applying
the orthogonality constraints to the motion matrix, the simple factorization algorithm finds a
global solution for M (see equation 13). Differently, when data is noisy, it is likely that in several
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frames Mi is not exactly a rotation matrix, thus allowing affine transformations of the shape
matrix. On the other hand, the weighted factorization algorithm requires every matrix Mi to be a
rotation matrix, at the expense of disregarding the continuity of the motion. Still, when higher
levels of noise are used, this algorithm can not only provide a more accurate estimation of W,
but also a more accurate estimation of S.
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Figure 6: On the left, the box plot for the analysis of the data matrix reconstruction using the simple factorization
method. On the right the box plot for the analysis of the data matrix reconstruction using the weighted factorization
method.

4.2 Experiments with real data

We applied the algorithm to real data obtained by MOCAP. By using the weighted factoriza-
tion algorithm presented in Section 3, combined with the extension of the articulated factoriza-
tion algorithms presented in Section 2.3.1 and Section 2.3.2, we were able to compute estimates
for the joint center and joint axis of human articulations. In Figure 7, we present a sequence
of frames from the reconstruction of a jogging sequence. For the hinge joints, we represent the
rotation axis in green; for the universal joints, we represent the joint center in red.

In Figure 8 we present a sequence of a human kicking a ball. Again, the joint axes for
the hinge joints are represented in green, while the joint centers of the universal joints are
represented in red.

Since there is no gold-standard method on determining the real axis and joint centers, we can
only judge them by the graphical representation of the joints. Still, it is clear from Figures 7
and 8 that the reconstructed joint centers and axes are consistent with what is expected from
those articulations. Both data sets are available from the Carnegie Mellon University MOCAP
Database (http://mocap.cs.cmu.edu/).

The algorithm was applied to a sequence in which deformations due to muscle contractions
are more clearly visible. The results of this sequence are presented in Figure 9.

As pointed out, it is only possible to make a qualitative evaluation of the results, since there
is no ground truth data. Still, it is visible in Figure 9 that the recovered shape (represented by the
red plus sign) do not present deformations when compared to the original sequence (represented
by the blue circles). Furthermore, the joint axis reconstruction for the hinge joint used to model
the elbow shows consistency with the analyzed motion.
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Figure 7: Multiple joint estimation for a jogging sequence. Knee and elbow were modelled as hinge joints. Their
axis are represented in green. The ankle was modelled as an universal joint. Its center is represented in red.
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Figure 8: Multiple joint estimation of a subject kicking a ball. Color coding as in Figure 7.

5 CONCLUSIONS AND FUTURE WORK

We presented algorithms to create articulated 3D human models from MOCAP data. These
algorithms are based on an extension to 3D of the SfM algorithms originally developed for 2D
images. We introduced a weighted factorization method, which penalizes large deformations,
in order to retrieve a more accurate rigid approximation of non-rigid bodies. Our algorithm
was validated through extensive testing with synthetic data and proved to be more accurate than
the existent non-weighted factorization approaches. This method was further used to model
articulated bodies and tested with real data of human motion, leading to promising results.

Our work provides an insight about the potential applications of SfM algorithms in the field
of biomechanics. Although not thoroughly validated with clinical analysis, our weighted factor-
ization approach gives promising indications towards its applicability. Naturally, there is room
for improvement and research paths to follow, e.g., the validation in a clinical scenario or the
search for automatic segmentation, as a fully automatic method for building articulated models
for the human body would require.
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Figure 9: Upper and lower arm of a human subject. Blue circles show MOCAP data and red crosses show the
reconstructed 3D shape. The hinge joint axis is shown in green.
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