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ABSTRACT: Human 3D models and motion analysis are nowadays used in a wide range of 
applications, spanning from medicine to security and surveillance. In this work, we will focus on the 
creation of biomechanical models for clinical and sports analysis.  

Nowadays, motion capture systems accurately measure the 3D coordinates of reflective markers place 
above the skin. Here we present a general framework to automatically recover joint parameters 
modelling the human articulations from the 3D coordinates of a point cloud provided by motion 
capture systems. Additionally, we describe an approach capable of recovering a more accurate rigid 
body description of non-rigid bodies. We then propose a new quadratic model to explain soft-tissue 
artefacts formed as a natural extension of the existing rigid body models. Finally we use synthetic 
data to assess the performance of the algorithms and to compare the results with ground truth data. 
Qualitative analyses of real data sequences over different motion capture databases are also 
presented. 

1 INTRODUCTION  
Computational models of human 

articulations are fundamental to perform an 
accurate analysis of the mechanical motion of 
a human body. Applications of these models 
span various fields, ranging from engineering 
to life sciences, where the analysis of human 
motion is crucial to perform accurate clinical 
analysis and credible animations of skeleton 
models [1]. In this work we will focus on the 
task of building biomechanical models of the 
human body from motion capture (MOCAP) 
systems. 

MOCAP systems are devices able to 
recover a 3D description of the motion of a 
shape (see [2] for a complete review of the 
state of the art). The output of these systems is 
the 3D coordinates of feature points over time.  

 

One of the main problems of existing 
methods for joint parameter estimation based 
on MOCAP systems is their limited 
repeatability [1]. This is a strong setback on 
their applications as accuracy and repeatability 
is of extreme importance in clinical analysis. 
Another major source of error in these 
analyses are soft-tissue artefacts [3, 4, 5].  The 
relevant information about articulations used 
to build human models is given by the 
skeleton. At this scale, bones can be 
considered to be rigid. However, the markers 
tracked by MOCAP systems are placed above 
the skin. As there is an inherent relative 
motion between the soft-tissues surrounding 
bone and bone itself, data artefacts arise and 
performance is degraded.  
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A key step in joint parameter estimation is 
the model calibration [1]. To obtain clinically 
relevant data, the model must be subject 
specific. Most of current methods use some 
sort of regression technique to fit the models to 
the subjects, limiting the method to the quality 
of the regression. On the other hand, a great 
number of these methods require markers to be 
placed at specific anatomical landmarks. Such 
positioning is affected by human errors and it 
has the further problem of not always being 
possible to locate those landmarks. Thus, 
methods that do not rely on specific landmarks 
locations would be preferred. 

In this work we propose methods to semi-
automatically compute human skeleton models 
while dealing with the current limitations of 
the existent methods. Using recent 
developments in Structure from Motion (SfM) 
algorithms that allow retrieval of articulated 
structures from a set of 2D images [6, 7], we 
propose a method to extract joint parameters 
based on the 3D coordinates provided by the 
MOCAP systems. This approach does not 
depend on the process by which the data was 
acquired. The single assumption here is the 
initial assignment of each 3D point to the 
respective body segment. Inspired by previous 
works on the field of computer graphics [8, 9] 
we present a new quadratic model for non-
rigid bodies. This model expands the existing 
linear model for rigid bodies by including 
quadratic terms, which allows us to model 
non-rigid bodies. By modelling non-rigid 
bodies we will be able to separate the rigid 
contribution (skeleton) from the non-rigid one 
(soft-tissue) and provide more accurate 
estimates for the joint models. 

2 RIGID BODY FACTORIZATION 

Factorization methods for SfM are a family 
of image based algorithms that model moving 
objects as a product of two factors: motion and 
shape. Our factorization approach assumes a 
set of P 3D points being tracked over F frames 
by a MOCAP system. This method relies on 

the key fact that 3D trajectories of points 
belonging to the same body share the same 
global properties. Thus, we can define a 
motion matrix W containing the 3D 
coordinates of P points over F frames as: 
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where Ri is a 3 × 3 rotation matrix, Ti is a 3 × 
P matrix representing the translation and S is a 
3 × P matrix containing the local coordinates 
of the P points. The translational component 
can be computed as the coordinates of the 
centroid of the point cloud at each frame Wi. 
Thus it can be easily eliminated by registering, 
at each frame, the point cloud to the origin. In 
this scenario it frequently occurs that instead 
of W we consider a registered version Ŵ 
defined as:  

  (2) Ŵ=W -T = M S

2.1 INDEPENDENT BODY MOTION  

Considering the model defined in eq. (1) 
for a single body, it follows that rank(W) ≤ 4 
[10]. On the other hand if we defined the 
system without the translational component as 
in eq. (2) we have that rank(Ŵ) ≤ 3. However, 
when performing real experiments, there will 
always be noise involved which will increase 
the rank of Ŵ.  

Let us consider the rank-3 truncated SVD W = 
U3 Ʃ3 V3

T. This decomposition is not only 
useful for noise reduction, as we apply an ideal 
rank constraint to the data matrix, but it can 
also be used as the starting point for the 
factorization algorithm. Considering the 
expected dimensions of M and S, we can 
compute a first estimation as and 

. However there exists an 
ambiguity in this factorization as 

. Since this factorization 

does not guarantee that  is in fact a 
collection of F rotation matrices, the 
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ambiguity is solved by finding the matrix Q 
that will transform each 3×3 matrix  in a 
rotation matrix Ri. This can be achieved by 
imposing  the orthogonality of Ri (see [10] for 
details).  

M̂i

2.2 UNIVERSAL JOINT 

By universal joint, we mean a joint in 
which each of the two bodies is at a fixed 
distance to the joint centre. In this scenario, the 
relative position of the bodies is constrained 
but their rotations remain independent. A 
scheme of this joint is presented in Fig. 1. 

 
Fig. 1  Scheme of a universal joint. The 3-vectors d(1) 

and -d(2) are respectively the 3D coordinates of the joint 
centre in the local referential of the first and second 
body. 

Let d(1) = [u, v, w]T be the 3D coordinates 
of the joint centre in the local referential of the 
first body; -d(2) = [u', v', w']T be the 3D 
coordinates of the joint centre in the local 
referential of the second body; R(1) and R (2) 
the 3F × 3 matrices corresponding to a 
collection of F 3 × 3 global rotation matrices; 
t(1) and t(2) the 3F-vectors corresponding to the 
translation vectors. 

The joint centre can thus be seen as a point 
that belongs to both bodies and so its position 
can be described using the motion equations 
for the first and second body. With these 
considerations, a geometrical analysis of the 
joint reveals that: 

 . (3) (1) (1) (1) (2) (2) (2)R d t R d t+ = − +

Thus we can state that both 4D subspaces have 
a 1D intersection. The result of this 
consideration is that rank(W) ≤ 7, one 
dimension less when comparing to the case of 
two independent where rank(W) ≤ 8. We are 

now able to factorize the measurement matrix 
as: 
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where W(1) and W(2) are respectively the 
measurement matrices for the first and second 
body; D(2) = d(2). 1P2

T, with 1P2 is a P2-vector 
with all entries equal to 1, where P2 is the 
number of points belonging to the second 
body. The same applies for 1P1

T. Notice that in 
order to separate W(1) from W(2), we must 
assume the body segmentation to be known. 

To recover the structure of the joint one 
needs to find d(1) and d(2). From eq. (3) we can 
write: 
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where S(1) is a 3 × P1 global shape matrix for 
the first body and S(2) is a 3 × P2 global shape 
matrix for the second body. The initial step in 
the factorization is again done by performing 
an SVD and by keeping the first six 
components: 

 1/ 2 1/ 2 (1) (2) (1) (2)
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However [V(1) | V(2)] is a dense matrix while 
the registered structure matrix block diagonal. 
If we define an operator Nl(.) that returns the 
left null-space of its argument, we can define a 
6 × 6 transformation matrix TU such that we 
can recover S by pre-multiplying it with TU : 
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To keep the original data unaltered, we do 
[M(1) M(2)] = TU

-1 [U(1) | U(2)]. Note that the 
ambiguity seen in Section 2.1 is still present 
for each body, being no guarantee that M(1) or 
M(2) are a collection of 3 × 3 rotation matrices. 
Due to the specific configuration of S seen in 



eq. (9), there is no linear method to impose the 
orthogonality constraints to M while assuring 
that structure for S. We thus treat each body 
separately as done in Section 2.1. 

2.3 HINGE JOINT 

In a hinge joint, two bodies can rotate 
around an axis such that the distance to that 
rotation axis is constant. Therefore their 
rotation matrices R(1) and R(2) are not 
completely independent. A scheme of the 
hinge joint is presented in Fig. 2. 

 
Fig. 2 Scheme of a hinge joint. The 3-vectors d(1) and 
-d(2) are respectively the 3D coordinates of the joint 
centre in the local referential of the first and second 
body. The hinge axis is represented by the x-axis. 

In this kind of joint, any vector belonging 
to any of the two bodies that is parallel to the 
joint axis must remain so throughout the 
movement. Let us choose an appropriate local 
referential, without loss of generality, where 
the axis of rotation of the joint is coincident 
with the x-axis. To comply with the hinge joint 
constraint, the first column of R(1) must be 
equal to the first column of R (2). Thus, we 
define the rotation matrices as R(1) = [c1 c2 c3] 
and R(2) = [c1 c4 c5]. 

    All the points belonging to the rotation axis 
must fulfil both movement conditions. Thus, 
there is a 2D intersection of the original 4D 
subspaces. Since the joint constraint applies 
only on the rotation factor, we will consider 
the registered form of the problem. This will 
result in a rank-5 matrix Ŵ defined by: 
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Once again we use the truncated SVD of Ŵ as 
the first step on the parameter estimation. The 
process is the same as the one used in Section 
2.2 for the hinge joint, except now [U(1) |U(2)] is 
a 3F × 5 matrix, and [V (1) | V(2)] is a  
5 × (P1 + P2) matrix. As the first row of S is 
dense, we define TH as a transformation matrix 
such that: 
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where bT = [1 0 0 0 0 0]. By pre-multiplying 
[V(1) | V(2)] with TH we leave the first row 
intact and we zero-out some entries in order to 
get the structure presented in eq. (8). As seen 
before, we also post-multiply [U(1) |U(2)] with 
TH. Again we must impose orthogonality 
constraints on the recovered motion matrices 
in order to solve the ambiguity. This is done in 
the same way as in Section 2.2 for the 
universal joint. In this case, the joint centre can 
lie anywhere on the axis of rotation. Still it 
must obey the motion equations for both 
bodies. Combining eq. (5) with the properties 
of R(1) and R(2) for the hinge joint, the joint 
parameters can now be estimated by: 
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3 WEIGHTED FACTORIZATION 

When dealing with non-rigid objects, 
factorizing with the previous algorithms can be 
seen as averaging the shape throughout the 
frames, resulting in an attenuation of the 
deformations. Inspired by [11], we present an 
approach that uses a weighted SVD in order to 
penalise the contribution of the points which 
deform most. By doing so we will attenuate 
the deformations contribution and we will 
attain a more accurate rigid representation of 
the body. Let us consider a rearrangement of 
the data matrix as: 
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which is now an F × 3P matrix. Let us also 
define Ŵ(r) as the best rigid description of a 
given non-rigid body. The distance between 
the best rigid description of a point j and the 
position estimated by the rigid body 
factorization can be given by ||Ej|| = ||Ŵj

(r) - 
Ŵj||. The deviation from the best description 
can be seen as a measure of the non-rigidity of 
the point. Thus a weighted factorization 
method can be created as a minimization of the 
following cost function: 
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where Cj = cov(Ej)-1 is the weight matrix. 
However we do not know the best rigid 
description of a body, nor do we know the 
weight matrix. Thus we created a double step 
iterative algorithm that computes the motion 
and shape parameters in one step, the weight 
matrix on the other (for more details, see [12]). 
This algorithm is initialized by the result of the 
rigid body factorization.  

4 QUADRATIC MODEL FORMULATION 

Our model expands the rigid body 
formulation defined by eq. (1), to a 
formulation that uses linear, quadratic and 
crossed-terms of the previous rigid shape 
matrix, while keeping the same factorization-
based approach. Let us define the new shape 
matrix as in eq. (14), where S(Γ) is the 3 × P 
linear shape matrix, S(Ω) the 3 × P quadratic 
shape matrix and S(Λ) is the 3 × P cross-values 
shape matrix. Given this new structure of S, 
the data matrix can be defined as in eq. (15), 
where where Ri is a 3 × 3 rotation matrix, and 
Γi is a 3 × 3 transformation matrix associated 
with linear deformations, Ωi is a 3 × 3 
transformation matrix associated with 
quadratic transformations and Λi is a 3 × 3 
transformation associated with cross-values 
deformations. 
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Note that the deformations are defined in the 
local referential of the body. In this case the 
model is described by a rank(Ŵ) ≤ 9. For the 
sake of notation simplicity, we will only 
consider one frame of the motion, and the i 
index will be dropped. However, results can be 
easily extended to a general case. 

As every full-rank matrix can be expressed by 
an RQ decomposition, decomposing [Γ, Ω, Λ] 
should yield an identity matrix in the 
orthogonal factor in order to avoid ambiguities 
in the rotation. This implies that Γ must be an 
upper triangular matrix. In order to study the 
role of the quadratic deformation parameters, 
we applied different transformations to a 
synthetic cubic object. From the deformation 
observed, some instances of Mi are not 
consistent with what is expected when 
modelling human body parts. For instance, 
deformation types that involve interpenetration 
of the shapes, or a twisting motion are not 
realistic. Based on these considerations, we 
defined the deformation matrices to be 
constrained as: 
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The parameters for this model are estimated 
using a global non-linear optimization model 
generically termed bundle-adjustment. The 



model is initialized with the results of the 
weighted factorization (for more details see 
[12]). 

5 EXPERIMENTAL RESULTS 

We tested the weighted factorization 
algorithm with synthetic data, using noise as a 
simulation of deformations on a rigid body 
(for more details, see [12]). Qualitatively, we 
can see from Fig. 3 that the joint centres and 
joint axis resulting from the parameters of the 
weighted factorization method are consistent 
with the observed motion. 

 
Fig. 3 Multiple joint parameter estimation, during a 
jogging motion. Knee and elbow articulations were 
modelled as hinge joints; the ankle joint was modelled as 
a universal joint. 

Performance analysis on the reconstruction 
using the quadratic model showed 
improvements of 1 to 2 orders of magnitude 
(for more details, see [12]). Qualitatively, we 
can see in Fig. 4 the coherent reconstruction of 
the joint axis and joint centre. 

 
Fig. 4 Multiple joint parameter estimation on a flexing 
arm. The elbow is modelled as a hinge joint and the 
shoulder as a universal joint. 

CONCLUSIONS 

In this article we presented a method to 
automatically create 3D articulated human 
body models, assuming motion segmentation 
is known, based on 3D MOCAP systems. Our 
algorithms provide a more accurate rigid 

description of non-rigid bodies. Additionally, 
we presented a new quadratic model for non-
rigid bodies, which can describe soft-tissue 
deformations. 

Future research lines include incorporating 
automatic motion segmentation based on the 
motion capture data, a thoroughly validation of 
these models and a refined study of the 
quadratic model for non-rigid bodies in order 
to fully understand its applicability in this 
scenario. 
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