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Abstract. We address the problem of segmenting out moving objects
from video. The majority of current approaches use only the image mo-
tion between two consecutive frames and fail to capture regions with
low spatial gradient, i.e., low textured regions. To overcome this limi-
tation, we model explicitly: i) the occlusion of the background by the
moving object and ii) the rigidity of the moving object across a set of
frames. The segmentation of the moving object is accomplished by com-
puting the Maximum Likelihood (ML) estimate of its silhouette from the
set of video frames. To minimize the ML cost function, we developed a
greedy algorithm that updates the object silhouette, converging in few
iterations. Our experiments with synthetic and real videos illustrate the
accuracy of our segmentation algorithm.

1 Introduction

Content-based representations for video enable efficient storage and transmis-
sion as well as powerful non-linear editing and manipulation [1]. The automatic
segmentation of an image into regions that undergo different motions is a key
step in the generation of content-based video representations. In this paper we
address the problem of segmenting objects that exhibit a rigid motion across a
set of frames.

A number of approaches to the segmentation of moving objects are found
in the video coding literature. In fact, efficient video coding reduces temporal
redundancy by predicting each frame from the previous one through motion
compensation. Regions undergoing different movements are then compensated in
different ways, according to their motion, see for example [2] for a review on very
low bit rate video coding. The majority of these approaches are based on a single
pair of consecutive frames and try to capture the moving object by detecting the
regions that changed between the two co-registered images, see for example [3].
Since these methods were developed for image coding rather than for inferring
high level representations, they often lead to inaccurate segmentation results. In
particular, they fail to segment moving objects containing low textured regions
because these regions are considered as unchanged, being then missclassified as
belonging to the background.
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The more recent interest on the so-called layered representations for video
[4,5,6,7,8] has motivated further work on motion-based segmentation. A number
of approaches in the computer vision literature uses other cues besides motion,
such as color and edges [9], or regularization priors [10]. In general, these methods
lead to complex and time consuming algorithms.

Few approaches to motion segmentation use temporal integration, see
[11,12,13,14] as examples. In [11,12], the images in the sequence are averaged
after appropriate registration according to motion of the object. The silhouette
of the moving object is estimated by detecting the regions of the current frame
that are similar to the integrated image. This method overestimates the object
silhouette unless the background is textures enough to blur completely the in-
tegrated image. The method in [13,14] exploits the occlusion of the background
by the moving object—it estimates the silhouette of the object by integrating
over time the intensity differences between the object and the background. This
method succeeds even in low textured / low contrast scenes but it requires that
the background is completely uncovered in the video clip.

We propose a new segmentation algorithm that exploits occlusion and rigid-
ity without the drawback of the one in [13,14]. As in [13,14], we formulate the
segmentation problem as the Maximum Likelihood (ML) estimation of the pa-
rameters involved in the video sequence model: the motions of the background,
the motions of the object, the silhouette of the object, the intensity levels of
the object (the object texture), and the intensity levels of the background (the
background texture). The algorithm of [13,14] minimizes the ML cost function
by computing, in two alternate steps, the estimates of: i) the object silhouette
and ii) the background texture. We avoid the need to compute the background
intensity levels at all pixels (and thus the requirement that the background is
completely uncovered) by using the closed-form expression for the ML estimate
of the background texture to derive the ML cost function as a function of the ob-
ject silhouette alone. We develop a greedy algorithm that updates the silhouette
converging in a small number of iterations.

Although our method is particularly tailored to the segmentation of rigid
objects, it turns out also very useful to handle non-rigid ones. In fact, when
processing videos showing non-rigid moving objects, the tracking procedures
that cope with flexible silhouettes need an adequate initialization. Our method
provides such an initialization because it will compute the best rigid interpreta-
tion of the scene, which suffices to segment out the moving objects. Finally, we
remark that although our derivations assume scalar-valued images, e.g., inten-
sity of grey-level images, they are straightforwardly extended to vector-valued
images, e.g., multispectral images.

1.1 Paper Organization

In section 2 we formulate the segmentation problem as ML inference. Section 3
describes the ML cost function minimization procedure. In section 4 we outline
how the algorithm is initialized. Section 5 contains experiments and section 6
concludes the paper.
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2 Problem Formulation: Segmentation as Maximum
Likelihood Inference

We consider 2D parallel motions, i.e., all motions (translations and rotations)
are parallel to the camera plane. We represent those motions by specifying
time varying position vectors. These position vectors code rotation-translation
pairs that take values in the group of rigid transformations of the plane, i.e.,
the special Euclidean group SE(2). The vector pf represents the position of
the background relative to the camera in frame f . The vector qf represents
the position of the moving object relative to the camera in frame f . The im-
age obtained by applying the rigid motion coded by the vector p to the im-
age I is denoted by M(p)I, i.e., pixel (x, y) of the image M(p)I is given by
M(p)I(x, y) = I(fx(p; x, y), fy(p; x, y)), where fx(p; x, y) and fy(p; x, y) repre-
sent the coordinate transformation imposed by the 2D rigid motion coded by p.
We denote the inverse of M(p) by M(p#) and the composition of M(a) with
M(b) by M(ab), i.e., we have M(pp#)I = I. For more details, see [13,14].

2.1 Observation Model

We consider a scene with a moving object in front of a moving camera. The
pixel (x, y) of the image If belongs either to the background B or to the object O.
The image If is then modelled as

If =
{
M(p#

f )B
[
1 −M(q#

f )T
]

+ M(q#
f )O M(q#

f )T + Wf

}
H, (1)

where we make If (x, y)=0 for (x, y) outside the region observed by the camera.
This is taken care of in (1) by the binary mask H whose (x, y) entry is such
that H(x, y) = 1 if pixel (x, y) is in the observed image If or H(x, y) = 0 if
otherwise. Naturally, H does not depend on the frame index f , since the mo-
tion of the camera is captured as background motion. In (1), T is the moving
object silhouette—T(x, y) = 1 if the pixel (x, y) belongs to the moving object
or T(x, y)=0 if otherwise—and Wf stands for the observation noise, assumed
Gaussian, zero mean, and white.

2.2 Maximum Likelihood Inference

Given a set of F video frames {If , 1 ≤ f ≤ F}, we want to estimate the back-
ground texture B, the object texture O, the object silhouette T, the camera
poses {pf , 1 ≤ f ≤ F}, and the object positions {qf , 1 ≤ f ≤ F}. Using the ob-
servation model in (1) and the Gaussian white noise assumption, ML estimation
leads to the minimization over all parameters of the functional

C (B,O,T {pf} , {qf}) =
∫ ∫ F∑

f=1

{
If (x, y)

−M(p#
f )B(x, y)

[
1 −M(q#

f )T(x, y)
]

−M(q#
f )O(x, y) M(q#

f )T(x, y)
}2

H(x, y) dx dy, (2)
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where the inner sum is over the full set of F frames and the outer integral is
over all pixels. For details, see [13,14].

3 Maximum Likelihood Estimation: Greedy Algorithm

The minimization of the functional C in (2) with respect to (wrt) the set of con-
structs {B,O,T} and to the motions {{pf} , {qf} , 1 ≤ f ≤ F} is a highly com-
plex task. To obtain a computationally feasible algorithm, we decouple the esti-
mation of the motion vectors from the determination of the constructs {B,O,T}.
This is reasonable from a practical point of view and is well supported by exper-
imental results with real videos. We perform the estimation of the motions on
a frame by frame basis by using known motion estimation methods [15]. After
estimating the motions, we introduce the motion estimates into the ML cost C
and minimize wrt the remaining parameters, i.e., wrt the silhouette T of the
moving object, the texture O of the moving object, and the texture B of the
background.

We express the estimate Ô of the moving object texture and the estimate B̂
of the background texture in terms of the object silhouette T. By minimizing C
in (2) wrt the intensity value O(x, y), we obtain the average of the pixels that
correspond to the point (x, y) of the object. The estimate Ô of the moving object
texture is then

Ô = T
1
F

F∑
f=1

M(qf )If . (3)

Minimizing the ML cost (2) wrt the intensity value B(x, y), we get the es-
timate B̂(x, y) as the average of the observed pixels that correspond to the
pixel (x, y):

B̂ =

∑F
f=1

[
1 −M(pfq

#
f )T

]
M(pf )If

∑F
i=f

[
1−M(pfq

#
f )T

]
M(pf )H

. (4)

The estimate B̂ of the background texture in (4) is the average of the observa-
tions If registered according to the background motion pi, in the regions {(x, y)}
not occluded by the moving object, i.e., when M(pfq

#
f )T(x, y) = 0. The

term M(pf )H provides the correct averaging normalization in the denominator
by accounting only for the pixels seen in the corresponding image.

We now replace the estimates Ô and B̂, given by expressions (3,4), in the
cost function (2), obtaining an expression for the ML cost function C in terms
of a single unknown—the moving object silhouette T, C(T). This is an huge
difference from the approach in [13,14], where only the estimate Ô is replaced
in (2), leading to an expression for the ML cost function C in terms of B and T,
i.e., C(B,T). In [13,14], the ML cost is minimized by using a two-step iterative
algorithm that computes, in alternate steps, the minimum of C(B,T) wrt B
for fixed T, and the minimum of C(B,T) wrt T for fixed B. This last step
requires that (the previous estimate of) the background texture B is known at
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all pixels, in particular it imposes that all background pixels occluded by the
moving object are observed at least in one frame of the video sequence. Thus,
the method of [13,14] does not deal with videos where the moving object only
partially un-occludes the background, i.e. where some region of the background
is occluded at all frames. In contrast, we propose to replace the expression of the
background estimate B̂ in terms of the object silhouette T into the ML cost C
in (2), leading to an expression for C(T) that is suitable to minimize wrt to the
moving object silhouette T alone.

Replacing the estimates of O and B, given by expressions (3) and (4), into
the ML cost function (2), we get, after simple manipulations:

C (T) =
∫ ∫ F∑

f=1

{
If (x, y)

−
∑F

i=1

[
1−M(p#

f piq
#
i )T

]
M(p#

f pi)Ii

∑F
i=f

[
1 −M(p#

f piq
#
i )T

]
M(p#

f pi)H

[
1 −M(q#

f )T(x, y)
]

−M(q#
f )T

1
F

F∑
i=1

M(q#
f qi)Ii

}2

H(x, y) dx dy . (5)

We minimize this resulting cost C(T) wrt its only argument T by using a greedy
approach, in the spirit of several schemes that were successfully used to segment
single images according to attributes like intensity, color, or texture, see the orig-
inal energy minimization formulation of [16] and approaches that use variational
methods [17], levels sets [18], partial differential equations [19], snakes [20,21], or
active contours [22]. In our approach, given a previous estimate T̂n of the mov-
ing object silhouette, the algorithm updates the estimate by including in T̂n+1

the neighboring pixels of T̂n that lead to a decrease of the cost C and excluding
the neighboring pixels that lead to an increase of C.

4 Initialization: Motion Detection

To initialize the segmentation algorithm, we need an initial guess of the sil-
houette of the object. Our experience has shown that the algorithm converges
to the correct solution even when the initial guess of the silhouette is very far
from the optimal estimate, for example when the initial guess is a single pixel
in the interior of the object. However, the impact of a computationally simple
initialization algorithm is high because, as it always happens with iterative al-
gorithms, the closer is the initial guess to the correct solution, the faster is the
convergence.

We compute the initial guess by using motion detection. To improve over
simply detecting the motion between two frames, we merge silhouettes computed
from several pairs of frames. The following example illustrates the procedure.
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4.1 Synthetic Sequence 1

We synthesize a video sequence using an object texture that contains regions of
almost constant intensity, i.e., regions with low texture. Fig. 1 represents three
frames of that synthetic video that shows a static background and a moving car.
Note that, due to the low textured regions of the car, motion segmentation is
not trivial for this video sequence, as referred in section 1.

Fig. 1. Synthetic video sequence 1

Fig. 2. Initial estimate of the silhouette of the moving car in the video in Fig. 1

In Fig. 2 we illustrate the initialization procedure for the first 20 frames of
the video of Fig. 1. The top row contains pairwise estimates of the silhouette.
These estimates are very incomplete due to the low texture of the car. The
bottom image represents the initial guess of the silhouette obtained by merging
the pairwise estimates. We see that this initial guess is more accurate than the
pairwise estimates but it still misses a considerable number of pixels. Note that
“filling-in” the regions that are missing in this initial guess by using spatial
rules, e.g., with morphological operations, is not trivial and requires the manual
adaptation of several parameters in general dependent of the video sequence
being processed.
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5 Experiments

We report the results of our algorithm when segmenting two synthetic image
sequences and one real video sequence.

In Fig. 3 we represent (left to right, top to bottom) the evolution of the
estimate of the moving object silhouette, superimposed with its texture, for the
synthetic video of Fig. 1. We see that, even for this low textured object, the
estimate converges to the correct silhouette of the car. To better illustrate the
behavior of the algorithm, we represent in Fig. 4, from left to right, the evolution
of the estimate of the background texture. The left image of Fig. 4 shows the
estimate at an early stage of the iterative process, i.e., it shows an estimate that
is blurred due to the still inaccurate estimate of the object silhouette. The right
image of Fig. 4 demonstrates how the final estimate of the background texture
is correct, i.e., it is not blurred by the object texture. Note that, since in this

Fig. 3. Evolution of the estimate of the silhouette of the moving car for the video
sequence in Fig. 1

Fig. 4. Evolution of the estimate of the background texture for the video sequence in
Fig. 1
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Fig. 5. Synthetic video sequence 2. Note that, since parts of the background are not
seen at any frame (they are occluded by the moving object at all frames), the method
of [13,14] can not be used to segment this video sequence.

Fig. 6. Background estimates for the video sequence in Fig. 5. The parts of the back-
ground that are not seen in any frame of the video sequence, are represented in black.

Fig. 7. Evolution of the estimate of the moving object silhouette for the video se-
quence in Fig. 5. In spite of the incomplete observation of the background, our method
succeeded in segmenting accurately the moving object.

video clip the background was completely uncovered, the final estimate in the
right image in Fig. 4 can be completely computed, i.e., computed at all pixels.
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Fig. 8. Real video sequence

Fig. 9. Evolution of the estimate of the background texture from the video in Fig 8

Fig. 10. Evolution of the estimate of the silhouette of the moving car from the video
in Fig 8
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5.1 Synthetic Sequence 2

We now synthesize a video sequence that shows a moving object with a more
challenging shape. It also exhibits low textured regions. Fig. 5 shows three frames
of this sequence. In this video the synthetic motion of the object is such that
the background is not completely uncovered. The algorithm proposed in [13,14]
to minimize the ML cost would then fail to segment this moving object. This
is because the algorithm of [13,14] requires building a complete estimate of the
background at intermediate steps, see discussion in section 1.

In Figs. 6 and 7 we represent the evolution of the estimates of the background
texture and the moving object silhouette, respectively. Note that the background
texture in the right image of Fig. 6 is not complete—we represent in black the
pixels that, due to the occlusion by the moving object, were not observed in the
video clip. As expected, our method is not affected by this covered background
areas—we see from the bottom right image of Fig. 7 that our algorithm succeeded
in accurately segmenting out the moving object in this video clip.

5.2 Real Video Sequence

We use a real video sequence that shows a moving car. Fig. 8 shows three frames
from this video clip. Figs. 9 and 10 represent the evolution of the algorithm,
demonstrating its good performance. See the evolution of the estimates of the
background texture, in Fig. 9, and of the moving object silhouette, in Fig. 10.

6 Conclusion

We proposed a new algorithm to segment moving objects in video sequences.
The algorithm exploits the rigidity of the object silhouette and the occlusion of
the background by the moving object. Our experimental results illustrate the
behavior of the algorithm and demonstrate its effectiveness.
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