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Orientation in Manhattan: Equiprojective Classes
and Sequential Estimation
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Abstract— The problem of inferring 3D orientation of a cam-
era from video sequences has been mostly addressed by first
computing correspondences of image features. This intermediate
step is now seen as the main bottleneck of those approaches. In
this paper, we propose a new 3D orientation estimation method
for urban (indoor and outdoor) environments, which avoids
correspondences between frames. The scene property exploited
by our method is that many edges are oriented along three
orthogonal directions; this is the recently introduced Manhattan
world (MW) assumption.

The main contributions of this paper are: the definition of
equivalence classes of equiprojective orientations; the introduc-
tion of a new small rotationmodel, formalizing the fact that the
camera moves smoothly; and the decoupling of elevation and
twist angle estimation from that of the compass angle. We build
a probabilistic sequential orientation estimation method, based
on an MW likelihood model, with the above listed contributions
allowing a drastic reduction of the search space for each
orientation estimate. We demonstrate the performance of our
method using real video sequences.

Index Terms— Camera orientation, sequential estimation,
Manhattan world assumption, camera calibration.

I. I NTRODUCTION

Applications in areas such as digital video, virtual reality,
mobile robotics, and visual aids for blind people, require
efficient methods to estimate the 3D pose of a video camera
from the images it captures.

The most popular approaches to 3D pose estimation are
feature-based. In the multi-view case, this requires finding
correspondences between features [2], [3], [4]. In the single-
image case, typical methods involve feature grouping [5], [6],
[7]. Naturally, in both cases, feature detection (e.g., corners,
edges) is an indispensable first step. However, it is widely
accepted that automatic feature matching or grouping are
serious bottlenecks. Moreover, by basing all inference on
a usually small feature set (relative to the whole image),
potentially useful information may be prematurely discarded.

In the multi-view case, methods that estimate the 3D struc-
ture directly from the image intensity values,i.e., without
involving feature detection and matching, have been proposed
[8], [9]. These approaches lead to complex time-consuming
algorithms and strongly rely on the assumption that the
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brightness pattern remains (approximately) constant from view
to view.

Recently, a very different approach has been proposed
which avoids dealing with features in the single-image case,
by using prior knowledge about the structure of the scene.
Specifically, in typical indoor and outdoor urban scenes, many
edges are aligned with one of the three directions defining an
orthogonal coordinate system. Under this so-calledManhattan
world (MW) assumption, Coughlan and Yuille [10], [11] used
Bayesian inference to estimate the rotational component of
the 3D pose (i.e., 3D orientation) of the camera, with respect
to this coordinate system, from a single image. The MW
assumption was also used by [12] for camera calibration and
extended by [13] to more general urban environments.

In this paper, we propose a new method for 3D orientation
estimation from image sequences in MW environments. The
novelties in our method are the following:
• while in [10], [11], the MW prior is used to perform

3D orientation estimation from asingleimage, we extend
its use forsequencesof images;

• we introduce a newsmall rotation (SR) model that
expresses the fact that the video camera undergoes a
smooth 3D motion;

• by defining the 3D orientation in terms of the equivalence
classes of equiprojective orientations, we reduce the space
in which the solution has to be searched;

• we show how the estimate of the elevation and twist
angles can be computed independently of the compass
angle, thus reducing the computational load.

The paper is organized as follows. In Section II, we re-
view the geometry of camera orientation. The concept of
equiprojective orientations and the small rotation (SR) model
are introduced in Section III and IV, respectively. Section
V describes the sequential estimation method. Experimental
results are shown in Section VI and Section VII concludes
the paper.

II. CAMERA ORIENTATION AND VANISHING POINTS

Let (x,y, z) and (n,h,v) be the Cartesian coordinate
systems of the MW and the camera, respectively. These are
related through the equation(n,h,v)T = O · (x,y, z)T ,
whereO ∈ SO(3) is the orientation matrix,i.e., the camera
orientation. In the following text, we often denote orientation
asO ≡ O(α, β, γ), expressing the fact that it is parameterized
with three angles:α, thecompass(azimuth) angle, correspond-
ing to rotation about thez axis; β, the elevationangle above
the xy plane; andγ, the twist about the principal axis (see
Fig. 1).
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Fig. 1. Parameterization of the camera orientation. Left: compass angleα
and elevation angleβ. Right: twist angleγ represented on the image plane.
(Note: the image plane is placed in front of the optical center.)

The principal pointP lies on the sphere with center at the
optical center0 (chosen as the origin of the MW reference
frame) and radius equal to the focal lengthf . Its 3D coordi-
nates are related with the compass and elevation angles via

P = (Px, Py, Pz)T = f(cos α cos β, sin α cosβ, sin β)T .
(1)

The orientationO(α, β, γ) can be determined by finding where
the vanishing points (VPs) of the MW axes project on the
image plane [2], [3]. In fact, let(h,v) be the reference frame
of this plane and let the 2D principal pointp be its origin,
i.e., p = (0, 0)T . Assuming a pinhole and radial-distortion-free
camera, the 2D coordinates,vx, vy, vz, of the VP projections
are related withO(α, β, γ) via

vx = f Rγ

(
− tan α

cos β ,− tan β
)T

,

vy = f Rγ

(
cot α
cos β ,− tan β

)T

,

vz = f Rγ (0, cot β)T
,

(2)

whereRγ is the twist matrix,

Rγ =
[

cos γ sin γ
− sin γ cos γ

]
. (3)

In the above, Cartesian coordinates are used only for sim-
plicity; vanishing points at infinity can be handled by using
homogeneous coordinates.

III. E QUIPROJECTIVEORIENTATIONS

Consider the problem of determining the camera orientation
from the set of three VPs on a single image. Since it is not
known which VP corresponds to which MW axis, the problem
has multiple solutions. This ambiguity motivates the concept
of equiprojectivity.

Definition 1 (equiprojective orientations):Denote by
V(O) = {vx,vy,vz} the set of VPs determined by an
orientation O. Two orientations O and O∗ are termed
equiprojective iff they have identical sets of VPs, i.e., iff
V(O) = V(O∗).

Equiprojectivity, as just defined, is reflexive, symmetric, and
transitive; therefore, it is an equivalence relation. The follow-
ing result provides a way to find the complete equivalence
class of a given orientation,i.e., the set of all orientations
which are equiprojective with it.

Proposition 2: Let O be an orientation andP =
(Px, Py, Pz)T the corresponding principal point. The equiv-
alence class ofO always has24 elements. EachO(n) =
O(αn, βn, γn), for n = 1, ..., 24, corresponds to a principal
point P(n) related toP throughP(n) = MnP, whereMn is a
3×3 signed permutation matrix (i.e., entries in{−1, 0, 1}, with
one nonzero entry per row and per column) withdetMn = 1.
The anglesαn and βn are obtainable fromP(n) according
to (1); the twist anglesγn depend onO(α, β, γ) andP(n) as
follows:

γn =





γ ⇐ MT
nz = (0, 0, 1)T (P

(n)
z =Pz)

γ ± π ⇐ MT
nz = (0, 0,−1)T (P

(n)
z =−Pz)

γ + atantan α
sin β

± π ⇐ MT
nz = (1, 0, 0)T (P

(n)
z =Px)

γ + atantan α
sin β

⇐ MT
nz = (−1, 0, 0)T (P

(n)
z =−Px)

γ − atancot α
sin β

± π ⇐ MT
nz = (0, 1, 0)T (P

(n)
z =Py)

γ − atancot α
sin β

⇐ MT
nz = (0,−1, 0)T (P

(n)
z =−Py).

Proof: Given an orientationO, the corresponding image
plane can be seen as the plane that is tangent to the sphere
{w : ||w|| = f} in P. The intersection of each MW axis
x, y, and z with the image plane defines its respective VP.
Hence, a necessary condition for an orientationO(n) to be
equiprojective withO is that their corresponding principal
points (respectivelyP(n) and P) have the same coordinates
up to permutations and/or sign changes, which is equivalent
to the existence of a signed permutation matrixMn satisfying
P(n) = MnP. Any permutation matrix satisfiesdetMn =
±1; however, not all matrices of this kind yield a solution.
Particularly, ifP andP(n) differ by a single permutation or by
a single sign change, the triangles formed by the VPs at each
case have opposite orientations,i.e., they are “reflected”. Since
the composition of two reflections is the identity, the number
of permutations plus the number of sign changes defined by
any matrixMn must beeven; this is equivalent to imposing
detMn = 1. Because the number of possible permutations
in a 3-vector is3! = 6, and the number of sign changes is
23 = 8, we can combine permutations and sign changes in
48 different ways; since half of these correspond to “mirror
images”, the cardinality of the set{Mn} is 24 (see illustration
in Fig. 2).

For eachMn, we are able to know which VP inV(O)
corresponds to which VP inV(O(n)). Namely, for everyi, j ∈
{x, y, z}, the VPvi andv(n)

j correspond iffjT Mni = ±1, i.e.,

iff Pi = ±P
(n)
j . Taking j = z, we have:

γn−γ =

{
][vzpvi] ⇐ zT Mni = 1 (P (n)

z =Pi)
][vzpvi]± π ⇐ zT Mni = −1 (P (n)

z =−Pi).

Finally, from (2)-(3), we obtain (2).
The concept of equiprojectivity is useful in any problem of

orientation estimation, or VP location, since it allows reducing
the search spaces. This was also pointed out in [12], where an
algorithm was proposed to round a quaternion to a canonical
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Fig. 2. 3D locations of the principal points of equiprojective orientations, on
the octants of a sphere with radiusf . Here, we have two equivalence classes:
the white and the black points. Black points correspond to “mirror images”
of white points.

value inSO(3)/C, whereC is the octohedral group of cube
symmetries. We formalize this search space reduction in the
following proposition (proved in the Appendix).

Proposition 3: Every orientationO has an equiprojective
O∗ = O(α∗, β∗, γ∗) such that:

α∗ ∈
]
−π

4
,
π

4

]
, β∗ ∈

]
−π

4
,
π

4

]
, and γ∗ ∈ ]−ϕ,ϕ] , (4)

whereϕ = atan
√

2 ≈ 54.7◦. An equivalent statement is: for
any camera orientationO, there exists at least one VP inside
the region of the image plane shown in Fig. 3.
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Fig. 3. Representation of the image plane. It is guaranteed that there exists
at least one vanishing point in the shaded region.

IV. SMALL ROTATIONS MODEL

Let us now assume that the camera is moving and ac-
quiring a sequence of frames{I1, . . . , IN}. We denote by
Ok(αk, βk, γk) the orientation at thek-th frame. The sequence
of orientations{O1, ..., ON} depends only on the rotational
component of the motion. In typical video sequences, the
camera orientation evolves in a smooth continuous way. We
formalize this property by introducing thesmall rotations(SR)
model, next described.

Definition 4: Let Rk(ρk, ek) be the rotational component
of the camera motion between the(k−1)-th andk-th frames,
whereρk and ek denote the angle and the axis of rotation,
respectively. Independently ofek, we say that the camera is

consistent with the SR(ξ) model iff there exists a small fixed
angleξ such that|ρk| ≤ ξ for any k.

In our experiments, we have used a SR(5◦) model, which
implies that for a sampling rate of12.5 Hz the rotation angle
is always less than62.5◦ in each second; this is an intuitively
reasonable assumption.

The following proposition expresses how the variations of
the compass, elevation and twist angles between consecutive
frames are bounded due to the SR model.

Proposition 5: If the camera motion is consistent with the
SR(ξ) model, then, at any framek, the following bounds hold:

• The elevation variation,∆β = βk − βk−1, satisfies

|∆β| ≤ ξ. (5)

• The compass variation,∆α = αk − αk−1, satisfies

|∆α| ≤ aξ(βk, βk−1) ≡{
acos

(
1− cos |∆β|−cos ξ

cos βk−1 cos βk

)
⇐ |βk−1+βk| ≤ π−ξ

π
2 ⇐ otherwise.

(6)

If Ok−1 is in the region defined by(4), then, indepen-
dently ofβk and βk−1:

|∆α| ≤ acos(2 cos ξ − 1). (7)

• The twist variation,∆γ = γk − γk−1, satisfies

|∆γ| ≤ gξ(βk−1), (8)

wheregξ is an even function that increases in the subdo-
main [0, π

2 ] from gξ(0) = ξ to gξ(π
2 ) = π. If Ok−1 is in

the region defined by(4), then |βk−1| ≤ π
4 and

|∆γ| ≤ gξ

(π

4

)
, (9)

Fig. 4 plotsgξ in the subdomain[0, π
4 ], for ξ = 5◦; this

value ofξ leads to|∆γ| ≤ 7.08◦.
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Fig. 4. Maximum variation for the twist angle as function of the initial
elevation angle, using a SR(5◦) model.

Proof: Rk(ρk, ek) is the composition of two rotations:
Rk1(ρk1 , ek1) transforming the principal pointPk−1 in Pk,
followed by Rk2(ρk2 , ek2) that twists the camera through the
principal axis. Composing these two rotations, and taking into
account thatek1⊥ek2 , we obtaincos ρk

2 = cos ρk1
2 cos ρk2

2 .
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Therefore, the SR(ξ) condition |ρk| ≤ ξ implies both
cos ρk1

2 ≥ cos ξ
2 and cos ρk2

2 ≥ cos ξ
2 , i.e., |ρk1 | ≤ ξ and

|ρk2 | ≤ ξ. Sincecos ρk1 = f−2 PT
k Pk−1, from (1) we obtain

cos ρk1 = cos βk cosβk−1 cos∆α+sin βk sin βk−1 ≤ cos∆β.
This suffices to prove (5). Now, rewriting the latest inequality
for cos∆α and simplifying leads to (6). IfOk−1 is in the
region defined by (4), then|βk + βk+1| ≤ π/4 + π/4 + ξ ≤
π−ξ. The maximum value of∆α occurs forβk = βk−1 = π

4 ,
which leads to (7).

For ∆γ, we couldn’t find an simple closed-form expression
for gξ(βk−1). Instead, sinceρk is a function ofβk−1, βk, ∆α
and ∆γ, we can studygξ assuming thatαk−1 = γk−1 = 0.
Spherical symmetry implies thatgξ is an even function; also,
a simple geometric argument shows thatgξ(βk−1) increases
with |βk−1|. Writing Rk as a composition of the three indi-
vidual compass, elevation and twist rotations, and using the
formula for the product of quaternions, yields

|∆γ| = 2 acos
AB − C

√
B2 + C2 −A2

B2 + C2
, (10)

where A = cos ρk

2 , B = cos ∆α
2 cos ∆β

2 and C =
sin ∆α

2

(
cos ∆β

2 sin βk − cos βk sin∆β
)

. Numerical maxi-
mization of (10) w.r.t.∆α andβk (for ρk = ξ) approximates
gξ.

If the orientationOk−1 lies in the minimal region defined
by (4), the search space forOk is significantly reduced by the
bounds imposed by Proposition 5. In particular, withξ = 5◦,
we have|∆α| ≤ 7.08◦, |∆β| ≤ 5◦ and|∆γ| ≤ 7.08◦. If Ok−1

does not lie in this minimal region, there is an equiprojective
orientation that does. This shows how the SR model and the
equiprojective orientations can be used together to reduce the
search space.

V. SEQUENTIAL ORIENTATION ESTIMATION

A. Estimation Criterion

To estimate the sequence of camera orientations
{O1, . . . , ON} from the observed image sequence
{I1, . . . , IN}, we adopt a probabilistic sequential estimation
framework, making use of the MW and SR assumptions.

The MW assumption states that the images contain many
edges consistent with thex, y andz axes; hence, the statistics
of the image intensity gradient∇Ik of each image carry
information about the corresponding camera orientationOk

via a likelihood functionP (∇Ik|Ok) [10], [11]. In this paper,
we embed this idea in a sequential estimation framework,
using amaximum a posteriori(MAP) criterion:

Ôk = arg max
Ok

{
log P (∇Ik|Ok) + log P (Ok|Ôk−1)

}
, (11)

where the priorP (Ok|Ôk−1) penalizes large changes between
consecutive orientation estimates.

A fully Bayesian sequential estimation approach would
require computationally expensive Monte Carlo methods [14],
[15]. Our results show that the simplified criterion in (11) leads
to good results and, by exploiting the equiprojectivity results
and the SR assumption introduced in the previous section, can

be implemented in near real time. An alternative scheme was
proposed in [13], in whichOk is estimated via an iterative
(EM) algorithm initialized withÔk−1.

B. Likelihood Function

In this subsection, to simplify the notation, we will omit the
time indexk, and derive the likelihood functionP (∇I|O) for
a generic image. LetEu = (Eu, φu) denote the element of
the image gradient∇I at pixel u, whereEu is the gradient
magnitude andφu the gradient direction. As in [10], [11], the
likelihood function is derived as follows:

• Each pixelu has a class labelmu ∈ {1, 2, 3, 4, 5}. Pixels
in classes 1, 2, 3 belong to edges consistent with thex,
y, z axes, respectively. Pixels in class 4 are on edges not
consistent with those axes. Non-edge pixels are in class
5. These classes have prior probabilities{P (mu)} (we
adopt the values used in [10], [11]).

• The gradient magnitude and direction are conditionally
independent, given the class label. Naturally, the gradi-
ent magnitude is also conditionally independent of the
camera orientation and of the pixel location. Thus,

P (Eu|mu, O,u) = P (Eu|mu)P (φu|mu, O,u), (12)

where

P (Eu|mu) =
{

Pon(Eu) , if mu 6= 5
Poff (Eu) , if mu = 5,

(13)

andPon(Eu) andPoff(Eu) are the probability mass func-
tions of the quantized gradient magnitude,conditionedon
whether pixelu is on or off an edge, respectively. These
probabilities are learned off-line.

• Let θx(O,u), θy(O,u), θz(O,u) be the gradient di-
rections that would be ideally observed at locationu
if mu = 1, 2, 3, respectively. The gradient direction
probability function is

P (φu|mu, O,u)=





Pang(φu−θx(O,u)) ⇐ mu =1
Pang(φu−θy(O,u)) ⇐ mu =2
Pang(φu−θz(O,u)) ⇐ mu =3
U(φu) ⇐ mu =4, 5,

(14)
where

Pang(t) =
{

1−ε
2τ ⇐ t ∈ [−τ, τ ]

ε
π−2τ ⇐ t ∈ ]− π/2,−τ [ ∪ ]τ, π/2],

and U(·) is the uniform pdf on]−π
2 , π

2 ]. In our experi-
ments, we useε = 0.1, andτ = 4◦.

• Finally, the joint likelihood is obtained by marginalizing
(summing) over all possible models at each pixel, and
assuming independence among different pixels:

P (∇I|O) = P ({Eu} |O) =
∏
u

5∑
mu=1

P(Eu|mu) P(φu|mu,O,u) P (mu) . (15)
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C. Locating the Estimates

The maximization in (11), with the likelihood function
(15), is a 3-dimensional optimization problem with respect
to α, β, and γ. We propose an approximate solution which
decouples the problem into two simpler steps: a 2-dimensional
optimization w.r.t.β and γ, followed by a one-dimensional
search w.r.t.α. This approximation is supported on the fact
that the vanishing pointvz does not depend on the compass
angleα, as is clear from (2).

In the first step, we estimateβ andγ, for framek, according
to (

β̂k, γ̂k

)
= arg max

β,γ

{
log P ({Eu}k |β, γ) +

log P (β, γ|β̂k−1, γ̂k−1)
}

, (16)

where the likelihoodP ({Eu}k |β, γ) is a version of (15)
which only models direction information of those edges con-
sistent with thez axis. More specifically, instead of (14), we
use here

P (φu|mu, β, γ,u) =
{

Pang(φu − θz(β, γ,u)) ⇐ mu = 3
U (φu) ⇐ mu = 1, 2, 4, 5.

(17)

Notice that the use of a uniform distribution is simply a
way of ignoring angle information from all pixels but those
corresponding to thez axis (mu = 3), when estimatingβk and
γk; it doesn’t mean that those angles are actually uniformly
distributed.

P (β, γ|β̂k−1, γ̂k−1) is a truncated bivariate Gaussian with
mean [β̂k−1, γ̂k−1]T , defined over the regionβ ∈ ]β̂k−1−
ξ, β̂k−1+ξ] andγ ∈ ]γ̂k−1−gξ(β̂k−1), γ̂k−1+gξ(β̂k−1)]. This
prior formalizes the SR assumption (see (5) and (8)) as well
as angle variation smoothness. The variance of this Gaussian
controls the tradeoff between the smoothness of the estimated
sequence of angles and the accuracy of this estimates. In the
first frame, the prior is flat over the entire domain(β, γ) ∈
]−45◦, 45◦]× ]−54.7◦, 54.7◦], according to (4).

Given β̂k and γ̂k, we then estimate the compass angleαk

using

α̂k = arg max
α

{
log P ({Eu} |α, β̂k, γ̂k)+

log P (α|α̂k−1, β̂k−1, β̂k)
}

, (18)

where the priorP (α|α̂k−1, β̂k−1, β̂k) is a truncated Gaus-
sian with meanα̂k−1, defined over the interval]α̂k−1 −
aξ(β̂k, β̂k−1), α̂k−1 + aξ(β̂k, β̂k−1)] (see (6)). For the first
frame, the prior is flat over]−45◦, 45◦]. The maximizations
in (16) and (18) are carried out by exhaustive search.

If a given estimatêOk(α̂k, β̂k, γ̂k) is located outside of the
minimal region defined in (4), we replace it by an equipro-
jective orientation inside that region. As explained in the last
paragraph of subsection IV, this allowsaξ(β̂k, β̂k−1) to be less
than7.1◦, hence keeping a small search space. As a final step,
at each framek, we select an orientation from the equivalence
class ofÔk, such that the resulting sequence satisfies the SR
model.
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Fig. 6. Top: frames 20, 30, 40, and 50 of another video sequence. Bottom:
camera angle estimates.

VI. EXPERIMENTS

The algorithm was tested with outdoor MPEG-4 video
sequences, acquired with a hand-held camera. Although the
sequences are of low quality due to radial distortion and sev-
eral over- and under-exposed frames, our algorithm was able
to successfully estimate the camera orientation, as illustrated
in Fig. 5.

The images in Figs. 6 and 7 show frames from two other
sequences. Notice that the algorithm is able to estimate the
correct orientation, despite the many edges not aligned with
the MW axes (e.g., people in Fig. 7). The plots in the same
figures represent the estimates of the orientation angles, for
these two sequences. Note that the estimates on the plot of
Fig. 7 are slightly noisier than those in Fig. 6, due to the lower
image quality. The smoothness of these estimates is controlled
by the prior variances referred in Subsection V-C; here, these
variances are the same for both sequences and the three angles.
Of course, there is a tradeoff between smoothness and ability
to accurately follow fast camera rotations.

Typical processing time for each(288×360)-pixels frame
is below one second, on a 3.0 GHz Pentium IV, using a MAT-
LAB implementation. The only effort made to speed up the
computation was the exclusion of non-relevant pixels by non-
maxima suppression followed by thresholding of the gradient
magnitude. We are currently working on a C implementation
to achieve frame-rate.

VII. C ONCLUSION

We have proposed a probabilistic approach to estimating
camera orientation from video sequences of urban scenes.
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Fig. 5. Orientation estimates (superimposed cubes represent the estimated MW axes) for the first and several other frames of a video sequence.
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Fig. 7. Top: frames 110, 130, 150, and 170 of a third video sequence.
Bottom: camera angle estimates.

The method avoids standard intermediate steps such as feature
detection and correspondence, or edge detection and linking.
Experimental results show that the method is able to handle
low-quality video sequences, even with many spurious edges.

APPENDIX

Here we prove Proposition 3. From (1) – (2), we have (for
i, j ∈ {x, y, z})

vT
i vj =

{
f2

(
f2

P 2
i
− 1

)
⇐ i = j

−f2 ⇐ i 6= j,
(19)

which gives us both the Euclidean distancedi = (vT
i vi)1/2

between pointsvi and p = (0, 0)T , and the angleθij =
acosv

T
i vj

didj
formed by the two lines[pvi] and[pvj ], with i 6= j.

Consider now the diskD with radiusf centered atp, i.e.,
D = {(u, v) ∈ R2 : u2 + v2 ≤ f2}. We havevi ∈ D iff
di ≤ f , which, by (19), is equivalent toP 2

i ≥ f2/2. Since
P 2

x + P 2
y + P 2

z = f2, the conditionP 2
i ≥ f2/2 implies that

P 2
j ≤ f2/2 for anyj 6= i, which means that there cannot exist

more than one VP in the interior of diskD. Furthermore, the
three VPs are all in the exterior or at the boundary ofD iff
P 2

i ≤ f2/2, for i ∈ {x, y, z}.
To complete our proof, we need the following intermediate

result:

Proposition 6: Any two VPsvi and vj , with i 6= j, verify
cos θij ≤ 0. Furthermore, ifvk ∈ D, with k 6= i and k 6= j,
thencos θij ≥ − 1

3 .

Proof: The first statement comes directly from (19).
To prove the second statement, we obtainmin cos θij =
− f2

min didj
, w.r.t. the principal point coordinatesPi and Pj ,

over the domain defined byP 2
i + P 2

j ≤ f2/2. The minimum
occurs for|Pi| = |Pj | = f

2 with value−1/3.

Since 1
2acos(− 1

3 ) = atan
√

2 ≈ 54.7◦, the shaded area in
Figure 3 is a simple consequence of Proposition 6. To show
(4), consider an orientationO and let vi be a VP in this
shaded area. Proposition 2 then guarantees the existence of
an equiprojective orientationO∗, satisfying: (i) v∗z = vi,
and (ii) dx ≤ dy. From (2) – (3) we have, due to (i), that
β∗ ∈ ]−π/2, π/2] and γ∗ ∈ ]−atan

√
2, atan

√
2
]
, and due to

(ii), that α∗ ∈ ]−π/2, π/2].

REFERENCES

[1] A. Martins, P. Aguiar, and M. Figueiredo. Navigating in Manhattan:
3D orientation from video without correspondences. InProc. IEEE Int.
Conf. on Image Processing, Barcelona, Spain, 2003.

[2] O. Faugeras.Three-Dimensional Computer Vision. MIT Press, Cam-
bridge, MA, 1993.

[3] R. Hartley and A. Zisserman.Multiple View Geometry. Cambridge
University Press, 2000.



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2005 (ACCEPTED) 7

[4] J. Mundy and A. Zisserman, editors.Geometric Invariants in Computer
Vision. MIT Press, Cambridge, MA, 1992.
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