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Abstract—Factorization algorithms are increasingly popular to
recover 3D rigid structure from video. In this paper, we analyze
the rank 1 factorization algorithm to determine what are the most
suitable 3D shapes or the best 3D motions to recover the 3D struc-
ture from the 2D trajectories of the features. We show that the
shape is best retrieved from orthogonal views aligned with the
longest and smallest axes of inertia of the object.

I. INTRODUCTION

Virtual reality systems demand efficient and cheap ways to
obtain 3D models of real world objects. Human operators can
build 3D models of artificial objects in a manual way but this
isn’t practical for applications requiring 3D photographies of
real objects. Active sensing systems such as the laser range
finder are accurate but expansive. This paper addresses the au-
tomatic recovery of 3D models from ordinary digital video.
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The strongest cue to recover 3D information from the
2D video is the motion induced in the image plane, so that the
task of recovering 3D structure is usually referred to as struc-
ture from motion (SFM). Among the approaches available, the
factorization method introduced in the early nineties [1] is com-
mon because of its robustness. It captures the rigidity of the
3D shape in an algebraic way – it recovers the 3D structure by
factoring a measurement matrix that is rank 3 in a noiseless sit-
uation. In reference [2], we exploit a degree of freedom not
taken advantage of before – the choice of the reference view –
and present a rank 1 factorization algorithm to solve the rigid
SFM problem. Besides being computationally simpler than the
original rank 3 factorization method, our approach also suc-
ceeds where the original one fails – the limiting case when the
3D shape is close to being a planar shape.

This paper is concerned with the following question: which
3D shapes are easier and what 3D motions are better suited in
the SFM problem. We address this issue through analysis of
the rank 1 factorization algorithm. Our conclusions are that the
“easier” (normalized) 3D shapes are those with a large exten-
sion along an arbitrary direction in the 3D space, i.e., 3D shapes
with an axis of small inertia, and the “best” 3D motions are the
ones that provide: i) a reference view aligned with the axis of
smallest inertia and ii) remaining views orthogonal to this axis.
The orthogonality between the views of the optimal 3D mo-
tion sequence is in agreement with the optimal placement of the
views in classic photogrammetry where 3D shape is recovered
from calibrated cameras. Since computing 2D image motion
(feature correspondences) between images with such a wide
baseline is a complex task, to take advantage in practice of our
conclusions, we move the camera from the reference view to

the orthogonal direction in a smooth way. This enables simple
feature tracking approaches.
Paper organization Section II overviews the rank 1 factoriza-
tion approach. In section III, we analyze the performance of the
algorithm. Section IV describes experiments that illustrate our
theoretical analysis and section V concludes the paper.

II. SFM: RANK 1 FACTORIZATION

We describe the object shape by the positions {xn, yn, zn}
in 3D of n = 1 . . . N feature points. We show in [2] that the
feature coordinates along the camera plane {xn, yn} are known
from their projection onto the reference image, usually taken as
the first frame; the 3D shape is determined simply by the un-
known depth {zn, n = 1 . . . N}. The 3D motion of the camera
is represented by a set of f = 2 . . . F translation-rotation pairs
that code the camera pose in each of F−1 frames with respect
to its pose in the reference frame f =1. The translational com-
ponent of the 3D motion is easily obtained from the centroid of
the projections of the features points [1]. After compensating
for the 3D translation, the only unknowns in the 3D motions are
the 3D rotations at each frame.

The relation between the 2D projections of the features and
the 3D structure parameters is written in matrix format as [1]

R = MS
T , (1)

where: R is the 2(F − 1) × N observation matrix that col-
lects the 2D trajectories of the projections of the features; M

is the 2(F − 1) × 3 motion matrix that collects the 3D rota-
tion matrices that code the unknown camera poses; and S is
the N × 3 shape matrix that collects the 3D coordinates of the
features. The two first columns of S are the known vectors
x = [x1 . . . xN ]T and y = [y1 . . . yN ]T , and the third col-
umn is the vector z = [z1 . . . zN ]T that defines the 3D shape.
The rank 1 factorization algorithm estimates the the M and z

from R in two steps: the decomposition stage solves the uncon-
strained bilinear problem in (1); and the normalization stage
applies the constraints imposed by the pairwise orthonormality
of the rows of the motion matrix M [2].
Decomposition stage We define

M = [M0, m3] and S = [x, y, z] = [S0, z] , (2)

where the matrices M 0 and S0 contain the first two columns
of M and S, respectively, the vector m3 is the third column
of M , and the vectors x, y, and z are the columns of S. Now
decompose the depth vector z into the component S0b that be-
longs to the space S0 spanned by the columns of S0 and the
component a that belongs to the orthogonal complement S⊥

0
,

z = S0b + a, with a
T
S0 = [0, 0] . (3)



The linear least squares (LS) solution for M 0 is, see [2],

M̂0 = RS0

(
S

T
0 S0

)
−1

−m3b
T . (4)

We replace M̂0 in (1) and define the matrix R̃ as

R̃ = RΠS⊥
0

= m3a
T , (5)

where ΠS⊥
0

is the orthogonal projector onto the space S⊥
0

.

The solution for the vectors m3 and a in (5) is obtained from
the rank 1 matrix that best approximates R̃. We get

R̃ ' uσv
T , m̂3 = αu, â

T =
σ

α
v

T , (6)

where σ is the largest singular value of R̃, u and v are the corre-
sponding left and right singular vectors, and α is a normalizing
scalar different from zero.
Normalization stage We collect the parameters α and b =
[b1 b2]

T into the parameter vector α = [α bT ]T . The con-
straints that come from the structure of the matrix M can be
written after some algebra in matrix format as

Ξε (α) = ξ, (7)

where the 3× 1 vector ε (α) is

ε (α) =
[
αb

T α2(1 + ||b||2)
]T

, (8)

and the 3(F − 1) × 1 vector ξ and the 3(F − 1) × 3 matrix Ξ

depend on the known entities R,S0, and u.
We compute α from the LS solution of the system of 3(F−1)

equations (7), i.e., we minimize the cost function

C
[
ε (α)

]
=

[
Ξε (α)− ξ

]T [
Ξε (α)− ξ

]
. (9)

The LS solution for the parameters is obtained by inverting the
defining relations for the entries of the vector ε leading to

|α̂| =
√

ε3LS − ε2
1LS − ε2

2LS , b̂1 = ε1LS/α̂, b̂2 = ε2LS/α̂.
(10)

Clearly these solutions exist and make sense if and only if
ε3LS > ε2

1LS − ε2
2LS . We discuss in section III when this fails.

III. ANALYSIS OF THE FACTORIZATION ALGORITHM

We study the behavior of the decomposition and normaliza-
tion stages of the rank 1 factorization method. We start by ana-
lyzing the accuracy of the rank 1 approximation in the decom-
position stage. Then, we discuss the situations that may cause
the algorithm of the normalization stage to fail.

A. Influence of the 3D structure on the rank 1 approximation

The decomposition stage of section II estimates the vec-
tors m3 and a up to a scale parameter α by factoring the ma-
trix R̃, see expression (6). The decomposition stage determines
thus the 1D linear subspaces where the estimates of the motion
vector m3 and shape vector a live. We study how the 3D rigid
shape and 3D motion impact the estimation error of these sub-
spaces. In particular, we ask the question “given a 3D shape,

what is the best 3D motion, i.e., what is the sequence of 3D po-
sitions that leads to the smaller estimation error for the shape
and motion subspaces?”

The error in estimating these subspaces depends inversely on
the ratio between the singular value of the deterministic com-
ponent of R̃ and the singular value of its noise component. As-
suming we have no control over the noise, which comes from
the noisy output of the feature tracking algorithms, the error in
estimating the subspaces decreases with the singular value of
the deterministic component of R̃ = m3a

T , which equals the
product ‖m3‖‖a‖. We now investigate the issue of maximizing
‖m3‖ and ‖a‖ for a given 3D rigid shape by manipulating the
relative motion between the camera and the object. We assume
that the object is stationary, only the camera moves.
Maximizing ‖m3‖ The third column m3 of the motion ma-
trix M collects the entries izf and jzf of the rotation matrices
that orient the camera coordinate system relative to the object
coordinate system, i.e., it collects the z-component of orthonor-
mal pairs {if , jf},

m3 =
[

iz2 jz2 iz3 jz3 · · · · · · izF jzF

]T
. (11)

Each pair of entries {izf , jzf} is constrained by

2 ≤ f ≤ F : i2zf + j2

zf ≤ 1 (12)

because the vectors if and jf are orthogonal and have unit
norm. The equality in (12) occurs when the z-component kzf

of the third vector kf of the orthonormal reference sys-
tem {if , jf ,kf} is zero, i.e., when the optical axis of the cam-
era is perpendicular to the z-axis. Since we made the coordinate
systems to coincide in the first frame, the condition kzf = 0
means that the camera in frame f points in a direction that is
perpendicular to the direction it pointed in frame 1. The mag-
nitude of the vector m3 in (11) is then maximized by making

2 ≤ f ≤ F : kzf = 0, (13)

i.e., by pointing the camera in instants f = 2 . . . F in direc-
tions perpendicular to the direction of the optical axis in the
reference frame f = 1. This is intuitively pleasing: the un-
known z-coordinates of the feature points are most accurately
estimated from their projections onto planes that are parallel to
the z-axis, i.e., planes that are orthogonal to the image plane in
the reference view. Further, since the analysis did not restrict in
any way the 3D shape of the object, we conclude that the opti-
mal position of the camera for all frames after frame 1 does not
depend on the particular object shape.
Maximizing ‖a‖ The vector a, see (3), is the component of
the relative depth vector z that belongs to the orthogonal com-
plement S⊥

0
of the space spanned by the vectors x and y, i.e.,

a = ΠS⊥
0

z. (14)

The magnitude of a is

‖a‖2 = ‖ΠS⊥
0

z‖2 = ‖z‖2 − z
T
S0

(
S

T
0 S0

)
−1

S
T
0 z. (15)



Since the last term of (15) is non-negative, the magnitude ‖a‖
increases with the magnitude ‖z‖ of the relative depth vector z

and with the degree of orthogonality between the vector z and
the vectors x and y in matrix S0. The choice of the first view,
the reference view, affects the magnitude ‖a‖ in (15) because
it determines the object coordinate system and so, affects S0

and z in the shape matrix S.
To make explicit the influence of the reference view on the

shape matrix S, we start with the SVD of S

S = USΣSV
T
S . (16)

The freedom of choice of the reference view enables us to work
with a shape matrix S∗ that is obtained from S by rigidly rotat-
ing all the 3D feature points,

S
∗ = SΘ, (17)

where the rotation matrix Θ appears on the right side of S be-
cause Θ acts on the rows of S. Since Θ is a unitary matrix, we
use (16) to express the SVD of S∗ as

S
∗ = USΣSV

T
SΘ. (18)

The magnitude ‖a‖ in (15) is maximized when the third col-
umn z of S∗ is orthogonal to the first two and its norm ‖z‖ is
the largest possible. Since the columns of US in (16) and (18)
are orthonormal vectors u1, u2, and u3, the choice of Θ must
be such that z = σimaxuimax where σimax is the largest singular
value in ΣS in (16) and (18), and uimax the corresponding sin-
gular vector. Assuming that the singular values in ΣS are non-
decreasingly ordered, an optimal Θ is such that V T

SΘ = I . In
this case σimax = σ3. Since V S is unitary, an optimal solution
for the rotation matrix Θ is then

Θ = V S . (19)

This solution is not unique. The condition z = σimaxuimax =
σ3u3 restricts only two of the three degrees of freedom of Θ.
The third degree of freedom, a rotation between the vec-
tors {u1,u2} and {x,y} does not affect the magnitude ‖a‖
in (15), ‖a‖=‖z‖=σ2

3
.

With the optimal rotation matrix Θ in (19), the shape ma-
trix S∗ is simply given by

S
∗ = USΣS =

[
σ1u1 σ2u2 σ3u3

]
, (20)

i.e., the optimal choice for the reference view corresponds to
aligning the camera optical axis, the z-axis, with the object axis
of smallest inertia (in this case, the inertial moment wrt the z-
axis is given by σ2

1
+ σ2

2
).

In what respects to the object shape, we conclude that the
larger is the largest singular value σimax of the 3D shape ma-
trix S, the more accurate is the rank 1 subspace estimation, i.e.,
the “easier” 3D shapes are those with a large extension along
an arbitrary direction in the 3D space.

B. Normalization failure

If εLS = [ε1LS, ε2LS, ε3LS]
T determined by the LS solution of

the system (7), see section II, is such that

ε3LS < ε21LS + ε22LS, (21)

we cannot determine the scalar α and the vector b = [b1, b2]
T

from (10), and the gradient of the cost function C [ε (α)] in (9)
is nonzero over the whole space where α lives. This is a nor-
malization failure, see also [1] where the normalization stage
computes a normalization matrix A by factoring the estimate
B̃ of an intermediate matrix B = AAT that may fail to be
nonnegative definite.

Since the cost function C in (9) is strictly nondecreasing and
grows unbounded with ‖α‖ (see the definition of ε in (8)),
the minimum of C with respect to α occurs at the bound-
ary, i.e., in the limit when α goes to zero. At the boundary,
α = 0, we have ε = 0, see (8), thus, from (9), the mini-
mum value of the cost function C approaches ξT ξ. This is
much larger than the small value for the minimum of C that
we expect to obtain at the true value of the normalization pa-
rameter vector α. This indicates that the two-stage algorithm
decomposition-normalization does not work and the matrix R̃

in (5,6) is not well approximated by a rank 1 matrix.
The matrix R̃ is not well approximated by a rank 1 matrix

if its rank is either larger or smaller than 1. The first situa-
tion arises when the scene contains dramatic perspective effects
that can be resolved only by taking into account in the analysis
the perspective projection. The second situation occurs when
the 3D shape of the object or its 3D motion cause R̃ = 0 in
a noiseless situation. From expression (5), this happens in ei-
ther of the two degenerate cases: the 3D motion is such that
the third column of the matrix M is m3 = 0; or a = 0 as
when the 3D shape is planar, see expression (3), and the rela-
tive depth vector z lives in the space S0, i.e., z = S0b. In either
case, there is not enough information in the feature trajectories
to recover the 3D structure. In spite of this, the images in the se-
quence can still be aligned by computing M̂0 according to ex-
pression (4), for example, by making M̂0 = RS0(S

T
0
S0)

−1.

IV. EXPERIMENTS

We describe three experiments that illustrate the predictions
of section III with respect to the camera trajectory and the ref-
erence frame viewing angle. The first two experiments use a set
of 50 features sampled from the surface of the synthetic object
shown in Figure 1. The third experiment uses a real video clip.
Camera trajectory Maintaining a fixed reference frame, we
created several trajectories by moving the camera around the
object. To make clearer the comparison, the angle θ between the
reference and the successive views was chosen to be constant
for each trajectory. The left plot in Figure 2, computed from
the ground truth, represents the norm ‖m3‖ of the motion vec-
tor m3 as a function of the angle θ. As expected from the anal-
ysis of section III, ‖m3‖ is maximum when each other view is
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Fig. 1. Three-dimensional rigid shape.
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Fig. 2. ‖m3‖ and subspace estimation errors as functions of the angle θ of
the camera pose.

orthogonal to the reference view, i.e., when θ = π/2 + kπ, and
‖m3‖ = 0 when they are parallel, i.e., when θ = kπ.

Using these trajectories, we synthesized noisy feature pro-
jections and applied the rank 1 factorization. The right plot in
Figure 2 plots the estimation error for the shape and motion sub-
spaces as function of the angle θ. These errors are the angles1

between the ground truth subspaces and the subspaces recov-
ered by the rank 1 factorization We see that, as predicted by the
analysis in section III, the errors are smaller when the views are
close to orthogonal (θ = π/2 + kπ) and larger when they are
close to parallel (θ = kπ).
Reference view We then fixed the camera trajectory and used
several reference frame viewing angles. Again to make simpler
the analysis, we chose the optical axis of the reference frame to
be always vertical with respect to the orientation of the object in
Figure 1 and varied the elevation angle φ, φ = 0 corresponding
to the top view. The plots in Figure 3 represent, respectively, the
norm ‖a‖ of the shape vector a, and the subspace estimation er-
rors, as functions of the angle φ. Again, these plots confirm the
predictions of section III – ‖a‖ is larger, and the errors smaller,
when the reference view is aligned with the axis of smallest
inertia, i.e., when φ = kπ.
Real video Figure 4 shows frames 1 and 50 from the CMU’s
hotel video sequence. On the left image, taken as the reference
frame, we marked with white squares the 50 feature points used
by the rank 1 factorization algorithm. In this video sequence,
the camera undergoes a slow rotation around the object.

To illustrate the relevance of the view selection, we run our
algorithm with two distinct sets of 12 frames. In the first exper-

1The angle between the 1D subspaces spanned by vectors s1 and s2 is the
angle between those vectors, arccos{sT

1
s2/(‖s1‖ ‖s2‖)} .
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Fig. 3. ‖a‖ and subspace estimation errors as functions of the reference view
angle φ.
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Fig. 4. Two frames from the hotel sequence.

iment, we used consecutive frames, thus all the views had very
similar orientation. The reconstructed 3D shape is shown on
the left side of Figure 5. In the second experiment, we selected
one frame each eight video frames, thus the orientation of the
last view was very distinct from the first one (although not or-
thogonal). The better quality of the 3D reconstruction obtained
with this sparse view selection, shown on the right side plot of
Figure 5, confirms our theoretical analysis.

Fig. 5. 3D shape recovered from the hotel sequence.

V. CONCLUSION

We analyzed the rank 1 factorization algorithm in terms of
the influence of the 3D motion and the 3D shape on the accu-
racy of the 3D recontruction. We concluded that the 3D struc-
ture is best retrieved when the reference view is aligned with
the smallest axis of inertia and the other views are orthogonal
to this direction.
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