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Abstract—Matrix factorization methods are now widely used to
recover 3D structure from 2D projections [1]. In practice, the ob-
servation matrix to be factored out has missing data, due to the
limited field of view and the occlusion that occur in real video se-
quences. In opposition to the optimality of the SV} to facter out
matrices without missing entries, the optimal solution for the miss-
ing data case is not known. In reference [2] we introduced subopti-
mal algorithms that proved to be more efficient than previous ap-
proaches to the factorization of matrices with missing data. In this
paper we make an experimental analysis of the algorithms of [2]
and demonstrate their performance in virtual reality and video
compression applications. We conclude that these algorithms are:
i} adequate to the amount of missing entries that may occur when
processing real videos; ii) robust to the typical level of noise in

a3

practical applications; and iii) computationally as simple as the
factorization of matrices without missing entries.

1. INTRODUCTION

Computing 3D structure from video has applications in fields
ranging from virtual reality and digital video to robotics. Vir-
tual reality applications often require 3D models of real world
objects. The manual description of the 3D models or the highly
expensive laser systems can be avoided by using methods that
construct the 3D models in an automatic way from ordinary
video. In digital video, the automatic recovery of 3D struc-
tre enables very efficient model-based coding techniques. In
robotics, the video camera is an increasingly popular sensor for
autonomous vehicles that need to construct a 3D model of the
environment for navigation and recognition purposes. Since
the most powerful cue to infer 3D structure from video is the
2D motion of the brightness pattern induced on the image plane,
the recovery of 3D structure from video is usually known as
the structure from motion (SFM) problem. Early approaches to
SFM used a single pair of frames and were shown to be very
sensitive to image noise. The key to the robustness of the SFM
methods was on exploiting the rigidity of the scene across a
larger set of frames. Unfortunately, although using multiple
frames leads to a more constrained problem, the multi-frame
formulation is also more complex — the number of unknowns
grows due to the larger number of camera poses to estimate.

Among the approaches to multi-frame SFM, the factoriza-
tion method, introduced in the early nineties [1], has become
popular. It captures rigidity in an algebraic way. In {1], the
trajectories of the 2D projections of a set of feature points are
collected in an observation matrix. Due to the rigidity of the
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scene, the observation matrix is rank 4 in a noiseless situation.
The 3D rigid shape and the 3D moticn are computed from the
factors of the rank 4 matrix that best matches the observation
matrix. The work of [ 1] was later extended in several directions,
e.g., geometric projection model [3], 3D shape description [4],
and recursive formulation [53]. The factorization methods [1],
[3}-[5] are limited to use feature points whose projections are
visible through the entire video sequence, so that the best rank 4
approximation of the observation matrix, which is completely
known, is obtained from its SVD. This is a serious limitation
since, in real life video clips, due to scene self-occlusion and
limited field of view, the projections of the points of interest are
not always visible. In practice, it is then necessary to fuse a set
of partial factorization estimates to obtain the complete solution
to 3D structure. This isn’t a simple task and leads in general to
inaccurate solutions. In opposition to this local formulation, the
rigidity of the scene is captured in a global way when the obser-
vation matrix is allowed to contain missing data. The problem
becomes then how 1o find the best rank 4 approximation of an
observation matrix that has missing entries.

There is no equivalent to the SVD for matrices with missing
entries. Very few attempts have been made to extend the factor-
ization method to the missing data case. Suboptimal methods
can be found in [6] and [7]. In [2], we develop twae iterative al-
gorithms that converge to the optimal factorization of a matrix
with missing entries, when properly initialized. Reference [2]
also describes an initialization procedure. The source code for
the algorithms of [2] is available from the WWW link [8]. In
this paper we make an experimental performance analysis of
the algorithms of [2] and outline applications of the factoriza-
tion algorithms to virtual reality and digital video compression
tasks. We tested the two iterative algorithms in what respects
to the computaticnal cost and to the impact of the: i) initial-
ization, i) noise, and iii) missing entries. We also studied the
behavior of the initialization algorithm. Our conclusions are
that the algorithms of [2] are adequate to real video processing
tasks. Our experience showed that, for the typical noise and
missing data, the initial estimate, provided by the initialization
algorithm, enables both iterative algorithms to converge: i) to
the global optimum; and ii) in a very small number of iterations.
Paper organization In section II we overview the algorithms
for factoring out matrices with missing data. Section ITT de-
scribes the experimental analysis of the algorithms. In sec-
tion IV we describe virtual reality and video compression ap-
plications. Secticn V concludes the paper.
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II. OVERVIEW OF THE ALGORITHMS .

In reference [2], we propose two iterative algorithms to com-
pute the rank 4 matrix W ps. v that best matches the observa-
tion matrix W s, n that has missing entries. The first itera-
tive algorithm is based on an Expecrarion-Maximization proce-
dure that has been successfully used in several signal processing
tasks involving missing data [9]. The second algorithm is a gen-
eralization of the power method that is widely used to compute
SVD-based rank deficient approximations of matrices without
missing entries {10]. As for any iterative algorithm, initializa-
tion is a relevant issue. In [2], the initial estimate of the rank 4
matrix W is obtained by combining the column and row spaces
of the known portions of W.

Expectation-Maximization (EM) The EM algorithm esti-
mates in alternate steps: 1) the missing entries of W — E-step;
and ii) the rank 4 matrix W that best matches the “completed
version” of matrix W — M-step. The solution for the E-Step is
simply g/iy’en by the corresponding entries of the previous esti-
mate of W. The M-step is solved by using the SVD [2].
Two-step (TS) iterative algorithm The TS algorithm com-
putes, alternately, two matiif:es Aprxa and By n whose prod-
uct is the solution matrix W = AB. In step i), we assume the
column space matrix B is known and estimate the row space
malrix A; in step i), we estimate B for known A. Both steps
have closed form solution [2].

III. EXPERIMENTAL ANALYSIS

We tested the EM and TS algorithms by synthesizing obser-

vation matrices W likely to occur when processing real videos.
In particular, we studied the behavior of the algorithms in terms
of the observation noise power and the amount of missing data.
Since EM and TS are iterative algorithms that need an initial
estimate of the rank 4 matrix W, our experiences addressed in
first place the impact of the initialization.
Influence of the initialization We generated several ground
truth rank 4 matrices W,. The algorithms receive as input
an incomplete observation of W, determined by the binary
mask M, ie., m;; = 1 if wy; is known and m;; = 0 other-
wise. We measure the estimation error as the mean over the
known entries,
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where W is the estimated rank 4 matrix; © stands for the ele-
mentwise product, also known as the Hadamard product; |||l 7
represents the Frobenius norm; and {M = 37, . my;, ie., M
is the number of the number of known entries of W.

With ground truth matrices W, with dimensions ranging
from 4x4 to 200x100 and missing data from 0% to 80%, we
run the initialization algorithm and, subsequently, both the EM
and TS iterative refinements. In all these experiments, the er-

rors (1) obtained after convergence were of the same magnitude
of the machine precision. Both algorithms converged in a few
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iterations, typically less than 10. Thus, when adequately ini-
tialized, both EM and TS algorithms converged always to the
optimal solution in a small number of iterations.

To evaluate the impact of the good initial estimate, we run
EM and TS with random initializations. We observed that the
behavior of the iterative algorithms is not easily predicted — they
may take an huge number of iterations to convergeto the global
optimum or even diverge. To illustrate this fact, we varied the
mean value of the initial estimates of W. The plots in Figure 1
show the estimated convergence probabilities as functions of
the mean value of the initial estimate of W for three 24 x 24
ground truth matrices W, with mean value 0.001, 1, and 1000
and 70% missing entries. The left plot of Figure 1 shows that
the EM algorithm converges to the global optimum when the
mean value of the initial estimate W is smaller than the mean
value of W, and diverges or converges to a wrong solution if
the opposite. This fact is explained by the relative impact on the
SVD (in the M-step of the EM algorithm, see section II) of the
entries corresponding to the random initial estimate and the en-
tries corresponding to the observed data. From the right plot of
Figure 1, we see that the probability of convergence for the TS
algorithm is roughly independent of the mean value of the ini-
tialization — in these experiments, the TS algorithm converges
to the global optimum about 75% of the runs.
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Fig. 1.  Probability of convergence with random initialization. Left: EM
algorithm. Right: TS algorithm.
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We thus conclude that the initialization procedure of [2] has a
relevant impact on the good convergence of both EM and TS al-
gorithms. In fact, the initialization algorithm provides an initial
estimate that is close enough to the optimal solution to guaran-
tee: i) good convergence— in our tests, 100% of the runs lead to
the globat optimum, and i) fast convergence — the algorithms
stop in a very small number of iterations, typically less than 10.
Sensitivity to the noise In real-life applications, the observa-
tion matrix W is contaminated with noise due to feature track-
ing errors. In this experimental performance analysis we used
white Gaussian noise. The observation matrix W is modeled
as a noisy version on the ground truth W, W = W, + N,
where the additive noise IV is zero mean.

We tested our algorithms with noisy observations of matri-
ces with dimensions from 4 x 4 to 200 x 100 and missing data
from 0% to 80%. As a representative example, the plots in Fig-
ure 2 represent the average estimation error given by (1) as a
function of the noise variance for a 24 x 24 observation ma-
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trix W with 70% missing entries. The error of the initial esti-
mate is represented on the left side plot. The estimation error
obtained after 20 iterations of either EM or TS is represented
on the right.
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Fig. 2. Sensitivity to the noise. Left: initial estimate. Right: EM and TS final
estimates,

The left plot of Figure 2 shows that the average error of the

initial estimate increases linearly with the noise standard devi-
ation. The right plot of Figure 2 shows that the average estima-
tion errors after 20 iterations of both EM and TS algorithms is
below 102 for noise standard deviation ranging from 10~2-
to 10%° {the mean value of the ground truth matrix W, is 1).
This shows that EM and TS converge to the optimal solution
even in the presence of high levels of feature tracking errors.
In fact, we concluded that the main impact of the observation
noise is on the EM and TS convergence speeds ~ the slightly
higher average error values on the right region of the right plot
of Figure 2 indicate that the process was still converging to the
optimal solution after the 20 iterations.
Sensitivity to the missing data A relevant issue is the robust-
ness of the.factorization algorithms to the missing data. Qur
experience showed that the structure of the binary mask ma-
trix M representing the known data is by far more important
than the overall percentage of missing entries of W. When re-
covering 3D structure from video, feature points enter and leave
the scene in a continuous way, thus the typical structure of M
is as represented in the right plot of Figure 5. We tested the fac-
torization algorithms with several mask matrices M with this
typical structure. In all these experiments, the algorithms con-
verged always to the optimal solution in a very small number of
iterations, independently of the percentage of missing data.

As for the impact of the noise discussed above, the percent-
age of missing entries has impact on the convergence speed. To
demonstrate this fact, we run the iterative algorithms for 24 x 24
observation matrices W with missing entries corresponding to
a N x 20 submatrix. To better illustrate the dependence of the
algorithms behaviors on the percentage of missing data, i.e.,
on NN, we used in this experiment random initializaticns. The
plot in Figure 3 represents the average errors after 20 iterations
of EM and TS as functions of N. This plot shows that the larger
is the portion of the matrix that is observed, i.e., the smalier is
the percentage of missing data, the lower is the estimation er-
ror after 20 iterations, i.e., the faster is the convergence of the
iterative algorithms,
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Fig. 3. Sensitivity to the missing data. Errors after 20 iterations of the EM and
TS algorithms with random initialization,

Computational cost As referred above, the EM and TS itera-
tive algorithms converge in a very small number of iterations
when initialized by the initialization procedure of [2]. In this
subsection, we report on the computational costs of each itera-
tion of EM and TS as functions of the dimension of the obser-
vation matrix.

We used N x 24 observation matrices W with missing data
corresponding to a {N — 4)x 20 submatrix. The plots in Fig-
ure 4 represent the number of MatLab®© floating point opera-’
tions (FLOPS) and the computation time per iteration, as func-
tions of V. From the left plot, we see that the number of FLOPS
per iteration of the EM algorithm is larger than one of the TS
algerithm. Furthermore, the FLOPS count for EM increases ex-
ponentially with [V (due to the SVD computation) while for TS
it increases linearly with V. Thus, although the computation
times in the right plot of Figure 4 are smaller for EM than for
TS (the reason being the very efficient MatLab® implementa-
tion of the SVD - different FLOPS have different computation
times that depend on the hardware and software), we conclude
that TS is computationally much simpler than EM. TS is even
as simple as the methods to factorize complete matrices, since
the most efficient way to compute the SVD is to use the power
method [10] of which TS is a simple generalization,
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Fig. 4. Computaticnal cost of each iteration of EM and TS. Left: number of
FLOPS. Right: computation time.

IV. APPLICATIONS

To illustrate virtual reality and video compression applica-
tions of our algorithms, we vsed the Rubik’s cube video clip.
This clip — see a representative frame on the left image of Fig-
ure 5 — shows a Rubik’s cube rotating around a vertical axis.
3D modeling for virtual reality We used simple correlation
techniques to track feature points across the Rubik’s cube video
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clip. In the left side of Figure 5, we superimposed with the
video frame the visible features and the initial parts of their tra-
jectories. Due to the occlusion, feature points enter and leave
the scene. To emphasize the advantages of using our factor-
ization with missing data, we first applied to a segment of the
Rubik’s cube video clip the factorization method of Tomasi and
Kanade [1] for complete data, obtaining the 3D shape repre-
sented on the left side of Figure 6. This mode! was obtained
with 28 features and 18 frames.

e P

Fig. 5. Rubik's cube video clip. Left: first frame with visible features and
comresponding partial trajectories, Right: binary mask matrix M representing
the incomplete data — black regions comespond to entries m;; = 1 meaning
that w;; is observed, ie.. feature 7 is visible in frame 7; white regions represent
the opposike.

We then applied cur method. We collected the entire set
of the visible parts of the trajectories of 64 features across
85 frames in a 170 x 64 incomplete observation matrix W. The
structure of the missing part of W is coded by the 170 x 64 bi-
nary mask M represented on the right side of Figure 5. The
number of missing entries in W is about 62% of the total num-
ber of entries. We applied.our factorization algorithm to the
incomplete observation matrix W and recovered the 3D model
represented on the right side of Figure 6. The top face is miss-
ing because the position the cube model is shown wasnot seen
in the original video clip.

Fig. 6. Texture mapped 3D shape recovered from the Rubik’s cube video clip.
Left: incomplete model obtained by using the factorization method of Tomasi
and Kanade [1] for complete data. Right: complete shape recovered by our
method - factorization with missing data.

The advantage of our method is two-fold. First, while re-
covering a complete 3D model by fusing partial models as the
one on the left side of Figure 6 is a complex task, our method
recovers directly the complete model shown on the right side
of Figure 6. Second, rather than processing subsets of the sets
of features and frames at disjoint steps, our method uses all the
information available in a global way, leading to more accurate
3D shapes as illustrated by the 3D models in Figure 6.

Video compression The 3D medels recovered by factorization
with missing data can be used to represent in an efficient way
the originat video sequence as proposed in {11] — the video se-
quence is represented by the 3D shape, texture, and 3D motion
of the objects. This leads to significant bandwidth saving since
once the 3D shape and texture of the objects have been transmit-
ted, their 3D moticn is transmitted with a few bytes per frame.

We used this methodology to compress the entire sequence of
2161 frames of the Rubik’s cube video clip. The compression
ratio (relative to the original JPEG compressed frames} was ap-
proximately 10%. Figure 7 shows sample original frames (top
row) and the corresponding compressed frames (bottom row),
The differences of lighting between the top and bottom images
are due to the constancy of the texture of the 3D model.

Fig. 7. 3D model-based digital video compression example. Top row: original
frames. Bottom row: compressed frames. Compression ratic approx. 108.

V. CONCLUSION

We presented an experimental analysis of the algorithms EM
and TS that factor out matrices with missing entries. Our anal-
ysis shows that EM and TS are well suited to the recovery of
3D rigid structure from video sequences. We demonstrate the
performance of the factorization algorithms in virtual reality
and video compression applications.
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