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ABSTRACT
The paper computes the reliability of estimates of image
motion parameters. The use of such measures of reliability
to weight motion estimates improves significantly the per-
formance of motion analysis tasks such as the recovery of
3D structure [1, 2]. The paper relates both the estimation
error variance and the stability of the estimation algorithm
with the spatial gradient of the image brightness pattern. We
illustrate the predictions of our expressions with several im-
age brightness patterns.

1. INTRODUCTION

The 2D motion of the image brightness pattern across an
image sequence contains significant information about the
3D motion of the camera, the 3D structure of the scene, and
the presence of independently moving objects. As a con-
sequence, motion analysis finds a large number of applica-
tions in areas that include digital video, robotics, and virtual
reality. Estimating the 2D image motion is a crucial step in
any motion analysis task.
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This paper deals with the estimation of the 2D motion
of the brightness pattern in the image plane. This problem
has been widely addressed in the recent past. The original
contribution of this paper is the development of reliability
measures to the estimates of the parameters describing the
image motion. We relate these measures to the spatial gra-
dient of the brightness pattern. The availability of these re-
liability measures increases the performance and decreases
the computational burden in motion analysis tasks. The gain
in computational simplicity comes from discarding those
regions whose brightness pattern leads to very inaccurate
2D motion estimates. The increase in performance of the
motion analysis task is due to weighting differently the sev-
eral 2D displacements, according to their different reliabil-
ity. For example, it has been shown that weighting more
the trajectories corresponding to “sharp” features than the
trajectories corresponding to features with smooth textures
leads to better 3D reconstructions [1, 2]. Reference [3] is
one of the few papers dealing with motion estimation ac-
curacy. The goal of these authors was the development of

feature selection criteria; they don’t quantify the estimation
error, as we do in this paper.

A common technique for image motion estimation is to
parameterize the 2D motion and to minimize the brightness
square difference by using a Gauss-Newton iterative algo-
rithm. In section 2, we discuss the behavior of this mo-
tion estimation algorithm. In section 3, we study the esti-
mation error. We show that the estimator is unbiased and
we develop the expression for the error covariance matrix.
Section 4 particularizes the study of sections 2 and 3 to the
translational motion model. Section 5 concludes the paper.

2. MOTION ESTIMATION

Consider the pair of images {I1, I2}. Our goal is the esti-
mation of the motion of the brightness pattern between im-
ages I1 and I2 in a given region R of the image plane. We
parameterize the 2D motion in terms of the vector p. The
estimate p̂ of p is

p̂ = arg min
p

∫ ∫

R

e
2(p; x, y) dx dy, where (1)

e(p; x, y) = I1(x, y)− I2

(
x + dx(p; x, y), y + dy(p; x, y)

)
.

The displacement of the pixel (x, y) between images I1 and
I2 is denoted by d(p;x, y) = [dx(p;x, y), dy(p;x, y)]

T .
The minimization in expression (1) is commonly ac-

complished by using a Gauss-Newton method – the esti-
mate p̂ is computed by refining a previous estimate p0,
p̂ = p0 + δ̂p. The iterative updating δ̂p is given by the
solution of the following linear system, see [4],

ΓR(p0) δ̂p = γ
R

(p0), (3)

ΓR(p0) =

∫ ∫

R

∇pd
T (p0)ixyi

T
xy∇pd(p0) dx dy, (4)

γ
R

(p0) = −

∫ ∫

R

it(p0)∇pd
T (p0)ixy dx dy, (5)

where we omitted the dependence of the integrands on
(x, y) for simplicity. The vector ixy(x, y) is defined as
ixy(x, y) = [ix(x, y), iy(x, y)]

T , where ix(x, y) and
iy(x, y) are the spatial derivatives computed from the refer-
ence image I1(x, y), it(p0;x, y) is the temporal
derivative, and the matrix ∇pd

T (p0;x, y) is defined as
∇pd

T (p0;x, y) = [∇pdx(p0;x, y),∇pdy(p0;x, y)].



In order to obtain a reliable convergence of the Gauss-
Newton method, the equation system (3) must be well con-
ditioned, i.e., the matrix ΓR(p0), given by (4), must be well
conditioned with respect to inversion. A widely used mea-
sure for the sensitivity of the solution of the linear system
is the condition number of the square matrix involved. The
relative error of the solution of a linear system Ax = b

is approximated by the condition number k(A) of the ma-
trix A times the relative errors in A and b. The condition
number depends on the underlying norm used to measure
the error. With the common choice of the matrix 2-norm, the
condition number of a matrix is given by the quotient of the
largest singular value by the smallest singular value. Since
the matrix ΓR(p0) is symmetric and semi-positive definite,
their eigenvalues are positive real and coincide with the sin-
gular values. The sensitivity of the iterates of the motion
estimation algorithm are then measured by

k(ΓR(p0)) =
λ1(ΓR(p0))

λN (ΓR(p0))
, (6)

where λ1(ΓR(p0)) is the largest eigenvalue of ΓR(p0) and
λN (ΓR(p0)) is its smallest eigenvalue.

If the condition number k(ΓR(p0)) is large, the ma-
trix ΓR(p0) is said to be ill-conditioned. In this case, the
Gauss-Newton iterates are very sensitive to the noise and
the process can not be guaranteed to converge.

3. ESTIMATION ERROR

We study the statistics of the error in estimating the vector p

of motion parameters. Our analysis is local, in the sense
that we assume small deviations between the true value of
the vector of motion parameters and its estimate. The statis-
tics that we obtain are valid in practice as good approxima-
tions to the real statistics if the estimation problem is well
conditioned, i.e., if the observations, regardless of the noise
level, contain “enough information” to estimate the desired
parameters (this imprecise definition can be made precise
in terms of the usual signal to noise ratio parameter). This
situation is the one in which we are interested in because
in practical applications we only use the motion estimates
when the corresponding estimation problem is well condi-
tioned in the sense discussed in the previous section.

We denote the actual value of the vector of motion pa-
rameters by pa. The estimate p̂ is written in terms of a
small deviation relative to the actual pa. By proceeding in
a similar way as done for the derivation of the estimation
algorithm [4], we obtain,

p̂ = pa + Γ
−1

R
(pa) γ

R
(pa), (7)

where, we recall, the matrix ΓR(pa) and the vector γR(pa)
are given by expressions (4) and (5) with pa instead of p0.
The random variable p̂ in expression (7) is a non-linear
function of the image derivatives {it(pa), ixy = [ix, iy]T }.

The derivatives it and ixy are random variables – they
are noisy versions of the actual values of the scene bright-
ness derivatives. The actual value of it(pa) is ita(pa) = 0

because pa is the actual value of the vector of motion pa-
rameters. Since the image noise is zero mean, the noise
corrupting the derivatives it, ix, and iy is also zero mean.
Furthermore, the noise corrupting the temporal derivative it
is white because the image noise is white. We denote by σ2

t

the variance of the noise corrupting it.
We find the expected value of the estimate p̂ by comput-

ing the mean of expression (7) with respect to the noise of
the image derivatives. For small deviations, the first-order
approximation of E{p̂} is given by the value of expres-
sion (7) evaluated at the mean values of the random vari-
ables it(pa) and ixy. Since the mean of it(pa) is zero, we
get γR(pa) = 0 and the mean of the estimate p̂ is

E {p̂} = pa + E
{

δ̂p

}
= pa. (8)

Expression (8) states that, to first-order approximation, the
estimate p̂ is unbiased.

The covariance matrix of the estimating error is denoted
by Σp. The first-order approximation of Σp can be ex-
pressed in terms of the partial derivatives of the estimate p̂

with respect to the random variables involved, i.e., with re-
spect to it, ix, and iy , and to the variances of those random
variables [4]. From expressions (7), (4), and (5), we com-
pute the partial derivatives of p̂ with respect to the random
variables it(x, y), ix(x, y), and iy(x, y). Using the fact that
the noise corrupting it is white and noting that the deriva-
tives ∂p̂

∂ix(x,y) and ∂p̂

∂iy(x,y) are zero [4], we obtain for the
covariance Σp, see [4],

Σp = σ
2

t Γ
−1

R
(pa). (9)

Expression (9) provides an inexpensive way to compute
the reliability of the motion estimates. Although the matrix
ΓR(pa) is in general unknown because it depends on the
actual value pa of the unknown vector p, it can be approxi-
mated by ΓR(p0) used in the iterative estimation algorithm.
We note however that when the motion model is linear in
the motion parameters, as it is the case with the majority of
motion models used in practice, the matrix ΓR(p) becomes
independent of the vector p because the derivatives of the
displacement d(p) involved in (4) do not depend on the mo-
tion parameters. In this case, ΓR(p0) does not change along
the iterative estimation algorithm. The matrix ΓR(p0) de-
pends uniquely on the image region R and ΓR(p0) will
be denoted simply by ΓR. Since the noise variance σ2

t is
considered to be constant, we measure the error covariance
for different regions by comparing the corresponding matri-
ces Γ−1

R
. For example, the mean square Euclidean distance

between the true vector pa and the estimated vector p̂, de-
noted by σ2

p, is proportional to the trace of the matrix Γ−1
R

,

σ
2

p = E
{

(p̂− pa)T (p̂− pa)
}

= σ
2

t tr
(
Γ
−1

R

)
. (10)

4. TRANSLATIONAL MOTION

The vector of motion parameters is defined as p = [p1, p2]
T ,

determining the displacement as d(p) = [p1, p2]
T

= p.



Motion estimation To compute the matrix ΓR(p0) and the
vector γR(p0) needed for the Gauss-Newton iterates, we
replace the gradient of d with respect to p, ∇pd

T = I2×2,
into (4) and (5), obtaining

ΓR =

[ ∫∫
R

i2x dx dy
∫∫
R

ixiy dx dy∫∫
R

ixiy dx dy
∫∫
R

i2y dx dy

]
, (11)

γ
R

(p0) = −

[ ∫∫
R

ixit(p0) dx dy∫∫
R

iyit(p0) dx dy

]
. (12)

The behavior of the estimation algorithm depends on the
condition number of the matrix ΓR in (11). To see the influ-
ence of the brightness pattern within regionR on the condi-
tion number k(ΓR) consider that

∫∫
R

ixiy dx dy = 0. The
matrix ΓR given by (11) becomes diagonal and the condi-
tion number given by (6) is simply

k(ΓR) =

∫∫
R

i2x dx dy∫∫
R

i2y dx dy
if

∫ ∫

R

i
2

x dx dy ≥

∫ ∫

R

i
2

y dx dy

or the inverse if the inequality goes in the opposite way. If
one of the components of the spatial image gradient is much
larger than the other, k(ΓR) becomes large and the equation
system (3) is ill-conditioned. The condition k(ΓR) < λ,
where λ is a threshold, restricts the brightness pattern within
regionR not to have variability along some direction much
higher than the variability along the perpendicular direction.

The analysis in the paragraph above explains the well
known aperture problem. The aperture problem is usually
described as the impossibility of estimating locally the 2D
motion. In fact, if the region R contains a single pixel, the
matrix ΓR given by (11) is singular; we obtain det(ΓR) =
0 by removing the integrals from (11), and the condition
number k(ΓR) is +∞. This happens because the two mo-
tion parameters can not be determined by the single con-
straint imposed by the brightness constancy. The study of
the condition number k(ΓR) shows that, for particular struc-
tures of the brightness pattern, it is very difficult to estimate
the 2D motion, even when the region R contains several
pixels.

Although the previous analysis was obtained with∫∫
R

ixiy dx dy = 0, we should note that the case∫∫
R

ixiy dx dy 6= 0 does not correspond to a more gen-
eral situation. In fact, it can be shown that an appropriate
rotation of the brightness pattern makes

∫∫
R

ixiy dxdy = 0,
without changing the condition number k(ΓR) – as we
would expect, the conditioning of the estimation of the mo-
tion of the brightness pattern is independent of 2D rigid
transformations of the brightness pattern.

Figure 1 illustrates the dependence of the conditioning
of the 2D motion estimation on the structure of the bright-
ness pattern. For each of the eight 10 × 10 images in Fig-
ure 1, we determine the condition number of the matrix ΓR.
The condition number k(ΓR), obtained by evaluating ex-
pression (6), is on the bottom of each image in Figure 1. The
texture of the brightness pattern shown on the top left im-
age is such that there is no dominant direction over the entire

region R. We expect that the estimation of the 2D motion
of a pattern of this kind is very well conditioned. In fact,
over the entire image no component of the spatial gradient
dominates, and the condition number k(ΓR) captures this
behavior. We get k(ΓR) = 1.34 – the value of k(ΓR) is
close to unity indicating that the linear system involved in
the Gauss-Newton iterates of the motion estimation algo-
rithm is well conditioned. In contrast to this case, the texture
of the brightness pattern shown in the bottom right image of
Figure 1 exhibits a clear dominant direction. It is very hard
to perceive the 2D motion of these type of patterns because
only the component of the motion that is perpendicular to
the dominant direction of the texture is perceived. The con-
dition number k(ΓR) captures the indetermination in esti-
mating the 2D motion – it is k(ΓR) = 133.82 indicating
that the linear system involved in the Gauss-Newton iter-
ates of the motion estimation algorithm is ill-conditioned.
The other images of Figure 1 illustrate intermediate cases.

k(ΓR) = 1.34 2.58 4.99 9.63

18.59 35.90 69.31 133.82

Fig. 1. When the texture of the brightness pattern exhibits a
dominant direction, the motion estimation is ill conditioned
– see the bottom right image and the high value of the con-
dition number of the matrix involved in the algorithm.

Estimation error The covariance matrix of the estimation
error for the translational motion model is given by (9) af-
ter replacing ΓR by expression (11). The mean square er-
ror of the displacement estimate is the trace of the covari-
ance matrix Σp, see (10). In terms of image gradients, we
get the following expression for the mean square error, de-
noted by σ2

p,

σ
2

p = σ
2

t

∫
R

i2y dx dy +
∫
R

i2x dx dy
∫
R

i2x dx dy
∫
R

i2y dx dy −
(∫
R

ixiy dx dy
)
2
. (14)

In [2, 4], when recovering 3D structure from 2D motion
estimates, we use the estimate of the mean square error σ2

p

given by expression (14) to improve the 3D recontruction
by weighting differently motion estimates corresponding to
different regions of the image.

To interpret the mean square error σ2
p given by (14), let

us consider again that the matrix ΓR is diagonal. This is
the general case because, as for the condition number, it can
be shown that any non-diagonal matrix ΓR can be made



diagonal without changing σ2
p, by an appropriate rotation of

the image brightness pattern. When
∫∫
R

ixiy dx dy = 0,
the mean square error σ2

p is

σ
2

p = σ
2

t

[(∫ ∫

R

i
2

x dx dy

)−1

+

(∫ ∫

R

i
2

y dx dy

)−1
]

,

showing that the error in estimating the displacement is pro-
portional to the inverse of the sum of the square components
of the image gradient within region R. This coincides with
the intuitive notion that the higher the spatial variability of
the brightness pattern is, the lower the error in estimating
the motion is. As expected, it is also clear that the estima-
tion error decreases when the size of the regionR increases.

Figure 2 illustrates the dependence of the expected square
error of the 2D motion estimates on the image brightness
pattern. To isolate the estimation error from the eventual
ill-posedness of the motion estimation problem, we used
brightness patterns that do not have a dominant texture di-
rection, i.e., we used brightness patterns for which the lin-
ear system involved in the motion estimation is well condi-
tioned. In particular, we used the brightness pattern of the
top left image of Figure 1 to generate all the images of Fig-
ure 2 by changing the brightness contrast. The conditioning
of the linear system involved in the motion estimation prob-
lem does not depend on the brightness contrast, as shown by
the constant value of the condition number, k(ΓR) = 1.34
for all the images in Figure 2.

σ2

p = 0.19 0.35 0.63 1.14

2.07 3.74 6.76 12.21

Fig. 2. The dependence of the motion estimation error on
the image brightness pattern. The expected square error σ2

p

increases with the decrease of the brightness contrast.

For each image in Figure 2, we computed the mean
square error σ2

p by evaluating expression (14). Since the
goal is to illustrate the influence of the brightness pattern
on σ2

p, we made σ2
t = 1 when evaluating expression (14).

The values obtained for σ2
p are shown in Figure 2 on the

bottom of the corresponding image. The top left image of
Figure 2 has a very high brightness contrast. For this rea-
son, we expect that the estimate of the 2D motion of such
a pattern is very accurate. In fact, the sum of the square
components of the image gradient has a high value and the
value of the motion estimation mean square error is low,

σ2
p = 0.19. When the brightness contrast decreases, we ex-

pect less accurate motion estimates. The values of σ2
p in

Figure 2 are in agreement with this. The expected square
error σ2

p increases with the decrease of brightness contrast
because the square components of the image gradient de-
crease. The bottom right image of Figure 2 shows the ex-
treme situation of a pattern with almost zero brightness con-
trast. For this pattern, the expected mean square estimation
error is very high – larger than 60 times the error for the top
left image. It is therefore hopeless to try to compute accu-
rate motion estimates for this kind of low contrast patterns.
Note that this is due to the fundamental bound on the motion
estimation error, not to the conditioning of the linear system
involved in the motion estimation algorithm (the condition
number k(ΓR) = 1.34 is close to unity indicating that the
linear system is well conditioned).

5. CONCLUSION

We discussed the conditioning of the 2D motion estimation
problem and derived expressions for the covariance of the
estimation error for general parametric motion models. We
specialized this analysis to the translational motion model.
For this model, we related the convergence of the estimation
algorithm to the variability of the brightness pattern – for
the algorithm to be stable, the two components of the image
gradient should not have too radically different magnitude
values – and derive the expression for the expected square
of the Euclidean distance between the true and estimated
values of the parameters – when the magnitude of the com-
ponents of the image gradient is large, the error is smaller.
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