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ABSTRACT

Factorization methods use linear subspace constraints to re-
cover 3D rigid structure from 2D motion. Usually, these
methods give equal weight to the contribution of each re-
gion (or feature) to the estimates of the 3D structure. In this
paper, we accommodate different confidence weights for the
2D motion parameter estimates of each region, by rewriting
the problem as the factorization of a modified matrix. This
incurs no additional computational cost.

1. INTRODUCTION

Recovery of 3D shape and 3D motion (3D structure) from
an image video sequence is useful in many areas. Among
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available approaches, factorization methods have become
popular. These methods, originally introduced in [1], ex-
ploit the rigidity of the scene over a set of frames and use
linear space constraints to solve for the larger number of
unknowns. Reference [1] relies on tracking pointwise fea-
tures. In prior work [2], we extend the factorization method
to handle more general models that describe parametrically
the 3D shape. This allows tracking larger regions where the
image motion is described by a set of parameters and leads
to simpler algorithms and better 3D structure recovery.

Clearly, the accuracy of the reconstruction will improve
with better estimates of the 2D motion parameters. In turn,
these estimates depend on the spatial variability of the bright-
ness intensity pattern and on the size of the image region be-
ing tracked. The original factorization method [1] and the
surface-based factorization method [2] give equal weight
to the contribution of each feature or region to the final
3D shape and 3D motion estimates. Intuitively, however,
we should expect that weighting more the trajectories cor-
responding to “sharp” features than the trajectories corre-
sponding to features with smooth textures should lead to
better overall estimates. In this paper, we develop such
an approach, which leads to the factorization of a mod-
ified measurement matrix rather than the original matrix
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in [2]. Besides better performance, our method computes
the weighted estimates with no additional cost.

Reference [3] considers reliability weights to address
occlusion – when a feature is lost, it is given the weight zero
– and uses an iterative method to recover the 3D structure.
As reported in [3], the iterative method may fail to converge.
We show here that when the weights are time-invariant, the
problem can be reformulated as the non-weighted factoriza-
tion of a modified matrix. Then, any method can be used
to factorize this matrix. We call this extension the weighted
factorization method.

2. SURFACE-BASED RANK 1 FACTORIZATION

To keep it simple, and without loss of generalization, we re-
strict the discussion to piecewise planar objects. The 3D mo-
tion of such objects induces on the image plane a parametric
description for the 2D motion of the brightness pattern. We
show in [2] that, at frame f , the image coordinates of the
points belonging to the object surface are affine mappings of
their image coordinates in frame 1. For each planar patch n,
the parameters of the 2D affine motion model, represented
by the 2× 1 vector d

n
f and the 2× 2 matrix D

n
f , are related

to the 3D motion parameters, in the 2 × 2 matrix Nf and
the 2 × 1 vectors nf and tf , and the 3D shape parameters
corresponding to that patch, an

00 and the 2× 1 vector a
n, by

{
d

n
f = Nfs

n
0 + nfan

00 + tf

D
n
f = Nf + nfa

nT ,
(1)

where the 2 × 1 vector s
n
0 is the centroid of the support

region of the planar patch n. For F frames and N planar
patches, there are N(F − 1) systems like (1), since we take
the first frame as the reference.

The problem of inferring 3D rigid structure from 2D mo-
tion is formulated as the LS inversion of the N(F − 1) sys-
tems of equations (1) for the F frames and N planar patches.
After replacing the translation estimates, tf , which are given
by a closed-form expression, this system of equations (1)
relating the image motion parameters and the 3D structure
parameters is written in matrix format as

R = MS
T , (2)



where R is a (2(F−1)×3N) matrix that collects the image
motion parameters {dn

f ,DN
f },
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and M and S are (2(F − 1) × 3) and (3N × 3) matrices
that collect the 3D motion and 3D shape parameters, respec-
tively, {Nf ,nf} and {an

00,a
n}, see [2]. A factorization ap-

proach solves for M and S from R by factorizing a rank 1
matrix R̃, see [2]. The matrix R̃ is the matrix R multi-
plied by the orthogonal projector onto the orthogonal com-
plement of the space spanned by the first two rows of S

T .

3. WEIGHTED FACTORIZATION

We consider the model in (1). Each 2D motion parameter
of the surface patch n, in the vector d

n
f and the matrix D

n
f ,

is observed with additive Gaussian white noise. For reasons
that will become clear below, we assume the following: the
two components of the vector d

n
f have equal variance, de-

noted by (σn
d )2; the noise variances for the two entries of

the first column of the matrix D
n
f are the same and denoted

by (σn
D1)

2; and the noise variance for the two entries of the
second column of the matrix D

n
f is the same and denoted

by (σn
D2)

2. The variances (σn
d )2 and (σn

Di)
2 are estimated

from the spatial gradient of the image brightness pattern as
described elsewhere.

We first estimate the 3D translation parameters. By choos-
ing the origin of the object coordinate system in such a way
that

∑
n s

n
0/(σn

d )2 = [0, 0]T and
∑

n an
00/(σ

n
d )2 = 0, we

get the estimate
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1

(σn
d
)2

(4)

for the translation along the camera plane. Replacing these
translation estimates in (1), and defining the matrices R, M,
and S as in [2], we obtain, similarly to the non-weighted
factorization, that

R = MS
T . (5)

To take into account the different variances of the er-
rors of the entries of the measurement matrix R, we define
the (2(F − 1)× 3N) weight matrix W as

W=
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, (6)

where the entry (i, j) of the matrix W represents the weight
to be given to the entry (i, j) of the matrix R, see (3).

We formulate the weighted factorization by writing the
Maximum Likelihood estimate,

min
M,S

∥∥(
R−MS

T
)
�W

∥∥
F

, (7)

where the matrices M and S are constrained to have the spe-
cial structure of the motion and shape matrices in [2]. The
symbol� denotes the elementwise product of two matrices,
known as the Hadamard product.

Due to the structure of W, we rewrite (7) as the factor-
ization of a modified matrix Rw,

min
M,Sw

∥∥Rw −MS
T
w

∥∥
F

, (8)

where the matrices Rw and Sw are related to R, S, and the
entries of the weight matrix W by

Rw = R diag ({w1i, 1 ≤ i ≤ 3N}) , (9)
Sw = diag ({w1i, 1 ≤ i ≤ 3N})S, (10)

where diag ({w1i, 1 ≤ i ≤ 3N}) is a 3N × 3N diagonal
matrix whose entry (i, i) is equal to the entry (1, i) of W.

The factorization in (8) is similar to the one studied
in [2]. Note that the modified measurement matrix Rw and
the first two rows of the matrix S

T
w are known from (10)

and (9) and the motion matrix M is the same matrix in-
volved in the rank 1 factorization method of [2]. We min-
imize (8) by using the rank 1 factorization procedure de-
scribed in [2] to compute the factor matrices M̂ and Ŝw. To
compute the estimate Ŝ of the shape matrix from the ma-
trix Ŝw, we invert (10),

Ŝ = diag
({

w−1
1i , 1 ≤ i ≤ 3N

})
Ŝw. (11)

While [3] also considers reliability weights in estimat-
ing the matrices M and S, in this case within the original
feature-based factorization method, the solution in [3] is
found by an iterative process that, as reported in [3], may
fail to converge. In our formulation, this is not the case
because we restrict the weight matrix W to have the struc-
ture of (6). For a general matrix W, it is not possible to
write the minimization (7) in the form of a factorization
such as in (8). In fact, the unconstrained bilinear prob-
lem min

M,S

∥∥(
R−MS

T
)
�W

∥∥
F

has a single global mini-

mum, up to a scale factor, when W has rows that are all
equal or columns that are all equal. It can be shown that this
is not true for a generic matrix W. In this case, the exis-
tence of local minima makes nontrivial the use of iterative
numerical techniques.

4. EXPERIMENT

To illustrate the effect of taking into account the 2D mo-
tion estimation errors when recovering 3D structure from



2D motion, we synthesized two subsets of trajectories of
feature points, represented in Figure 1, each with a differ-
ent level of observation noise. We applied to the two sets of
feature point trajectories both the non-weighted factoriza-
tion and the weighted factorization methods.

−120 −100 −80 −60 −40 −20 0 20 40 60 80
−100

−80

−60

−40

−20

0

20

40

60

80

100

u

v

Feature trajectories

Fig. 1. Feature trajectories with two levels of noise.

The two subsets of features have 10 and 11 points with
coordinates x and y randomly located inside a square. To
facilitate the visualization of the experimental results, the
depth z was generated with a sinusoidal shape applied to the
ordered set of 21 features. The coordinate z is represented
in both plots of Figure 2 with small circles. The dots on
the plots of Figure 2 represent the estimates of the relative
depth z. The 3D rotational motion was simulated by syn-
thesizing a smooth time evolution for the Euler angles that
specify the orientation of the object coordinate system rel-
ative to the camera coordinate system. The time evolution
of the 6 entries of the 3D rotation matrix that are involved
in the orthogonal projection, in matrix Nf and vector nf , is
represented in both plots of Figure 4 with thick lines. The
3D translation is also smooth. The two components of the
translation along the camera plane, in vector tf , are repre-
sented in the plots of Figure 3 with thick lines. The thin
lines in the plots of Figures 3 and 4 represent estimates of
the 3D motion parameters.

Figure 1 shows the feature trajectories on the image plane,
after adding noise. For each trajectory, the initial position is
marked with “o” and the final position is marked with “*”.
The noise variance is σ2

1 = 1 for the first subset of 10 fea-
tures and σ2

2 = 5 for the second subset of 11 features. As
expected, the trajectories corresponding to the features of
the first subset have a smooth evolution (see trajectories
clustered at the bottom of the figure), while the trajecto-
ries corresponding to the features of the second subset (top
of figure) for which the noise has a larger variance have a
more noisy shape, see Figure 1.

We applied both the non-weighted feature-based factor-
ization and the weighted factorization method we describe
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Fig. 2. Estimates of the relative depth, points, superimposed
with the true value, circles.

in this paper to the feature trajectories of Figure 1. The esti-
mates of the 3D shape and 3D motion are shown in the plots
of Figures 2, 3, and 4, superimposed to the true values. In
Figures 2, 3, and 4, the top plots represent the non-weighted
estimates, and the bottom plots represent the weighted fac-
torization results. We see that the 3D motion estimates ob-
tained through the weighted factorization method are more
accurate than the ones obtained without taking into account
the different noise levels. This is particularly evident for the
translation estimates – compare the top and bottom plots of
Figure 3. The difference is smaller for the estimates of the
entries of the 3D rotation matrix, see Figure 4, but these
small differences originate much larger differences in the
feature projections because the projections are obtained by
multiplying the 3D rotation matrix by the 3D position of the
features. The 3D shape estimates represented by the relative
depths in the top and bottom plots of Figure 2 show a very
good agreement with the real 3D shape, both for the non-
weighted factorization and the weighted factorization meth-
ods. Thus, we conclude that while giving different credit
for different trajectories improves the 3D motion estimates,
the 3D shape estimate is almost independent of the weights
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Fig. 3. Estimates of the translation along the camera plane,
thin lines, superimposed to the true translation, thick lines.

given to the trajectories.
To interpret this behavior, we think of the estimation of

the 3D shape as a filtering of the observations across time,
and of the estimation of the 3D motion as a filtering of the
observations across space. Since the weights given to the
observations in the weighted factorization method are dif-
ferent from feature to feature, i.e., less weight is given to
the more noisy trajectories, the filtering across space is im-
proved and the weighted estimate of the 3D motion is much
more accurate than the non-weighted estimate. In contrast,
the weights are constant across time, thus filtering across
time is insensitive to the different weights, and the weighted
estimate of the 3D shape is similar to the non-weighted one.

The filtering analogies in the previous paragraph explain
the experimental results in a coarse way. By examining in
detail the estimates of the relative depth in both plots of Fig-
ure 2, we see that the weighted estimate of the 3D shape
is slightly more accurate than the non-weighted estimate –
compare the very accurate weighted estimates of the rela-
tive depths of the first 10 features (the subset of features
observed with lower level of noise) in the bottom plot of
Figure 2 with the non-weighted estimates in the top plot of
Figure 2. The accuracy of the weighted estimate of the rela-
tive depth of a given feature reflects the level of the observa-
tion noise for the trajectory of the projection of that feature
– note that the weighted estimates of the relative depths of
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Fig. 4. Estimates of the 6 entries of the 3D rotation matrix
that are involved in the orthogonal projection, thin lines, su-
perimposed to the true values, thick lines.

the subset of features observed with higher level of noise
(the last 11 features in the bottom plot of Figure 2) are less
accurate than the estimates of the relative depths of the first
subset (the first 10 features in the bottom plot of Figure 2).

The experiment just described demonstrates the overall
improvement on the accuracy of the 3D structure estimates
when the proposed weighted factorization method is used.
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algorithm for rigid structure from image sequences,” in
IEEE ICIP, Kobe, Japan, October 1999.

[3] Conrad J. Poelman, A Paraperspective Factorization
Method For Shape and Motion Recovery, Ph.D. thesis,
Carnegie Mellon University, USA, 1995.


