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Abstract - In this paper we build 3D models of rigid bodies from video

sequences. The algorithm we use is simple and robust. It recovers the 3D

shape parameters and the 3D motion parameters by first estimating the

parameters of the induced optical flow representation. To estimate the

3D shape and 3D motion from the optical flow, we use a fast algorithm

that is based on the factorization of a matrix that is rank 1 in a noiseless

situation. We demonstrate our approach with a piecewise planar object

shape built from a real life video clip. We highlight some of the potential

applications of the 3D models obtained.

INTRODUCTION

This paper presents a fast reliable algorithm to recover three-dimensional
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(3D) models from monocular video sequences. Just like an image is worth
ten thousand words, and video enhances tremendously our visual percep-
tion of the environment, 3D represents the next higher level in recreating a
natural immersive multimedia environment for participants to interact collab-
oratively, and/or viewers to enjoy. The volume experience enables users to
perceive differently the same scene from their own vantage point if view. Our
challenge is to recover in an expedite way the 3D structure from a monocular
video sequence.

Structure from Motion Obtaining 3D structure from video is a problem
with a long tradition in computer vision, e.g., depth from stereo and depth
from motion. Our fall under the usual heading of structure from motion
problem. In this problem, usually authors extract a set of features, say corners
of an object or of a building, and establish the correspondence of these features
across the video sequence.

Early approaches to structure from motion processed a single pair of con-
secutive frames and provided existence and uniqueness results to the problem
of estimating 3D motion and absolute depth from the 2D motion in the cam-
era plane between two frames, see for example [1]. The two-frame algorithms
are highly sensitive to image noise and, when the object is far from the cam-
era, i.e., at a large distance when compared to the object depth, they fail
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even at low level image noise. More recent research has been oriented toward
the use of longer image sequences.

Factorization Aided by constraints like the rigid body assumption, the
inverse-problem of inferring 3D structure from the 2D motions of these fea-
tures is then achieved. Among the existent approaches, the factorization
method [2] is an elegant method to recover structure from motion without
computing the absolute depth as an intermediate step. In [2] they treat ortho-
graphic projections. The object shape is represented by the 3D position of a
set of feature points. The projection of each feature point is tracked along the
image sequence. The 3D shape and motion are then estimated by factorizing
a measurement matrix whose entries are the set of trajectories of the feature
point projections. This work was later extended to scaled-orthography and
paraperspective projections [3]. Tracking and solving for the correspondence
of these features is a computationally expensive problem. To reduce this
cost, the number of features is usually small. In turn, this leads to sparse
representations.

We avoid this quagmire by assuming parametric representations for the
3D surfaces to be reconstructed. These 3D parametric representations induce
parametric time varying representations for the imaged surface across the
video sequence. Rather than having a difficult correspondence problem to
solve, our framework replaces this high order combinatorial problem by a low
dimension parameter estimation problem. With our approach, we reduce the
structure from motion problem to solving a rank one matrix factorization
problem, for which we develop a fast algorithm.

Paper organization We start by summarizing the structure from motion
approach. Then, we describe an experiment with real video. Finally, we
illustrate some of the potential applications of the recovered 3D models.

APPROACH

The tracking of feature points may be unreliable when processing noisy
video sequences. In [4] we extend the factorization method by using a robust
region-based approach. We assume that the 3D shape of the rigid body is well
described by a parametric representation and use orthographic projections.
The parametric representation of the 3D rigid shape induces a parametric
model for the optical flow. We use this optical flow parameterization to de-
rive a two-stage algorithm to recover structure from motion: the first stage
estimates the optical flow parameters; the second recovers the 3D shape and
3D motion parameters from the sequence of estimates of the optical flow pa-
rameters. We apply known techniques to estimate the optical flow parameters.
To recover the 3D structure parameters from the optical flow parameters, we
use Least Squares (LS): the 3D translation parameters are obtained in closed
form, while the 3D rotation parameters and the 3D shape parameters are the



solution of a nonlinear LS problem. Rather than attempting a direct nonlin-
ear minimization, we show that the problem has a bilinear structure. Then,
we solve the bilinear LS problem by factorizing a measurement matrix that is
rank 1 in a noiseless situation, see [5]. Our approach handles general shaped
structures. It is well suited to the analysis of scenes with polyhedral surfaces,
where the optical flow model reduces to the well known affine motion model.
We summarize the approach. For details, see [4, 5].

3D Shape The shape S of the rigid object is a parametric description of the
object surface. We consider objects whose shape is given by a piecewise planar
surface withK patches. The shape parameter vector a collects the coefficients
of these polynomials, i.e., a =

{
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where z = ak
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+
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y describes the shape of the patch k in the object coordinate system.

3D Motion We define the 3D motion of the object by specifying the position
of the object coordinate system relative to the camera coordinate system.
The parameters

(
tuf , tvf , twf

)
are the coordinates of the origin of the object

coordinate system (3D translation) and (θf , φf , ψf ) are the Euler angles that
determine the orientation of the object coordinate system (3D rotation).

Optical flow In [4], we show that the optical flow between the frames I1

and If in the region corresponding to surface patch k is expressed in terms of
a set of optical flow parameters. For planar patches, we get the affine motion
model for the optical flow. We use known numerical techniques to estimate
the optical flow parameters, see [6].

3D Structure from optical flow The optical flow parameters are di-
rectly related to the 3D shape and 3D motion parameters. This relation
leads to a set of equations that define an overconstrained system with respect
to the 3D shape parameters
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}
and to the 3D po-

sitions
{
tuf , tvf , θf , φf , ψf , 1,≤ f,≤ F

}
(under orthography, the component

of the translation along the camera axis, twf , can not be recovered). The
problem of inferring structure from motion is formulated as the LS solution
of the system. First, we solve for the translation parameters which leads
to a closed-form solution. Then, replace the translation estimates and solve
for the remaining motion parameters and shape parameters by factorizing a
measurement matrix.

Rank 1 factorization After replacing the translation estimates, the rela-
tion between the optical flow parameters and the 3D structure parameters is
written in matrix format as

R = MS
T (1)

where R, (2(F−1)×3K), collects the optical flow parameters and M , (2(F−
1) × 3), and S, (3K × 3), collect the 3D motion and 3D shape parameters,
respectively, see [4]. The matrix of optical flow parameters R is 2(F−1)×3K



but it is rank deficient. In a noiseless situation, R is rank 3 reflecting the
high redundancy in the data, due to the rigidity of the object. In [5] we show
how to compute the 3D shape and 3D motion parameters from the optical
flow parameters by factorizing a modified matrix R̃. The matrix R̃ is R

multiplied by the orthogonal projector onto the orthogonal complement of
the space spanned by the first two columns of S. We get

R̃ = m3a
T
1

(2)

where m3 is the third column of M , and a1 is a vector that collects the
3D shape parameters. The 3D shape and 3D motion parameters are computed
by factorizing the rank 1 matrix R̃. See [5] for the details. In reference [7]
we illustrate the properties of the rank 1 matrix when the original matrix R

collects trajectories of feature points.

EXPERIMENT

We used a hand hold taped video sequence of 50 frames showing a box
over a carpet. The camera motion was approximately a rotation around the
box. We processed the box video sequence by using the method described
above. Figure 1 shows two perspective views of the reconstructed 3D shape
and texture. The 3D model is described in terms of four planar patches.
One corresponds to the floor, and the other three correspond to the three
visible faces of the box. We see that the angles between the planar patches
are correctly recovered.

Figure 1: Two perspective views of the reconstructed 3D shape and texture.

APPLICATIONS

Virtualized reality The 3D models obtained from the video data can be
used to build a synthetic image sequence. This synthesis is achieved by spec-
ifying the sequence of viewing positions along time. The viewing positions



are specified by the user, either in a interactive way or from an automatic
procedure. For example, the images in figure 1 were obtained by rotating the
recovered 3D model. Other views are generated in a similar way. Synthetic
images are obtained by selecting from these views a rectangular window,
corresponding to the camera field of view. This is an example of virtual ma-
nipulation of real objects. More complex scenes are obtained by merging real
objects with virtual entities.

Video coding Model-based video representations enable very low bit rate
compression. Basically, instead of representing a video sequence in terms of
frames and pixels, we use the recovered 3D structure. A video sequence is
represented by the 3D shape and texture of the object, and its 3D motion.
Since the 3D motion and 3D shape are coded with a few parameters, the
number of bytes necessary to code the entire sequence is governed by the size
of the object texture representation. The texture is coded as a set of ordinary
images, one for each planar patch. By using this model-based representation,
we reduce dramatically the storage space because we code only once the
brightness values, as opposed to the redundancy of coding the brightness
values at each of the frames of the original sequence.

In figure 2 we illustrate this compression scheme with the box video se-
quence. The original sequence has 50×320×240 = 3840000 bytes. The repre-
sentation based on the 3D model needs

∑
i Ti+

∑
i Si+50×M =

∑
i Ti+2248

bytes, where Ti is the storage size of the texture of patch i, Si is the storage
size of the shape of patch i, and M is the storage size of each camera posi-
tion. We used the JPEG standard to compress texture of each surface patch.
Since the temporal redundancy was eliminated, the compression ratio chosen
for the spatial conversion governs the overall video compression ratio. The
first frame of the original box video sequence is on the left side of figure 2.
The center and right images show the first frame of the synthesized sequence
for two different spatial compression ratios. In the center image, we used
an higher spatial compression ratio, leading to the overall video compression
ratio of 575:1. The right image corresponds to an overall video compression
ratio of 317:1. We can see that the overall quality is good but there are small
artifacts in the boundaries of the surface patches.

Video content addressing Content-based addressing is an important ap-
plication of the 3D model-based video representation. Current systems that
provide content-based access work by first segmenting the video in a sequence
of shots and then labeling each shot with a distinctive indexing feature. The
most common features used are image-based features, such as color histograms
or image moments. By using 3D models we improve both the temporal seg-
mentation and the indexing. The temporal segmentation can account for the
3D content of the scene. Indexing by 3D features, directly related to the
3D shape, enable queries by object similarity. See [8] for illustrative examples
of the use of 3D models in video processing.



Figure 2: Video compression. Left: frame 1 of the box video sequence, Center:
frame 1 of the synthesized sequence for a compression ratio of 575:1, Center:
frame 1 of the synthesized sequence coded for a compression ratio of 317:1.

CONCLUSION

We recover 3D rigid models from 2D video. The experimental results
obtained so far illustrate the performance of the method used. We highlight
potential applications of the 3D models.
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[4] Pedro M. Q. Aguiar and José M. F. Moura. Video representation via 3D
shaped mosaics. In IEEE ICIP, Chicago, USA, October 1998.
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