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Department of Electrical and Computer Engineering

Carnegie Mellon University, Pittsburgh PA, USA

{aguiar,moura}@ece.cmu.edu

Abstract

The factorization method [1] is a feature-based ap-
proach to recover 3D rigid structure from motion.
In [2], we extended their framework to recover a para-
metric description of the 3D shape. In [1, 2], the
3D shape and 3D motion are computed by using an
SVD to approximate a matrix that is rank 3 in a noise-
less situation. In this paper, we develop a new algo-
rithm that has two relevant advantages over the algo-
rithms of [1, 2]. First, instead of imposing a common
origin for the parametric representation of the 3D sur-
face patches, as in [2], we allow the specification of
different origins for different patches. This improves
the numerical stability of the image motion estimation
algorithm and the accuracy of the 3D structure recov-
ery algorithm. Second, we show how to compute the
3D shape and 3D motion by a simple factorization of
a modified matrix that is rank 1 in a noiseless situ-
ation, instead of a rank 3 matrix as in [1, 2]. This
allows the use of very fast algorithms even when us-
ing a large number of features (or regions) and large
number of frames.

1 Introduction
The factorization method [1] is an elegant method

to recover 3D rigid structure from an image se-
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quence. In [1], the 3D positions of the feature points
are expressed in terms of cartesian coordinates in a
world-centered coordinate system, and the images are
modeled as orthographic projections. The 2D projec-
tion of each feature point is tracked along the image
sequence. The 3D shape and motion are then esti-
mated by factorizing a measurement matrix whose en-
tries are the set of trajectories of the feature point
projections. The factorization of the measurement
matrix, which is rank 3 in a noiseless situation, is
computed by using the Singular Value Decomposi-
tion (SVD). The factorization method was extended to
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the scaled-orthography and the paraperspective pro-
jections in [3].

When the goal is the recovery of a dense repre-
sentation of the 3D shape, the factorization approach
of [1, 3] may not solve the problem satisfactorily be-
cause of two drawbacks. First, being feature-based, it
would be necessary to track a huge number of features
to obtain a dense description of the 3D shape. This is
usually impossible because only distinguished points,
as brightness corners, can by accurately tracked. Sec-
ond, even if it is possible to track a large number of fea-
tures, the computational cost of the SVD involved in
the factorization of the measurement matrix would be
very high. These drawbacks motivated the extension
of the factorization approach to recover a parametric
description of the 3D shape, as we did in [2]. Instead of
tracking pointwise features, we track regions for which
the motion induced on the image plane is described by
a single set of parameters.

In this paper, we reformulate the problem. The
reformulation leads to a new algorithm that has two
relevant advantages over the algorithms of [1, 2]. First,
instead of imposing a common origin for the paramet-
ric representation of the 3D surface patches, as in [2],
we allow the specification of different origins for differ-
ent patches. This improves the numerical stability of
the image motion estimation algorithm and the accu-
racy of the 3D structure recovery algorithm, as will be-
come clear later. Second, we show how to compute the
3D shape and 3D motion by a simple factorization of a
modified matrix that is rank 1 in a noiseless situation,
instead of a rank 3 matrix as in [1, 2]. This simplifies
the decomposition and normalization stages involved
in the factorization approach. We avoid the compu-
tation of the SVD by using a fast iterative method
to compute the rank 1 matrix that best matches the
data. Reference [4] compares the computational cost
of the rank 1 factorization with the computational cost
of the original rank 3 factorization method [1] for the
feature-based case.



Paper Overview Section 2 describes the scenario. In
section 3, we characterize the motion induced in the
image plane. Sections 4 and 5 deal with the recovery of
the 3D struacture from the image motion. In section 6,
we detail a real video experiment. Section 7 concludes
the paper.

2 Scenario
We consider a rigid body moving in front of the

camera. We attach coordinate systems to the ob-
ject and to the camera. The object coordinate sys-
tem (o.c.s.) has axes labeled by x, y, and z. The cam-
era coordinate system (c.c.s.) has axes labeled by u, v,
and w. We consider that the o.c.s. coincides with the
c.c.s. on the first frame. The image plane is defined by
the axes u and v. The images are modeled as ortho-
graphic projections of the object texture. Our algo-
rithm is easily extended to the scaled-orthography and
the paraperspective projections by proceeding as [3]
does for the original factorization method.
3D Shape The shape of the rigid object is a para-
metric description of the object surface. Although
our approach is general enough to cope with gen-
eral parameterizations, we consider in this paper ob-
jects whose shape is given by a piecewise planar sur-
face with K patches. The shape parameter vector is
a =

{
ak
00

, ak
10

, ak
01

, 1 ≤ k ≤ K
}

where

z = ak
00

+ ak
10

(x− xk
0
) + ak

01
(y − yk

0
) (1)

describes the shape of the patch k in the o.c.s.. In what
respects to the representation of the planar patches,
the parameters xk

0
and yk

0
can have any value, for ex-

ample they can be made zero as we did in [2]. In
this paper, we allow the specification of general pa-
rameters xk

0
, yk

0
. The relevance of this generalization

is obvious: the shape of a small patch k with support
region {(x, y)} located far from the the point (xk

0
, yk

0
)

has an high sensibility with respect to the shape pa-
rameters ak

10
and ak

01
. To minimize this sensibility, we

choose for (xk
0
, yk

0
) the centroid of the support region

of patch k. With this choice, we improve the numeri-
cal stability of the image motion estimation algorithm
and the accuracy of the 3D structure recovery algo-
rithm.

To simplify the notation, we define the vectors ak =
[ak

10
, ak

01
]T , s = [x, y]T , and sk0 = [xk

0
, yk

0
]T , and

rewrite the shape of the patch k as

z = ak
00

+ a
T
k (s− s

T
k0

). (2)

3D Motion We define the 3D motion of the object by
specifying the position of the o.c.s. relative to the c.c.s.
in terms of

(
tuf , tvf , twf ,Θf

)
where

(
tuf , tvf , twf

)
are

the coordinates of the origin of the o.c.s. with respect
to the c.c.s. (3D translation), and Θf is the rotation
matrix that determine the orientation of the o.c.s. rel-
ative to the c.c.s. (3D rotation).

A point with coordinates [x, y, z]T in the o.c.s. has
the following coordinates in the c.c.s., at frame f ,




uf

vf

wf


 =




ixf iyf
izf

jxf jyf
jzf

kxf kyf
kzf







x

y

z


 +




tuf

tvf

twf


 ,

(3)
where the matrix above is the 3D rotation matrix Θf .

3 Image Motion
In this section we show that the motion induced

in the image plane by the body-camera 3D motion
is affine with different parameterizations for regions
corresponding to different patches. We relate the pa-
rameters of the affine motion model to the 3D shape
and 3D motion parameters.

Under orthography, the point with coordinates
(x, y, z) in the o.c.s. projects in frame f to the im-
age point (uf , vf ) given by

[
uf

vf

]
= Mf




x

y

z


 + tf , (4)

where M f collects the first and second rows of
the 3D rotation matrix introduced in expression (3)
and tf = [tuf , tvf ]T .

Consider a generic point in the object surface with
coordinates s = [x, y]T and z given by expression (2).
We denote by uf (s) = [uf (s), vf (s)]T the trajectory
of the projection of the point s in the image plane.
Since we have chosen the coordinate systems to coin-
cide on the first frame, we have u1(s) = s. At frame f ,
the point s projects according to expression (4), to the
image point

uf (s) = Nfs + nfz + tf , (5)

where we have decomposed the matrix M f as Mf =
[Nf ,nf ] where N f collects the first and second
columns of M f and nf is the third column of M f .
Affine Motion Model By inserting expression (2)
into expression (5), we express the image displacement
between frame 1 and frame f in terms of the 3D shape
and 3D motion parameters, for the points s that fall
into patch k of the object surface. After simple ma-
nipulations, we obtain

u
k
f (s) = (N f + nfa

T
k )(s− s

k
0
) + Nfs

k
0

+ nfak
00

+ tf .

(6)



Denoting the matrix that multiplies (s− sk
0
) and the

vector corresponding to the term independent of s by

{
D

k
f = Nf + nfaT

k

d
k
f = Nfsk

0
+ nfak

00
+ tf

, (7)

we rewrite expression (6) as

u
k
f (s) = D

K
f (s− s

k
0
) + d

k
f . (8)

Expression (8) shows that the image coordinates at
frame f , uf , of the the points belonging to the object
surface are affine mappings of their image coordinates
frame 1, u1 = s. Expression (7) relates the coefficients
of the affine motion models for each patch k to the
3D motion parameters and the 3D shape parameters
corresponding to patch k.
Image Motion Estimation Except for particular
3D motions, the image motion corresponding to differ-
ent surface patches is described by different affine pa-
rameterizations. The problem of estimating the sup-
port regions of the surface patches leads to the segmen-
tation of the image motion field. The segmentation
according to image motion has been widely addressed
in the past, see for example [5, 6]. We use the sim-
ple method of sliding a rectangular window across the
image and detect abrupt changes in the affine motion
parameters.

Another possible way to use our structure from mo-
tion approach is to select a priori the support regions
of the surface patches. In fact, our framework is gen-
eral enough to accommodate the feature tracking ap-
proach because it corresponds to selecting a priori a
set of small (pointwise) support regions with shape de-
scribed by z = constant in each region. In reference [4]
we exploit the feature-based approach.

4 Rigid Structure from Motion
The problem of inferring 3D rigid structure from

the image motion is formulated as estimating the
3D motion parameters {N f ,nf , tf , 2 ≤ f ≤ F} and
the 3D shape parameters {ak

00
,ak, 1 ≤ k ≤ K} from

the image motion parameters {Dk
f ,dk

f , 2 ≤ f ≤ F, 1 ≤
k ≤ K} by inverting the overconstrained set of equa-
tions of expression (7).

We start by estimating the translation. By choos-
ing the object coordinate system in such a way
that

∑
k ak

00
= 0 and the image origin in such

a way that
∑

k sk
0

= [0, 0]T , we obtain the Least
Squares (LS) estimate for the translation vector tf

as the mean of the vectors {dk
f , 1 ≤ k ≤ K},

t̂f =
1

K

K∑

k=1

d
k
f . (9)

To eliminate the dependence of the image motion
parameters on the translation, we replace the transla-
tion estimates into expression (7) and define a new set

of parameters {d̃
k

f} related to {dk
f} by

d̃
k

f = d
k
f −

1

K

K∑

l=1

d
l
f . (10)

Defining the matrices R
k
f and S

T
k as

R
k
f =

[
D

k
f d̃

k

f

]
and S

T
k =

[
I2×2 sk

0

aT
k ak

00

]
,

(11)
we rewrite the equation system (7) in matrix format as

R
k
f = MfS

T
k . (12)

Expression (12) relates the image motion parameters
at frame f and patch k to the 3D rotation at frame f

and the 3D shape parameters for the patch k.
To make explicit the entire set of equations that

arise from considering every patch 1 ≤ k ≤ K and
every frame 2 ≤ f ≤ F , we define the 2(F − 1) × 3K
matrix R of image motion parameters, the 2(F−1)×3
matrix M of 3D rotation parameters, and the 3K × 3
matrix S of 3D shape parameters as

R =




R
1

2
· · · R

K
2

...
. . .

...

R
1

F · · · R
K
F


, M =




M2

...
MF


, S =




S1

...
SK


,

(13)
and we write the relation between the image motion
parameters and the 3D structure parameters as

R = MS
T . (14)

The matrix R of image motion parameters is highly
rank deficient. In a noiseless situation, R is rank 3
reflecting the high redundancy in the data, due to the
rigidity of the object.

5 Rank 1 Factorization
Estimating the 3D shape and 3D rotation parame-

ters given the observation matrix R is a nonlinear LS
problem. The factorization approach [1, 2] finds a sub-
optimal solution to this problem in two stages. The
first stage, decomposition stage, solves R = MS

T

in the LS sense by computing the SVD of the ma-
trix R and selecting the 3 largest singular values.

From R ' UΣV
T , the solution is M = UΣ

1

2 A and

S
T = A

−1Σ
1

2 V
T where A is a non-singular 3×3 ma-

trix. The second stage, normalization stage, com-
putes A by approximating the constraints imposed by
the structure of the matrices M and S.



The formulation we adopt in this paper takes ad-
vantage of the fact that the first two rows of S

T are
known. The problem is then reduced to, given R,
compute M and {ak

mn}. We also perform in sequence
the decomposition and normalization stages. These
stages are as follows. For more details see [4].
Decomposition Because the first two rows of S

T

are known (see expressions (11), and (13)), we show
that the unconstrained bilinear problem R = MS

T is
solved by the factorization of a rank 1 matrix, rather
than a rank 3 matrix like in [1, 2]. Define M =
[M0,m3] and S = [S0,a]. Matrices M 0 and S0

contain the first two columns of M and S, respec-
tively, m3 is the third column of M , and a is the
third column of S. We decompose the shape param-
eter vector a into the component that belongs to the
space spanned by the columns of S0 and the compo-
nent orthogonal to this space as a = S0b + a1, with
aT

1
S0 = [0, 0]. Using these definitions, we rewrite R as

R = M0S
T
0

+ m3b
T
S

T
0

+ m3a
T
1
. (15)

The decomposition stage is formulated as

min
M 0,m3,b,a1

∥∥∥R−M0S
T
0
−m3b

T
S

T
0
−m3a

T
1

∥∥∥
F

,

(16)
where ‖.‖F denotes the Frobenius norm. By solving
the linear LS for M 0 in terms of the other variables,
we get

M̂0 = RS0

(
S

T
0
S0

)
−1

−m3b
T , (17)

where we used the orthogonality between a1 and S0.

By replacing M̂0 in (16), we get

min
m3,a1

∥∥∥R̃−m3a
T
1

∥∥∥
F

, (18)

where R̃ = R

[
I − S0

(
S

T
0
S0

)
−1

S
T
0

]
. (19)

We see that the decomposition stage does not deter-
mine the vector b. This is because the component of a

that lives in the space spanned by the columns of S0

does not affect the space spanned by the columns of
the entire matrix S and the decomposition stage re-
stricts only this last space.

The solution for m3 and a1 is given by the rank 1
matrix that best approximates R̃. In a noiseless situa-
tion, R̃ is rank 1 (we get R̃ = m3a

T
1

by replacing (15)

in (19)). By computing the largest singular value of R̃

and the associated singular vectors, we get

R̃ ' uσv
T , m̂3 = αu, â

T
1

=
σ

α
v

T , (20)

where α is a normalizing scalar different from 0. To
compute u, σ, and v we use a fast algorithm outlined
in [4]. This makes our decomposition stage simpler

than the one in [1, 2]. In fact, R̃ in (19) is R mul-
tiplied by the orthogonal projector onto the orthogo-
nal complement of the space spanned by the columns
of S0. This projection reduces the rank of the problem
from 3 (matrix R) to 1 (matrix R̃).
Normalization We compute α and b by imposing the
constraints that come from the structure of M . By
replacing m̂3 in (17), we get

M̂ =
[

M̂0 m̂3

]
= N

[
I2×2 0

¯2×1

−αb
T α

]
, (21)

where N =

[
RS0

(
S

T
0
S0

)
−1

u

]
. (22)

The constrains imposed by the structure of M are the
unit norm of each row and the orthogonality between
row 2j and row 2j − 1. In terms of N , α, and b, the
constraints are

n
T
i

[
I2×2 −αb

−αb
T α2(1 + b

T
b)

]
ni = 1 and (23)

n
T
2j

[
I2×2 −αb

−αb
T α2(1 + b

T
b)

]
n2j−1 = 0, (24)

where nT
i denotes the row i of matrix N . We com-

pute α and b from the linear LS solution of the
system above in a similar way to the one described
in [1]. The normalization stage is also simpler than
the one in [1] because the number of unknowns is 3

(α and b = [b1, b2]
T
) as opposed to the 9 entries of a

generic 3× 3 normalization matrix.

6 Experiment
We used a hand hold taped video sequence of 30

frames showing a box over a carpet. Figure 1 shows
frames 1 and 10 of the video sequence. The 3D shape
of the scene is well described in terms of four pla-
nar patches. One corresponds to the floor, and the
other three correspond to the three visible faces of the
box. The camera motion was approximately a rota-
tion around the box.

We processed the box video sequence by using the
method described above. We start by estimating the
affine motion parameters. The plots in figure 2 repre-
sent the time evolution of the affine motion parame-
ters. The 6 affine motion parameters are the entries
of the 2 × 2 matrix D

k
f and the 2 × 1 vector d

k
f , see

expression (8). The top four plots of figure 2 represent
the entries of D

k
f as a function of f for each of the four



Figure 1: Frames 1 and 10 of the box video sequence.

planar patches. The bottom two plots represent d
k
f .

We used four different line types to identify each of the
planar patches. The solid line corresponds to patch 1
(the left side vertical face of the box in the frames of
figure 1). The dotted line corresponds to patch 2 (the
right side vertical face of the box). The dash-dotted
line corresponds to patch 3 (the top of the box). The
dashed line corresponds to patch 4 (the floor). We see
the evolution of the set of affine parameters is distinct
for each surface patch, in particular see the evolution
of D11,D12, and d1.
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Figure 2: Estimates of the image motion parameters.

From the affine motion parameters of figure 2, we
have recovered the 3D structure of the scene by using

the rank 1 factorization method. Figure 3 shows two
perspective views of the reconstructed 3D shape with
the scene texture mapped on it. We see that the angles
between the planar patches are correctly recovered.

Figure 3: Two perspective views of the reconstructed
3D shape and texture.

7 Conclusion
We proposed a fast method to recover 3D rigid

structure from motion. Rather than relying on the
tracking of pointwise features, the image motion esti-
mation step makes use of the affine motion parameter-
ization for larger regions, leading to robust estimates
of the image motion parameters. The 3D structure
from motion step is robust because it takes into ac-
count the rigidity of scene over a set of frames. This
step is accomplished with very low computational cost
by factorizing a rank 1 matrix. The experimental re-
sults illustrate the performance of the method.
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