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Abstract. The paper presents a new approach to recovering the 3D
rigid shape of rigid objects from a 2D image sequence. The method has
two distinguishing features: it exploits the rigidity of the object over the
sequence of images, rather than over a pair of images; and, it estimates
the 3D structure directly from the image intensity values, avoiding the
common intermediate step of first estimating the motion induced on the
image plane. The approach constructs the maximum likelihood (ML)
estimate of all the shape and motion unknowns. We do not attempt the
minimization of the ML energy function with respect to the entire set
of unknown parameters. Rather, we start by computing the 3D motion
parameters by using a robust factorization appraoch. Then, we refine the
estimate of the object shape along the image sequence, by minimizing the
ML-based energy function by a continuation-type method. Experimental
results illustrate the performance of the method.

1 Introduction

The recovery of three-dimensional (3D) structure (3D shape and 3D motion)
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from a two-dimensional (2D) video sequence has been widely considered by the
computer vision community. Methods that infer 3D shape from a single frame are
based on cues such as shading and defocus. These methods fail to give reliable
3D shape estimates for unconstrained real-world scenes.

If no prior knowledge about the scene is available, the cue to estimating the
3D structure is the 2D motion of the brightness pattern in the image plane. For
this reason, the problem is generally referred to as structure from motion. The
two major steps in structure from motion are usually the following: compute the
2D motion in the image plane; and estimate the 3D shape and the 3D motion
from the computed 2D motion.
Structure from motion Early approaches to structure from motion processed
a single pair of consecutive frames and provided existence and uniqueness results
to the problem of estimating 3D motion and absolute depth from the 2D motion
in the camera plane between two frames, see for example [10]. Two-frame based
algorithms are highly sensitive to image noise, and, when the object is far from
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the camera, i.e., at a large distance when compared to the object depth, they fail
even at low level image noise. More recent research has been oriented towards the
use of longer image sequences. For example, in [8], the authors use a Kalman filter
to integrate along time a set of two-frame depth estimates, while reference [4]
uses nonlinear optimization to solve for the rigid 3D motion and the set of
3D positions of feature points tracked along a set of frames. References [9] and [2]
estimate the 3D shape and motion by factorizing a measurement matrix whose
entries are the set of trajectories of the feature point projections.

The approaches of the references above rely on the matching of a set of
features along the image sequence. This task can be very difficult when processing
noisy videos. In general, only distinguished points, as brightness corners, can be
used as ”trackable” feature points. As a consequence, those approaches do not
provide dense depth estimates. In [1], we extended the factorization approach
of [9] to recover 3D structure from a sequence of optical flow parameters. Instead
of tracking pointwise features, we track regions where the optical flow is described
by a single set of parameters. The approach of [1] is well suited to the analysis
of scenes that can be well approximated with polyhedral surfaces. In this paper
we seek dense depth estimates for general shaped surfaces.

To overcome the difficulties in estimating 3D structure through the 2D mo-
tion induced onto the image plane, some researchers have used techniques that
infer 3D structure directly from the image intensity values. For example [6] es-
timates directly the 3D structure parameters by using the brightness change

constraint between two consecutive frames. Reference [5] builds on this work by
using a Kalman filter to update the estimates over time.

Proposed approach To formulate the problem of inferring the 3D structure
from a video sequence, we use the analogy between the visual perception mecha-
nism and a classical communication system. This analogy has been used to deal
with perception tasks involving a single image, such as texture segmentation,
and the recovering of shape from texture, see for example [7]. In a communi-
cation system, the transmitter receives a message S to be sent to the receiver.
The transmitter codes the message and sends the resulting signal I∗ through
the channel, to the receiver. The receiver gets the signal I, a noisy version of
the signal I∗. The receiver decodes I obtaining the estimate Ŝ of the message S.
In statistical communications theory, we describe statistically the channel dis-
tortion and design the receiver according to a statistically optimal criteria. For
example, we can estimate Ŝ as the message S that maximizes the probability of
receiving the signal I, conditioned on the message S sent. This is the Maximum

Likelihood (ML) estimate.

The communication system is a good metaphor for the problem of recovering
3D structure from video. The message source is the 3D environment. The trans-
mitter is the geometric projection mechanism that transforms the real world S

into an ideal image I∗. The channel is the camera that captures the image I,
a noisy version of I∗. The receiver is the video analysis system. The task of
this system is to recover the real world that has originated the image sequence
captured.



According to the analogy above, we recover the 3D structure from the video
sequence by computing the ML estimate of all the unknowns: the parameters de-
scribing the 3D motion, the object shape, and the object texture. A distinguish-
ing feature of our work is the formulation of the estimate from a set of images,
rather than a single pair. This provides accurate estimates for the 3D structure,
due to the 3D rigidity of the scene. The formulation of the ML estimate from a
set of frames leads to the minimization of a complex energy function. To min-
imize the ML energy function, we solve for the object texture in terms of the
3D shape and the 3D motion parameters. By replacing the texture estimate, we
are left with the minimization of the ML energy function with respect to the
3D shape and 3D motion. We do not attempt the minimization of the ML energy
function with respect to the entire set of unknown parameters by using generic
optimization methods. Rather, we exploit the specific characteristics of the prob-
lem to develop a computationally feasible approximation to the ML solution. We
compute the 3D motion by using the factorization method detailed in [2]. In fact,
experiments with real videos show that the 3D rigid motion can be computed
with accuracy through the optical flow computed across a set of frames for a
small number of distinguished points or regions. After estimating the 3D mo-
tion, we are left with the minimization of the ML energy function with respect
to the 3D shape. We propose a computationally simple continuation method
to solve this non-linear minimization. Our algorithm starts by estimating coarse
approximations to the 3D shape. Then, it refines the estimate as more images are
being taken into account. The computational simplicity of our algorithm comes
from the fact that each refinement stage, although non-linear, is solved by a
simple Gauss-Newton method that requires no more than one or two iterations.

Our approach provides an efficient way to cope with the ill-posedness of
estimating the motion in the image plane. In fact, the local brightness change

constraint leads to a single restriction, which is insufficient to determine the
two components of the local image motion (the so called aperture problem). Our
method of estimating directly the 3D shape overcomes the aperture problem

because we are left with the local depth as a single unknown, after computing
the 3D motion in a first step.

In this paper we model the image formation process by assuming orthogonal
projections. Orthogonal projections have been used as a good approximation to
the perspective projection when the object is far from the camera [9, 1, 2]. With
this type of scenes, two-frame based methods fail to estimate the absolute depth.
Although formulated assuming orthogonal projections, which leads to estimates
of the relative depth, our method can be easily extended to cope with perspective
projections, which then leads to estimates of the absolute depth.

Paper organization Section 2 formulates the problem. Section 3 discusses the
ML estimate. Section 4 summarizes the factorization method used to estimate
the 3D motion. Section 5 describes the continuation method used to minimize
the ML energy function. Experiments are in section 6. Section 7 concludes the
paper.



2 Problem Formulation

We consider a rigid object O moving in front of a camera. We define the 3D mo-
tion of the object by specifying the position of the object coordinate system rela-
tive to the camera coordinate system. The position and orientation of O at time
instant f is represented by mf =

{
tuf , tvf , twf , θf , φf , ψf

}
where

(
tuf , tvf , twf

)

are the coordinates of the origin of the object coordinate system with respect to
the camera coordinate system (3D translation), and (θf , φf , ψf ) are the Euler
angles that determine the orientation of the object coordinate system relative to
the camera coordinate system (3D rotation).
Observation model The frame If captured at time f , 1 ≤ f ≤ F , is modeled
as a noisy observation of the projection of the object

If = P (O,mf ) + W f . (1)

We assume that P is the orthogonal projection operator. For simplicity, the
observation noise W f is zero mean, white, and Gaussian.

The object O is described by its 3D shape S and texture T . The texture T
represents the light received by the camera after reflecting on the object surface,
i.e., the texture T is the object brightness as perceived by the camera. The
texture depends on the object surface photometric properties, as well as on
the environment illumination conditions. We assume that the texture does not
change with time.

The operator P returns the texture T as a real valued function defined over
the image plane. This function is a nonlinear mapping that depends on the object
shape S and the object position mf . The intensity level of the projection of the
object at pixel u on the image plane is

P (O,mf ) (u) = T (sf (S,mf ;u)) , (2)

where sf (S,mf ;u) is the nonlinear mapping that lifts the point u on the im-
age If to the corresponding point on the 3D object surface. This mapping
sf (S,mf ;u) is determined by the object shape S, and the position mf . To
simplify the notation, we will usually write explicitly only the dependence on f ,
i.e., sf (u). Figure 1 illustrates the lifting mapping sf (u) and the direct map-
ping uf (s) for the orthogonal projection of a two-dimensional object. The inverse
mapping uf (s) also depends on S and mf , but we will, again, usually show only
explicitly the dependence on f . On the left of figure 1, the point s on the surface
of the object projects onto uf (s) on the image plane. On the right, pixel u on
the image plane is lifted to sf (u) on the object surface. We assume that the
object does not occlude itself, i.e., we have uf (sf (u)) = u and sf (uf (s)) = s.
The mapping uf (s), seen as a function of the frame index f , for a particular
surface point s, is the trajectory of the projection of that point in the image
plane, i.e., it is the motion induced in the image plane, usually referred to as
optical flow.

The observation model (1) is rewritten by using (2) as

If (u) = T (sf (u)) + W f (u). (3)
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Fig. 1. Mappings uf (s) and sf (u).

We consider the estimation of the 3D shape S and the 3D motion {mf , 1 ≤ f ≤ F}
of the object O given the video sequence {If , 1 ≤ f ≤ F} of F frames.
Maximum Likelihood estimate formulation Given the observation model,
the 3D shape and the 3D motion of the object O are recovered from the video
sequence {If , 1 ≤ f ≤ F} by estimating all the unknowns: the 3D shape S; the
texture T ; and the set of 3D positions of the object {mf , 1 ≤ f ≤ F} with
respect to the camera. We formulate the ML solution. When the noise sequence
{W f (u)} is zero mean, spatially and temporally white, and Gaussian, the ML
estimate minimizes the sum over all the frames of the integral over the image
plane of the squared errors between the observations and the model1,

CML (S, T , {mf}) =
F∑

f=1

∫
[If (u)− T (sf (u))]

2
du, (4)

{
Ŝ, T̂ , {m̂f}

}
= arg min

S,T ,{mf}
CML (S, T , {mf}) . (5)

In (4), we make explicit the dependence of the cost function CML on the object
texture T . Note that CML depends on the object shape S and the object positions
{mf} through the mappings {sf (u)}.

3 Maximum Likelihood Estimation

We address the minimization of CML (S, T , {mf}) by first solving for the texture

estimate T̂ in terms of the 3D object shape S and the object positions {mf}.
Texture estimate We rewrite the cost function CML given by (4) by changing
the integration variable from the image plane coordinate u to the object surface
coordinate s. We obtain

CML (S, T , {mf}) =

F∑

f=1

∫
[If (uf (s))− T (s)]

2
Jf (s) ds, (6)

1 We use a continuous spatial dependence for commodity. The variables u and s are
continuous while f is discrete.



where uf (s) is the mapping that projects the point s on the object surface onto
the image plane at instant f , see figure 1. The function Jf (s) is the Jacobian of
the mapping uf (s), Jf (s) = |∇uf (s)|.

Expression (6) shows that the cost function CML is quadratic in each intensity

value T (s) of the object texture. The ML estimate T̂ (s) is

T̂ (s) =

∑F
f=1 If (uf (s))Jf (s)

∑F
f=1 Jf (s)

(7)

(see appendix A for the proof). Expression (7) states that the estimate of the
texture of the object at the surface point s is a weighted average of the measures
of the intensity level corresponding to that surface point. A given region around s

on the object surface projects at frame If to a region around uf (s). The size of
this projected region changes with time because of the object motion. The more
parallel to the image plane is the tangent to the object surface at point s, the
larger is the size of the projected region. Expression (7) shows that the larger the
Jacobian Jf (s) is, i.e., the larger the region around s is magnified at frame If ,
the larger is the weight given to that frame when estimating the texture T (s).
Structure from motion as an approximation to ML By inserting the
texture estimate T̂ given by (7) in (6), we can express the cost function CML in
terms of the mappings {uf (s)}. After manipulations (see appendix B) we get

CML (S, {mf}) =

F∑

f=2

f−1∑

g=1

∫
[If (uf (s))− Ig(ug(s))]

2 Jf (s)Jg(s)
∑F

h=1 Jh(s)
ds. (8)

The cost function CML in (8) is a weighted sum of the squared differences between
all pairs of frames. At each surface point s, the frame pair {If , Ig} is weighted

by
Jf (s)Jg(s)∑

F

h=1
Jh(s)

. The larger this weight is, i.e., the larger a region around s is

magnified in frames If and Ig, the more the square difference between If and Ig

affects CML.
Expression (8) also makes clear why the problem we are addressing is re-

ferred to as structure from motion: having eliminated the dependence on the
texture, we are left with a cost function that depends on the structure (3D
shape S and 3D motion {mf}) only through the motion induced in the image
plane, i.e., through the mappings {uf (s)}. Recall the comment on section 2 that
uf (S,mf ; s) depends on the shape S and the motion mf . The usual approach
to the minimization of the functional (8) is in two steps. The first step estimates
the motion in the image plane uf (s) by minimizing an approximation of (8) (in
general, only two frames are taken into account). The second step estimates the
shape S and the motion mf from {mf}. Since the motion in the image plane
can not be reliably computed in the entire image, these methods cannot provide
a reliable dense shape estimate.

Our approach combines the good performance of the factorization method
in estimating the 3D motion with the robustness of minimizing the ML energy
function with respect to the object shape.



4 Rank 1 Factorization

This section summarizes the factorization method used to estimate the 3D mo-
tion. For a detailed description, see [2]. The factorization approach is robust due
to the modelization of the rigidity of the moving object along time. This method
is also computationally simple because it uses a fast algorithm to factorize a
measurement matrix that is rank 1 in a noiseless situation.

A set of N feature points are tracked along an image sequence of F frames.
Under orthography, the projection of feature n in frame f , [ufn, vfn]T , is

[
ufn

vfn

]
=

[
ixf iyf

izf

jxf jyf
jzf

] 

xn

yn

zn


 +

[
tuf

tvf

]
(9)

where ixf , iyf
, izf , jxf , jyf

, and jzf are entries of the well known 3D rotation

matrix, uniquely determined by the Euler angles θf , φf , and ψf , see [3], and tuf

and tvf are the components of the object translation along the camera plane. We
make the object coordinate system and camera coordinate system coincide in the
first frame, so we have u1n = xn and v1n = yn. Thus, the coordinates of the fea-
ture points along the camera plane {xn, yn} are given by their projections in the
first frame. The goal of the factorization method is to solve the overconstrained
equation system (9) with respect to the following set of unknowns: the 3D posi-
tions of the object for 2 ≤ f ≤ F , and the relative depths {zn, 1 ≤ n ≤ N}.

By choosing the origin of the object coordinate system to coincide with the
centroid of the set of feature points, we get the estimate for the translation as
the centroid of the feature point projections. Replacing the translation estimates
in the system of equations (9), and defining

[
ũfn

ṽfn

]
=

[
ufn

vfn

]
−

1

N

N∑

m=1

[
ufm

vfm

]
, R =




ũ21 · · · ũ2N

· · · · · · · · ·
ũF1 · · · ũFN

ṽ21 · · · ṽ2N

· · · · · · · · ·
ṽF1 · · · ṽFN



, (10)

M =



ix2 · · · ixF jx2 · · · jxF

iy2 · · · iyF
jy2 · · · jyF

iz2 · · · izF jz2 · · · jzF




T

, and S
T =



x1 x2 · · · xN

y1 y2 · · · yN

z1 z2 · · · zN


 , (11)

we rewrite (9) in matrix format as

R = MS
T . (12)

Matrix R is 2(F − 1)×N but it is rank deficient. In a noiseless situation, R is
rank 3 reflecting the high redundancy in the data, due to the 3D rigidity of the
object.



The factorization approach finds a suboptimal solution to the bilinear LS
problem of equation (12) where the solution space is constrained by the or-
thonormality of the rows of the matrix M (11). This nonlinear minimization
is solved in two stages. The first stage, decomposition stage, solves the uncon-
strained bilinear problem R = MS

T . The second stage, normalization stage,
computes a set of normalizing parameters by approximating the constraints im-
posed by the structure of the matrix M .
Decomposition stage Define M = [M 0,m3] and S = [S0, z]. M0 and S0

contain the first two columns of M and S, respectively, m3 is the third column
of M , and z is the third column of S. We decompose the relative depth vector z

into the component that belongs to the space spanned by the columns of S0 and
the component orthogonal to this space as z = S0b + a, with a

T
S0 =

[
0 0

]
.

We rewrite R in (12) as R = M 0S
T
0 + m3b

T
S

T
0 + m3a

T .
The decomposition stage is formulated as

min
M 0,m3,b,a

∥∥∥R−M0S
T
0 −m3b

T
S

T
0 −m3a

T
∥∥∥

F
(13)

where ‖.‖F denotes the Frobenius norm. The solution for M 0 is given by M̂0 =

RS0

(
S

T
0 S0

)−1

−m3b
T . By replacing M̂0 in (13), we get

min
m3,a

∥∥∥R̃−m3a
T
∥∥∥

F
, where R̃ = R

[
I − S0

(
S

T
0 S0

)−1

S
T
0

]
. (14)

We see that the decomposition stage does not determine the vector b. This is
because the component of z that lives in the space spanned by the columns of S0

does not affect the space spanned by the columns of the entire matrix S and the
decomposition stage restricts only this last space.

The solution for m3 and a is given by the rank 1 matrix that best ap-
proximates R̃. In a noiseless situation, R̃ is rank 1, see [2] for the details. By

computing the largest singular value of R̃ and the associated singular vectors,
we get

R̃ ' uσv
T , m̂3 = αu, â

T =
σ

α
v

T (15)

where α is a normalizing scalar different from 0. To compute u, σ, and v we
could perform an SVD, but the rank deficiency of R̃ enables the use of less
expensive algorithms to compute u, σ, and v, as detailed in [2].
Normalization stage In this stage, we compute α and b by imposing the

constraints that come from the structure of M . We express M̂ in terms of α
and b as

M̂ =
[
M̂0 m̂3

]
= N

[
I2×2 0

¯2×1

−αb
T α

]
, N =

[
RS0

(
S

T
0 S0

)−1

u

]
. (16)

The constraints imposed by the structure of M are the unit norm of each row
and the orthogonality between row j and row j +F − 1, where F is the number



of frames in the sequence. In terms of N , α, and b, the constraints are

n
T
i

[
I2×2 −αb

−αb
T α2(1 + b

T
b)

]
ni = 1, n

T
j

[
I2×2 −αb

−αb
T α2(1 + b

T
b)

]
nj+F−1 = 0 (17)

where n
T
i denotes the row i of the matrix N . We compute α and b from the

linear LS solution of the system above in a similar way to the one described
in [9].

5 Minimization Procedure

After recovering the 3D motion mf as described is section 4, we insert the
3D motion estimates into the energy function (8) and minimize with respect to
the unknown shape S.

We first make explicit the relation between the image trajectories uf (s) and
the 3D shape S and the 3D motion mf . Choose the coordinate s of the generic
point in the object surface to coincide with the coordinates [x, y]T of the object
coordinate system. Under orthography, a point with coordinate s in the object
surface is projected on coordinate u = [x, y]T = s in the first frame, so that
u1(s) = s (remember that we have chosen the object coordinate system so that
it coincides with the camera coordinate system in the first frame). At instant f ,
that point is projected to

uf (s) = uf

([
x

y

])
=

[
ixf iyf

izf

jxf jyf
jzf

] 

x

y

z


 +

[
tuf

tvf

]
=

[
Nf nf

] [
s

z

]
+ tf

= Nfs + nfz + tf , (18)

where ixf , iyf
, izf , jxf , jyf

, and jzf are entries of the 3D rotation matrix [3].
The 3D shape is represented by the unknown relative depth z.
Modified image sequence for known motion The 3D shape and the 3D mo-
tion are observed in a coupled way through the 2D motion on the image plane,
see expression (18). When the 3D motion is known, the problem of inferring
the 3D shape from the image sequence is simplified. In fact, the local brightness

change constraint leads to a single restriction, which is insufficient to determine
the two components of the local image motion (this is the so called aperture

problem). Our method of estimating directly the 3D shape overcomes the aper-

ture problem because we are left with the local depth as a single unknown,
after computing the 3D motion in the first step. To better illustrate why the
problem becomes much simpler when the 3D motion is known, we introduce
a modified image sequence {Ĩf , 1 ≤ f ≤ F}, obtained from the original se-
quence {If , 1 ≤ f ≤ F} and the 3D motion. We show that the 2D motion of

the brightness pattern on image sequence Ĩf depends on the 3D shape in a very
particular way. This motivates the algorithm we use to minimize (8).

Consider the image Ĩf related to If by the following affine mapping that
depends only on the 3D position at instant f ,

Ĩf (s) = If (Nfs + tf ). (19)



From this definition it follows that a point s, that projects to uf (s) in image If ,

is mapped to ũf (s) = N
−1
f [uf (s)− tf ] in image Ĩf . Replacing uf (s) by ex-

pression (18), we obtain for the image motion of the modified sequence {Ĩf},

ũf (s) = s + N
−1
f nfz. (20)

Expression (20) shows that the trajectory of a point s in image sequence {Ĩf}
depends on the relative depth of that point in a very particular way. In fact, the
trajectory has the same shape for every point. The shape of the trajectories is
given by the evolution of N

−1
f nf across the frame index f . Thus, the shape of

the trajectories depends uniquely on the rotational component of the 3D motion.
The relative depth z affects only the magnitude of the trajectory. A point with
relative depth z = 0 is stationary in {Ĩf}, since we get ũf (s) = s from (20) for
arbitrary 3D motion of the object.

Continuation method By minimizing (8) with respect to the relative depth
of each point s, we are in fact estimating the magnitude of the trajectory of
the point to where the point s maps in image sequence {Ĩf}. The shape of the
trajectory is known, since it depends only on the 3D motion. Our algorithm is
based on this characteristic of the ML energy function. We use a continuation-
type method to estimate the relative depth of each point. The algorithm refines
the estimate of the relative depth as more frames are being taken into account.
When only a few frames are taken into account, the magnitude of the trajectories
on image sequence {Ĩf} can be only roughly estimated because the length of the
trajectories is short and their shape may be quite simple. When enough frames
are considered, the trajectories on image sequence {Ĩf} are long enough, their
magnitude is unambiguous, and the relative depth estimates are accurate. Our
algorithm does not compute {Ĩf}, it rather uses the corresponding intensity
values of {If}.

The advantage of the continuation-type method is that is provides a com-
putationally simple way to estimate the relative depth because each stage of
the algorithm updates the estimate by using a Gauss-Newton method, i.e., by
solving a linear problem. We consider the relative depth z to be constant in a
region R. We estimate z by minimizing the energy resultant from neglecting the

weighting factor
Jf (s)Jg(s)∑

F

h=1
Jh(s)

in the ML energy function (8). Thus, we get

ẑ = arg min
z
E(z), E(z) =

F∑

f=2

f−1∑

g=1

∫

R

e2(z) ds, (21)

where

e(z) = If (Nfs + nfz + tf )− Ig(Ngs + ngz + tg). (22)

We compute ẑ by refining a previous estimate z0, as

ẑ = z0 + δ̂z, δ̂z = arg min
δz

E(z0 + δz). (23)



The Gauss-Newton method neglects the second and higher order terms of the
Taylor series expansion of e(z0 + δz). By making this approximation, we get

δ̂z = −

∑F
f=2

∑f−1
g=1

∫
R
e(z0)e

′(z0)
∑F

f=2

∑f−1
g=1

∫
R

[e′(z0)]
2
, (24)

where e′ is the derivative of e with respect to z. By differentiating (22), we get

e′(z) = If x
(Nfs + nfz + tf )izf + If y

(Nfs + nfz + tf )jzf

−Igx
(Ngs + ngz + tg)izg − Igy

(Ngs + ngz + tg)jzg, (25)

where If x
and If y

denote the components of the spatial gradient of image If .
At the beginning, we start with the initial guess z0 = 0 for any region R.

We use square regions where z is estimated as being constant. The size of the
regions determines the resolution of the relative depth estimate. We use large
regions when processing the first frames and decrease the size of regions as the
continuation method takes more frames into account.

6 Experimens

We describe two experiments that illustrate our approach. The first experiment
uses a synthetic sequence for which we compare the estimates obtained with the
ground truth. The second experiment uses a real video sequence.
Synthetic sequence We consider that the world is 2D and that the images
are 1D orthogonal projections of the world. This scenario reflects all the basic
properties and difficulties of the structure from motion paradigm and corresponds
to the real 3D world if we consider only one epipolar plane and assume that the
motion occurs on that plane. In figure 2 we show a computer generated sequence
of 25 1D images. Time increases from top to bottom. The time evolution of the
translational and rotational components of the motion are shown respectively in
the left and middle plots of figure 3. The object shape is shown on the right plot
of figure 3. The object texture is an intensity function defined over the object
contour. We obtained the image sequence in figure 2 by projecting the object
texture on the image plane and by adding noise.

In figure 4 we represent the modified image sequence, computed from the
original sequence in figure 2, as described in section 5 for the 3D scenario, see
expression (19). The motion of the brightness pattern in figure 4 is simpler than
the motion in figure 2. In fact, the horizontal positions of the brightness patterns
in figure 4 have a time evolution that is equal for the entire image (see, from
figure 4 and the left plot of figure 3 that the shape of the trajectories of the
brightness patterns is related to the rotational component of the motion). Only
the amplitude of the time evolution of the horizontal positions of the brightness
patterns in figure 4 is different from an object region to another object region.
The amplitude for a given region is proportional to the relative depth of that
region. Note that the brightness pattern is almost stationary for regions with
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Fig. 2. Sequence of 25 1D images: each horizontal slice is one image.
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Fig. 3. True motion and true shape. Left: rotational motion; middle: translational
motion; right: object shape.

relative depth close to zero (see the regions around pixels 55 and 95 on the right
plot of figure 3 and on figure 4). This agrees with the discussion in section 5.

We estimated the relative depth of the object by using the continuation
method introduced in section 5. The evolution of the relative depth estimate
is represented in the plots of figure 5 for several time instants. The size of the
estimation region R was 10 pixels when processing the first 5 frames, 5 pixels
when processing frames 6 to 10, and 3 pixels when processing frames 11 to 25.
The true depth shape is shown by the dashed line in the bottom right plot of
figure 5. The top left plot was obtained with the first three frames and shows
a very coarse estimate of the shape. The bottom right plot was obtained after
all 25 frames of the image sequence have been processed. In this plot we made
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Fig. 4. Modified image sequence for known motion.



a linear interpolation between the central points of consecutive estimation re-
gions. This plot superposes the true and the estimated depths showing a very
good agreement between them. The intermediate plots show progressively better
estimates of the depth shape.
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Fig. 5. Continuation method: evolution of the shape estimate. Left to right, top to
bottom, after processing F frames where F is successively: 3, 4, 5, 6, 8, 10, 15, 20, 25.
The true shape is shown as the dashed line in the bottom right plot.

Real video We used a sequence of 10 frames from a real video sequence showing
a toy clown. Figure 6 shows frames 1 and 5. Each frame has 384 × 288 pixels.
Superimposed on frame 1, we marked with white squares 20 features used in
the factorization method. The method used to select the features is reported
elsewhere. We tracked the feature points by matching the intensity pattern of
each feature along the sequence. Using the factorization approach summarized
in section 4 we recovered the 3D motion from the feature trajectories.

We estimated the relative depth of the 3D object by using the continuation
method described in section 5. The evolution of the estimate of the relative depth
is illustrated by figure 7. The grey level images in this figure code the relative
depth estimates. The brighter a pixel is, the closer to the camera it is in the first
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Fig. 6. Clown sequence: frames 1 and 5.

frame. The size of the estimation region R was 30 × 30 pixels when processing
the first 3 frames, 20×20 pixels when processing frames 4 to 6, and 10×10 pixels
when processing frames 7 to 10. The left image was obtained with the first three
frames and shows a very coarse estimate of the shape. The right image was
obtained after all 10 frames of the image sequence have been processed.
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Fig. 7. Relative depth estimate after processing 3, 6, and 10 frames.

7 Conclusion

Final remarks We presented a new approach to the recovery of 3D rigid struc-
ture from a 2D video sequence. The problem is formulated as the ML estimation
of all the unknowns directly from the intensity values of the set of images in
the sequence. We estimate the 3D motion by using a factorization method. We
develop a continuation-type algorithm to minimize the ML energy function with
respect to the object shape. The experimental results obtained so far are promis-
ing and illustrate the good performance of the algorithm.
Future extensions A number of possible extensions of this work are foreseen.
First, our methodology can be modified to achieve the estimation of the abso-
lute depth by using the perspective projection model. Other possible extensions
include the investigation of different shape models. In this paper we use a dense
depth map. Parametric models enable more compact and robust shape represen-
tation. The formulation of the problem directly from the image intensity values



provides a robust way of dealing with such issues as segmentation (for piece-
wise models) and model complexity, by using classic tools such as the Bayesian
inference or information-theoretic criteria.

A Texture Estimation

To prove that the ML estimate T̂ (s) of the texture T (s) is given by expres-
sion (7), we show that it leads to the minimum of the cost function CML,
given by expression (6), over all texture functions T (s). Consider the candidate

T (s) = T̂ (s) + U(s). The functional CML for texture function T (s) is

CML(T ) =

F∑

f=1

∫ [
If (uf (s))− T̂ (s)− U(s)

]2

Jf (s) ds

=

F∑

f=1

∫ [
If (uf (s))− T̂ (s)

]2

Jf (s) ds +

F∑

f=1

∫
U2(s)Jf (s) ds

−2

F∑

f=1

∫ [
If (uf (s))− T̂ (s)

]
U(s)Jf (s) ds. (26)

The first term of the expression above is CML(T̂ ). The third term is 0, as comes

immediately by replacing T̂ (s) by expression (7). We have

CML(T ) = CML(T̂ ) +
F∑

f=1

∫
U2(s)Jf (s) ds ≥ CML(T̂ ), (27)

which concludes the proof. The inequality comes from the fact that we can
always choose the texture coordinates s in such a way that the mappings uf (s)
are such that the determinants Jf (s) = |∇uf (s)| are positive. For example,
make the texture coordinate s equal to the image plane coordinate u in the
first frame I1. The mapping u1(s) is the identity mapping u1(s) = s and we
have a positive Jacobian J1(s) = 1. Now, draw an oriented closed contour on
the surface S, in the neighborhood of s, and containing s in its interior. This
contour, which we call Cs is projected in image I1 in an oriented closed planar
contour Cu1. It is geometrically evident that the same contour Cs projects in
image If , in a contour Cuf that has, in general, different shape but the same
orientation that the contour Cu1 (remember that we are assuming the object
does not occlude itself). For this reason, the Jacobian Jf (s) of the function that
maps from s to uf (s) for 2 ≤ f ≤ F , has the same signal as the Jacobian J1(s)
of the function that maps from s to u1(s), so we get Jf (s) > 0 for 1 ≤ f ≤ F .

B CML in terms of {uf(s)}

We show that the ML-based cost function is expressed in terms of the motion in
the image plane as in expression (8). Replace the texture estimate T̂ (s), given



by (7), into the ML-based cost function, given by (6). After simple algebraic
manipulations, we get

CML =

∫ F∑

f=1

[∑F
g=1 [If (uf (s))− Ig(ug(s))] Jg(s)

∑F
h=1 Jh(s)

]2

Jf (s) ds. (28)

Expressing the square above in terms of a sum of products and carrying out the
products, after algebraic manipulations, we get

CML =

∫ ∑F
f=1

∑F
g=1

∑F
h=1

[
I

2
f (s)− If (s)Ig(s)

]
Jf (s)Jg(s)Jh(s)

[∑F
h=1 Jh(s)

]2 ds. (29)

Now we divide by
∑F

h=1 Jh(s) both the numerator and the denominator of the
integrand function. By using the equality

F∑

f=1

F∑

g=1

[
I

2
f (s)− If (s)Ig(s)

]
Jf (s)Jg(s) =

F∑

f=2

f−1∑

g=1

[If (s)− Ig(s)]
2
Jf (s)Jg(s),

(30)
we get

CML =

∫ ∑F
f=2

∑f−1
g=1 [If (s)− Ig(s)]

2
Jf (s)Jg(s)

∑F
h=1 Jh(s)

ds, (31)

and conclude the derivation. Note that by interchanging the integral and the
sum in (31), we get the ML-based cost function CML as in expression (8).
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