
Factorization as a Rank 1 Problem

Pedro M. Q. Aguiar∗ José M. F. Moura

Instituto de Sistemas e Robótica Carnegie Mellon University
IST, Lisboa, Portugal Pittsburgh, PA, USA
aguiar@isr.ist.utl.pt moura@ece.cmu.edu

Abstract
Tomasi and Kanade [1] introduced the factorization

method for recovering 3D structure from 2D video. In
their formulation, the 3D shape and 3D motion are
computed by using an SVD to approximate a matrix
that is rank 3 in a noiseless situation. In this pa-
per we reformulate the problem using the fact that the
x and y coordinates of each feature are known from
their projection onto the image plane in frame 1. We
show how to compute the 3D shape, i.e., the relative
depths z, and the 3D motion by a simple factorization
of a matrix that is rank 1 in a noiseless situation. This
allows the use of very fast algorithms even when using
a large number of features and large number of frames.
We also show how to accommodate confidence weights
for the feature trajectories. This is done without addi-
tional computational cost by rewriting the problem as
the factorization of a modified matrix.

1 Introduction
The recovery of the 3D structure (3D shape and

3D motion) from a 2D video sequence has been widely

IEEE Computer Society International Conference on Computer Vision and Pattern Recognition
June 1999, Fort Collins, Colorado, USA
c© 1999 IEEE

considered by the computer vision community. If no
prior knowledge about the scene is available, the cue
to estimating the 3D structure is the 2D motion of the
brightness pattern in the image plane. For this reason,
this problem is generally referred to as structure from
motion. The two major steps in structure from motion
are usually the following: compute the 2D motion in
the image plane; and estimate the 3D shape and the
3D motion from the computed 2D motion. Early ap-
proaches to structure from motion processed a single
pair of consecutive frames and provided existence and
uniqueness results to the problem of estimating 3D
motion and absolute depth from the 2D motion in the
camera plane between two frames. Two-frame based
algorithms are highly sensitive to image noise, and,
when the object is far from the camera, i.e., at a large
distance when compared to the object depth, they fail

∗The work of P. Aguiar was partially supported by INVOTAN.

even at low level image noise. More recent research
has been oriented towards the use of longer image se-
quences, leading to filtering algorithms that integrate
along time a set of two-frame depth estimates.

Tomasi and Kanade [1] introduced an elegant
method to recover rigid structure from an image se-
quence. Instead of representing the 3D positions of
feature points by their image coordinates and their
depths, they adopt Ullman’s original formulation of
the structure from motion problem [2]. In [1], as in [2],
the 3D positions of the feature points are expressed in
terms of cartesian coordinates in a world-centered co-
ordinate system, and the images are modeled as ortho-
graphic projections. In [1], the 2D projection of each
feature point is tracked along the image sequence. The
3D shape and motion are then estimated by factoriz-
ing a measurement matrix whose entries are the set
of trajectories of the feature point projections. This
work was later extended to the scaled-orthography and
paraperspective projections [3, 4].

In this paper, we adopt the scenario of [1] and [2],
i.e., we also consider a world-centered coordinate sys-
tem and the orthographic projection model. In our
formulation the unknowns are the 3D motion and the
relative depths of the set of features, not their 3D po-
sitions as considered in [1]. The coordinates of the
features along the camera plane are given by their im-
age positions in the first frame. The knowledge of
the x and y coordinates of the features enables us to
solve the structure from motion problem by factorizing
a rank 1 matrix instead of a rank 3 matrix as in [1].
This simplifies the decomposition and normalization
stages involved in the factorization approach. Our ap-
proach is easily extended to the scaled-orthography
and paraperspective projections.

We avoid the computation of the Singular Value
Decomposition (SVD) by using a fast iterative method
to compute the rank 1 matrix that best matches the
data. Reference [5] introduced a recursive formulation
for the original rank 3 factorization that also does not

use SVD. The method in [5] stores and updates a ma-
trix that becomes very large with the increasing of the
number of features. In our implementation, it is not
necessary to store or compute any other matrix than
the matrix to be factorized.

In the paper we also show how to include confidence
weights for the feature trajectories, i.e., how to weight
more the trajectory of a ”sharp” feature than the tra-
jectory of a ”smooth” feature. Reference [3] proposes
an iterative method to solve a more general problem,
where the weights are time-variant. As reported in [3]
the iterative method may fail to converge. We show
that when the weights are time-invariant, the prob-
lem is rewritten as the non-weighted factorization of
a modified matrix. Then, any method can be used to
factorize this matrix.

In [6] we extended the factorization approach to
recover 3D structure from a sequence of optical flow
parameters. Instead of tracking pointwise features, we
track regions where the optical flow is described by a
single set of parameters. The reliability of the esti-
mates of the optical flow parameters depends not only
on the spatial variability of the brightness pattern but
also on the size of the region. The weighted factoriza-
tion method we describe below is general enough to
be applied to that framework.
Paper overview In section 2 we formulate the struc-
ture from motion problem. Section 3 shows how to
recover structure from motion by factorizing a rank 1
matrix. In section 4 we extend the approach to accom-
modate confidence weights. The algorithm to com-
pute the best rank 1 approximation is described in
section 5. Experimental results are in section 6. Sec-
tion 7 concludes the paper.

2 Problem Formulation
We consider the same scenario of [1]. Attach a co-

ordinate system to the object. The object coordinate
system has axes labeled by (x, y, z). The shape of
the object is described by the 3D position of a set
of N feature points. The 3D position of feature n
is expressed in terms of the object coordinate system
by (xn, yn, zn). To describe the 3D motion of the ob-
ject, we attach a different coordinate system to the
camera. The camera coordinate system has axes la-
beled by (u, v, w). The 3D motion of the object is
described by the position of the object coordinate sys-
tem with respect to the camera coordinate system.

A set of N feature points are tracked along an image
sequence of F frames. Under orthography, the projec-
tion of feature n in frame f , denoted by (ufn, vfn), is

ufn = ixfxn + iyfyn + izfzn + tuf (1)

vfn = jxfxn + jyfyn + jzfzn + tvf (2)
where ixf , iyf , izf , jxf , jyf , and jzf are entries of the
well known 3D rotation matrix, and tuf and tvf are
the components of the object translation along the
camera plane. We make the object coordinate sys-
tem and camera coordinate system coincide in the first
frame, so we have

u1n = xn and v1n = yn. (3)

The coordinates of the feature points along the
camera plane {xn, yn, 1 ≤ n ≤ N} are given by (3).
We formulate the structure from motion problem as
solving the overconstrained equation system (1,2) with
respect to the following set of unknowns: the 3D po-
sitions of the object for 2 ≤ f ≤ F , and the relative
depths {zn, 1 ≤ n ≤ N}.

By choosing the origin of the object coordinate sys-
tem to coincide with the centroid of the set of feature
points, we get the estimate for the translation as the
centroid of the feature point projections

t̂uf =
1
N

N∑
n=1

ufn and t̂vf =
1
N

N∑
n=1

vfn. (4)

Replacing the translation estimates in equation sys-
tem (1,2), and defining

ũfn = ufn− 1
N

N∑
n=1

ufn, ṽfn = vfn− 1
N

N∑
n=1

vfn, (5)

R =

ũ21 ũ22 · · · ũ2N

· · · · · · · · · · · ·
ũF1 ũF2 · · · ũFN

ṽ21 ṽ22 · · · ṽ2N

· · · · · · · · · · · ·
ṽF1 ṽF2 · · · ṽFN

, (6)

M =

 ix2 · · · ixF jx2 · · · jxF

iy2 · · · iyF jy2 · · · jyF
iz2 · · · izF jz2 · · · jzF

T

, (7)

and ST =

 x1 x2 · · · xN

y1 y2 · · · yN

z1 z2 · · · zN

 , (8)

we rewrite (1,2) in matrix format as

R = MST . (9)

Matrix R is 2(F − 1)× N but it is rank deficient. In
a noiseless situation, R is rank 3 reflecting the high
redundancy in the data, due to the 3D rigidicity of
the object. The relation expressed in matrix format as
in (9) was first introduced in [1]. In our formulation,
the rows corresponding to frame 1 are not included
in R and M , and we use the fact that the first two
rows of ST are known.

3 Rank 1 Factorization
The factorization approach [1] finds a suboptimal

solution to the problem

min
M ,S

∥∥∥R − MST
∥∥∥

F
(10)

where the solution space is constrained by the or-
thonormality of the rows of the matrix M (7).
‖.‖F denotes the Frobenius norm. In [1], the nonlin-
ear minimization above was solved in two stages. The
first stage, decomposition stage, solves R = MST in
the Least Squares (LS) sense by computing the SVD of
the matrix R and selecting the 3 largest singular val-
ues. From R 	 UΣV T , the solution is M = UΣ

1
2 A

and ST = A−1Σ
1
2 V T where A is a non-singular 3×3

matrix. The second stage, normalization stage, com-
putes A by approximating the constrains imposed by
the structure of the matrix M .

Our formulation takes advantage of the fact that
the first two rows of S are known ({xn, yn} are known
from the position of the features in the first frame).
The problem is now reduced to, given R, compute M
and {zn}. This problem, although nonlinear, has a
specific structure: it is a bilinear constrained LS prob-
lem. The bilinear relation comes from (9) and the con-
strains are imposed by the orthonormality of the rows
of the matrix M (7). We also perform in sequence the
decomposition stage (that solves the unconstrained bi-
linear problem) and the normalization stage.
Decomposition Because the first two rows of ST are
known, we show that the unconstrained bilinear prob-
lem R = MST is solved by the factorization of a
rank 1 matrix, rather than a rank 3 matrix like in [1].
Define M = [M0,m3] and S = [S0,z]. M0 and S0

contain the first two columns of M and S, respec-
tively, m3 is the third column of M , and z is the
third column of S. We decompose the relative depth
vector z into the component that belongs to the space
spanned by the columns of S0 and the component or-
thogonal to this space as

z = S0b + a, with aT S0 =
[
0 0

]
. (11)

We rewrite R by inserting (11) in (9), as

R = M0S
T
0 + m3b

T ST
0 + m3a

T . (12)

The decomposition stage is formulated as

min
M 0,m3,b,a

∥∥∥R − M0S
T
0 − m3b

T ST
0 − m3a

T
∥∥∥

F
.

(13)

Since we know S0, we eliminate the dependence of the
expression above on M0 by solving the linear LS for
M0 in terms of the other variables. We get

M̂0 = RS0

(
ST

0 S0

)−1

− m3b
T (14)

where we used the Moore-Penrose pseudoinverse and
the orthogonality between a and S0. By replacing M̂0

in (13), we get

min
m3,a

∥∥∥R̃ − m3a
T
∥∥∥

F
, (15)

where R̃ = R

[
I − S0

(
ST

0 S0

)−1

ST
0

]
. (16)

We see that the decomposition stage does not deter-
mine the vector b. This is because the component of z
that lives in the space spanned by the columns of S0

does not affect the space spanned by the columns of
the entire matrix S and the decomposition stage re-
stricts only this last space.

The solution for m3 and a is given by the rank 1
matrix that best approximates R̃. In a noiseless situa-
tion, R̃ is rank 1 (we get R̃ = m3a

T by replacing (12)
in (16)). By computing the largest singular value of R̃
and the associated singular vectors, we get

R̃ 	 uσvT , m̂3 = αu, âT =
σ

α
vT (17)

where α is a normalizing scalar different from 0. To
compute u, σ, and v we could an SVD, but the rank
deficiency of R̃ enables the use of less expensive al-
gorithms to compute u, σ, and v, as detailed in sec-
tion 5. This makes our decomposition stage simpler
than the one in [1]. In fact, R̃ in (16) is R multiplied
by the orthogonal projector onto the orthogonal com-
plement of the space spanned by the columns of S0.
This projection reduces the rank of the problem from 3
(matrix R) to 1 (matrix R̃).
Normalization In this stage, we compute α and b by
imposing the constrains that come from the structure
of M . By replacing m̂3 in (14), we get

M̂ =
[

M̂0 m̂3

]
= N

[
I2×2 0

¯2×1

−αbT α

]
, (18)

where N =
[

RS0

(
ST

0 S0

)−1

u

]
. (19)

The constrains imposed by the structure of M are the
unit norm of each row and the orthogonality between
row j and row j+F −1. In terms of N , α, and b, the
constraints are

nT
i

[
I2×2 −αb

−αbT α2(1 + bT b)

]
ni = 1, (20)

nT
j

[
I2×2 −αb

−αbT α2(1 + bT b)

]
nj+F−1 = 0 (21)

where nT
i denotes the row i of matrix N . We compute

α and b from the linear LS solution of the system
above in a similar way to the one described in [1].
The normalization stage is also simpler than the one
in [1] because the number of unknowns is 3 (α and b =
[b1, b2]

T) as opposed to the 9 entries of a generic 3× 3
normalization matrix.

4 Weighted Factorization
Usually, feature tracking is achieved by matching

the intensity pattern of a small block around each fea-
ture point across the frame sequence. The accuracy
of the matching depends on the spatial variability of
the intensity pattern around each feature. The model
in the previous section, as well as the model in ref-
erence [1], weights equally the contribution of each
feature to the final shape and motion estimates. A
more robust estimate would weight more a trajectory
corresponding to a “sharp” feature than a trajectory
corresponding to a feature with more smooth texture.
In this section, we introduce such a model and show
that it leads to the factorization of a modified matrix.
The computation of the weighted estimates is then
done by using the method of the previous section, i.e.,
without additional computational cost.

The derivations in this section are valid for a more
general factorization framework like the one we pre-
sented in [6]. In that paper, we parameterize the
3D shape and recover the 3D shape parameters and
3D motion parameters from the induced optical flow
field. This is done by using the factorization of a ma-
trix that collects optical flow parameters over a set
of frames. The reliability of the estimates of the op-
tical flow parameters depends on the size of the im-
age region of analysis and on the spatial variability
of the brightness pattern. The weighted factorization
method we describe below is general enough to be ap-
plied to that framework.

We consider the model in expressions (1,2). Each
component of the trajectory of the feature n is ob-
served with additive gaussian white noise of vari-
ance σ2

n. By choosing the origin of the object coor-
dinate system in such a way that

∑
n

xn

σ2
n
=

∑
n

yn

σ2
n
=∑

n
zn

σ2
n
= 0, we get the estimates

t̂uf =

∑N
n=1

ufn

σ2
n∑N

n=1
1

σ2
n

and t̂vf =

∑N
n=1

vfn

σ2
n∑N

n=1
1

σ2
n

(22)

for the translation along the camera plane. Expres-
sions (22) generalize (4). Replacing the translation

estimates in equation system (1,2), and defining

ũfn = ufn−
∑N

n=1
ufn

σ2
n∑N

n=1
1

σ2
n

, ṽfn = vfn−
∑N

n=1
vfn

σ2
n∑N

n=1
1

σ2
n

(23)

and the matrices R,M , and S as in (6,7,8), we obtain,
as before, R = MST .

To take into account the different variances {σ2
n},

we define the 2(F − 1)× N matrix Σ as

Σ =

σ−1
1 σ−1

2 · · · σ−1
N

σ−1
1 σ−1

2 · · · σ−1
N

· · · · · · · · · · · ·
σ−1

1 σ−1
2 · · · σ−1

N

 (24)

where each entry of Σ represents the weight to be
given to each entry of matrix R. We formulate the
weighted factorization by writing the Maximum Like-
lihood estimate. This estimate generalizes (10) as

min
M ,S

∥∥∥(
R − MST

)

 Σ

∥∥∥
F

(25)

where
 denotes the Hadamard product. Due to the
structure of Σ, we rewrite (25) as the factorization of
a modified matrix Rw,

min
M ,Sw

∥∥∥Rw − MST
w

∥∥∥
F

(26)

where Rw = RW , Sw = WS, (27)

W = diag(
1
σ1

, . . . ,
1

σN
) = [wij] , wij =

1
σi

δi−j . (28)

The factorization in (26) is similar to the one stud-
ied in the previous section. Note that Rw and the
first two rows of ST

w are known from (27). We mini-
mize (26) by using the procedure described in the pre-
vious section to compute the estimates M̂ and Ŝw.
The estimate Ŝ is obtained from Ŝw by Ŝ = W−1Ŝw.

Reference [3] also considers the reliability weights
in estimating M and S. In [3], the author allows
the matrix Σ to have a general structure, i.e., one
can give each feature a weight that varies along the
time. The solution is found by an iterative process
that, as reported in [3], may fail to converge. In our
formulation, this is not the case because we restrict
the weight matrix Σ to have the structure of (24).
For a general matrix Σ, it is not possible to write the
minimization (25) in the form of a factorization (26).
In fact, the unconstrained bilinear weighted LS prob-
lem (25) has a single global minimum, up to a scale
factor, when Σ has the rows all equal or the columns
all equal. It can be shown that this is not true for a
generic matrix Σ. In this case, the existence local min-
ima makes nontrivial the using of iterative numerical
techniques.

5 Singular Value Computations
This section describes how we compute the rank 1

approximation of a given matrix R̃. The problem is

min
u,v

∥∥∥R̃ − uvT
∥∥∥

F
(29)

which comes from expression (17) by including the
scaling factor σ into the vector v. The solution to (29)
is known to be given by the SVD of R̃ after selecting
the largest singular value.

The rank deficiency of R̃ enables the use of a less
expansive iterative technique to compute the decom-
position. It is based on the fact that only the singular
vector v that corresponds to the largest singular value
has to be computed. Since the vector v is the eigenvec-
tor of R̃

T
R̃ that corresponds to the largest eigenvalue,

we start with a random choice v0 and iterate,

vi+1 =
vT

i vi

vT
i R̃

T
R̃vi

R̃
T
R̃vi (30)

until convergence, see [7]. In each iteration, the com-
ponent of vi along the vector v is more magnified that
the components along the other eigenvectors of R̃

T
R̃.

The fraction in (30) is a normalizing factor. The vec-
tor u is then computed by solving (29) with v given
by the final value of the iterative process above,

u =
R̃v

vT v
. (31)

This iterative procedure can be generalized to com-
pute the best rank r approximation of a given matrix,
for r > 1 . This was done in reference [5] where the
authors propose a recursive formulation to the orig-
inal rank 3 factorization. Their method stores and
updates the N × N matrix RT R. Then, they use
this matrix to compute, iteratively, the best rank 3
approximation of R. When the number of features is
large, the matrix RT R becomes very large. In our
implementation of the decomposition stage, instead of
computing R̃

T
R̃, we split the computation of each it-

eration (30) by first computing R̃vi,

ṽi = R̃vi, vi+1 =
vT

i vi

ṽT
i ṽi

R̃
T
ṽi. (32)

6 Experiments
We describe three experiments. The first experi-

ment uses synthetic data to illustrate the properties
of the rank 1 matrix R̃. The second experiment com-
pares the computational cost of our approach with the

one of the original factorization approach. In the third
experiment, we recover the 3D shape and 3D motion
from a real video sequence.
Experiment 1 This experiment illustrates the prop-
erties of the rank 1 matrix R̃ by using synthetic data.
We generated a set of 10 feature points randomly lo-
cated inside a cube. The 3D rotational motion was
simulated by synthesizing a smooth time evolution for
the Euler angles. We used the perspective projection
model to project the features onto the image plane.
The lens focal length parameter was set to a value
high enough such that the orthographic projection can
be considered a valid approximation. Figure 1 shows
the feature trajectories on the image plane obtained
for a set of 50 frames, after adding noise. For each
trajectory, the initial position is marked with ’o’ and
the final position is marked with ’*’. The trajecto-
ries in figure 1 are a representation of the columns
of matrix R. The trajectory for feature n shows the
the nth column of R, i.e., it is the evolution of the im-
age point (Rf,n,RF−1+f,n) across the frame index f ,
see expression (6). The challenge in the structure from
motion problem comes from the fact that the 3D shape
and the 3D motion are observed in a coupled way
through the 2D motion on the image plane (the tra-
jectories in figure 1).

−200 −150 −100 −50 0 50 100 150
−200

−150

−100

−50

0

50

100

150

u

v

Rank 3 trajectories

Figure 1: Feature trajectories on image plane.

From the data in matrix R, we computed matrix R̃
given by expression (16). Figure 2 plots the columns
of R̃ in the same way as figure 1 plots R, i.e., it shows
the evolution of

(
R̃f,n, R̃F−1+f,n

)
across the frame

index f , for each feature n. We see that all trajec-
tories in figure 2 have equal shape, unlike the ones in
figure 1. This is because we have eliminated the depen-
dence of the trajectories on the x and y coordinates of
the features, by making the subspace projection (16).
Each trajectory in figure 2 is a scaled version of a fixed

trajectory that does not depend on the object shape.
This fixed trajectory is determined uniquely by the
3D motion of the object; it corresponds to the third
column of matrix M , m3. The scaling factor for each
trajectory in figure 2 is the relative depth z of the cor-
responding feature point. This way we decouple the
influence on the trajectories of the 3D motion from
the influence of the 3D shape.

−80 −60 −40 −20 0 20 40 60 80 100 120
−150

−100

−50

0

50

100

u

v

Rank 1 trajectories

Figure 2: Feature trajectories from matrix R̃.

Figure 3 plots the 10 larger singular values of ma-
trices R, marked with ’o’, and R̃, marked with ’*’.
While the 3 larger singular values of R contain the
most of the energy, R̃ is well described by only the
largest singular value. The plots in figure 3 confirm
the analysis of sections 2 and 3 and the comment in
the previous paragraph.

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

1400

1600

1800
Singular values: R (o), R~ (*)

Figure 3: Singular values of matrices R and R̃.

Experiment 2 To compare the computational cost
of the algorithms, we ran the experiment described
for a fixed number of F = 50 frames and a number
of N feature points varying from 10 to 100; and for a
fixed number of N = 50 feature points and a number
of F frames varying from 10 to 100. We computed the

average number of MATLAB floating point operations
(FLOPS) over 1000 tests for each experiment.

For each experiment, we estimate the 3D shape and
3D motion by using three methods: i) the original fac-
torization method [1] that computes the SVD, ii) the
same method but computing the factorization of the
rank 3 matrix R by using an iterative procedure sim-
ilar to the one described in section 5, expression (32),
and iii) our formulation of the factorization as a rank 1
problem. The reason why we include method ii) in the
experiment is because it is the fastest way to compute
the rank 3 factorization, making fair the comparison
with the method iii). It is worth mentioning that the
method ii) is not the recursive formulation presented
in [5]. The method in [5] is well suited for a fixed
small number of points and an increasing number of
frames. On the other hand, with the increasing of the
number of feature points, it becomes useless because
it uses a matrix that becomes prohibitively large. As
discussed in section 5, the storage space and computa-
tional power required by the method [5] are then much
higher than the ones required by method ii) above.
Figures 4 and 5 plot the average number of FLOPS
as a function of the number of frames and the number
of feature points, for each of the three methods. The
number of FLOPS are marked with dotted lines for
method i), dashdotted lines for method ii), and solid
lines for method iii). The left plots show the three
curves, while the right plots show only the curves for
methods ii) and iii) using a different vertical scale, for
better visualization.

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12
x 10

6

F

flo
ps

.. rank3 (SVD) −. rank3 − rank1

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7
x 10

5

F

flo
ps

−. rank3 − rank1

Figure 4: MATLAB floating point operations count.

10 20 30 40 50 60 70 80 90 100
0

2

4

6

8

10

12

14

16
x 10

6

N

flo
ps

.. rank3 (SVD) −. rank3 − rank1

10 20 30 40 50 60 70 80 90 100
0

1

2

3

4

5

6

7
x 10

5

N

flo
ps

−. rank3 − rank1

Figure 5: MATLAB floating point operations count.

From the left side plots, we see that that the num-
ber of FLOPS is much larger for the original factoriza-
tion method than for the iterative approaches. This is
due to the high computational cost of the SVD. From
the right side plots, we see that the number of FLOPS
increases approximately linearly with both the num-
ber of frames and the number of feature points, for
both iterative methods ii) and iii). The increasing
rate is lower for the factorization of the rank 1 ma-
trix R̃ than the rank 3 matrix R. This is because
both the decomposition and normalization stages in
method iii) are simpler than the ones in method ii).
In all the experiments, the performance of the three
methods in terms of the accuracy of the estimates of
the 3D structure are indistinct. However, it must be
pointed out that the rank 1 factorization results can
suffer a slight degradation if the x and y coordinates
of the feature points are very inaccurate in frame 1.
Experiment 3 The first frame of a video sequence
of 30 frames is on the left side of figure 6. It shows
a building. Two planar walls meet along a smooth
(round) edge. We marked with white squares 100 se-
lected features. On the right side of figure 6, we repre-
sent the ”trackability” of the feature candidates. The
brighter is a point, the most reliable is the tracking.
The method used to compute this image is described
elsewere. We choose the feature points by selecting
the peaks of this image. We assign to each feature
the confidence weight given by the value of the corre-
sponding peak.

50 100 150 200 250 300 350

50

100

150

200

250

50 100 150 200 250 300 350

50

100

150

200

250

Figure 6: First frame and feature weights.

We tracked the feature points by matching the in-
tensity pattern of each feature along the sequence. Us-
ing the rank 1 weighted factorization we recovered the
3D motion and the relative depth of the feature points
from the set of feature trajectories, as described in sec-
tions 3 and 4. Figure 7 show two perspective views of
the reconstructed 3D shape with the texture mapped
on it. The angle between the walls is clearly seen and
the round edge is also reconstructed.

7 Conclusion
We reformulate the factorization approach to the

structure from motion problem. Since the coordinates

Figure 7: Reconstructed 3D shape and texture.

of the feature points along the camera plane are given
by the coordinates of their projection onto the image
plane in the first frame, we recover the 3D structure
by estimating the relative depths of the feature points
and the 3D motion. We show that this leads to the
factorization of a matrix that is rank 1 in a noiseless
situation. We use an efficient iterative algorithm to
compute the factorization. This algorithm is very fast,
even when processing a large number of features and
large number of frames.

The paper also describes how to accommodate dif-
ferent weighting factors for the feature trajectories.
This is done without additional computational cost by
rewriting the problem as the factorization of a modi-
fied matrix.

References
[1] C. Tomasi and T. Kanade, “Shape and motion

from image streams under orthography: a factor-
ization method,” IJCV, vol. 9, no. 2, 1992.

[2] S. Ullman, The Interpretation of Visual Motion,
MIT Press, Cambridge, MA, USA, 1979.

[3] C. J. Poelman, A Paraperspective Factorization
Method For Shape and Motion Recovery, Ph.D.
thesis, Cannegie Mellon University, USA, 1995.

[4] C. Poelman and T. Kanade, “A paraperspective
factorization method for shape and motion recov-
ery,” IEEE Trans. on PAMI, vol. 19, no. 3, 1997.

[5] T. Morita and T. Kanade, “A sequential factoriza-
tion method for recovering shape and motion from
image streams,” PAMI, vol. 19, no. 8, 1997.

[6] Pedro M. Q. Aguiar and José M. F. Moura, “Video
representation via 3D shaped mosaics,” in IEEE
ICIP, Chicago, USA, October 1998.

[7] G. H. Golub and C. F. Van Loan, Matrix Compu-
tations, The Johns Hopkins Univ. Press, 1989.

