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Abstract

When the color or gray level of a moving object is

very similar to that of the background, motion-based

segmentation methods fail. This leads to ambiguous

templates for the moving objects. In this paper, we

propose a method that segments unambiguously from

motion the templates of moving objects. Our method,

which we call Incremental Motion Segmentation

integrates over time the small di�erences between the

gray level of the moving object and that of the back-

ground. Our experiments with segmenting a robot soc-

cer video clip show the quality of our results.

1 Introduction

We introduced in [1] Incremental Motion Seg-

mentation (IMS) and detailed its use in Genera-

tive Video (GV) [2] analysis. IMS achieves motion-

based segmentation for general scenes by integrating

over time the information content of an image se-

quence. GV reduces video sequences to world images

and ancillary data. The world images are augmented

views of the world - background world image - and

complete views of moving objects - �gure world im-

ages. The ancillary data registers the world images,

strati�es them at each time instant, and positions the

camera with respect to the layering of world images.

A major task inGV analysis is the segmentation from

motion of the (background and �gures) world images.

When a moving object has color or gray-level that is

very similar to the background, current motion-based

segmentation methods that use only a few consecutive

frames fail. To resolve these problems, approaches

like in [3, 4] use statistical regularization techniques

or combine motion with other attributes, like color

or texture. In general, these methods lead to com-

plex and time consuming algorithms. In contrast, the
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method we propose here integrates over time any ex-

isting small di�erences. Our results show that IMS

has the ability to detect and solve unambiguously the

templates for these low contrast objects. We present

experiments with real data that construct theGV rep-

resentation for a robot soccer video sequence.

The paper is organized as follows. Section 2 for-

mulates the problem, leading to an ML-based cost-

function. The minimization procedure is described in

section 3. The IMS algorithm is described in sec-

tion 4. Experimental results and conclusions are in

sections 5 and 6.

2 Problem formulation
IMS is derived as a computationally simple approx-

imation to Maximum Likelihood (ML) estimation.

Observation model. We motivate IMS by consid-

ering a single object moving in front of a background,

the scene being captured by a moving camera. The

image I i is modeled as
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where B and O are the background and object world

images [2], T is the object template, pi and qi are the

camera pose and the object position, and W i is zero

mean white Gauss noise. We assume that I i(x; y) = 0

for (x; y) outside the region observed by the camera.

H is such that H(x; y) = 1 for (x; y) in the region

observed in the image andH(x; y) = 0 otherwise. We

denote by I(p) the registration of the image I accord-

ing to the position vector p. The pixel (x; y) of the

registered image is denoted by I(p;x; y). The regis-

tration of I(p) according to the position vector q is

denoted by I(q;p). We denote by I(p#) the image

that registered according to p equals I , so we have

I(p;p#) = I .

Maximum likelihood estimate. The problem is to

estimate from the N images I1; I2; : : : ; IN the back-



ground world image B, the object world image O,

the object template T , the camera pose fpig, and the

object position fqig. These quantities de�ne the GV

representation of the sequence. The ML estimate min-

imizes the functional J over all GV parameters

J =
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where the inner sum is over the full set of N images

and the outer sum is over all pixels observed in each

image. We omit the dependence on (x; y) to simplify

the notation.

Expression (1) models explicitly the occlusion of the

background by the moving object. The estimation of

the parameters of (1) using N images rather than a

single pair of images is a feature that distinguishes

our work from other techniques which use only two or

three consecutive frames.

The simultaneous minimization of the functional

J over the estimation parameters B;O;T ; fpig, and

fqig is very complex. To simplify this task and moti-

vated by our experience with real video sequences, we

decouple the estimation of the motion of the camera

and the motion of the moving object from the estima-

tion of the remaining parameters. Any method that

estimates motions of multiple objects can be used with

our IMS framework. See reference [5] for a survey.

We estimate motion vectors by an a�ne model. To

cope with large displacements, we use a spatial multi-

resolution pyramid. To deal with multiple moving ob-

jects, we use a quad-tree decomposition.

3 Minimization Procedure

The position vectors fpig and fqig are estimated

as explained in section 2, so that in this section we

assume that they are known. The problem becomes

the minimization of J , given by expression (2), with

respect to the background world image B, the world

image O of the moving object, and its template T .

We express the estimate Ô of the object world im-

age that minimizes J in terms of the template T . Then

we replace Ô in expression (2), getting J in terms of

B and T . To solve for B̂ and T̂ , we use a two-step

iterative method. The steps involved are: i) solve for

B̂ with �xed T̂ , and ii) solve for T̂ with �xed B̂. We

obtain closed-form solutions for both steps i) and ii)

in contrast to the solution for the simultaneous mini-

mization of J with respect to B and T .

As it is usual with this kind of methods, although

the value of J decreases along the iterative process, the

convergence to the global minimum is not guaranteed,

being necessary to provide a good initialization. We

compute a �rst estimate of the moving object template

by using the method described in [1]. It estimates T̂ as

the union of the regions detected as being in movement

over a set of frames.

Object / background world images.We consider

now the estimation of the world image of the moving

object and of the world image of the background, given

the template T .

The estimate Ô of the object world image is found

by setting rOJ = 0, with r the gradient operator

Ô = T
1

N

NX
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I i(qi) (3)

This expression averages the observations I i registered

according to the motion qi of the object in the region

corresponding to the template T of the moving object.

The background world image estimate B̂ is found

by minimizing J in (2), given the template T . After

algebraic manipulations, we obtain

B̂ =
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The estimate averages the observations Ii regis-

tered with the background motion pi, in the regions

f(x; y)g not occluded by the moving object, i.e., when

T (pi; q
#
i ;x; y) = 0. In the denominator, H(pi)

weighs di�erently regions that, due to camera motion,

are not seen in all images.

Template estimation. Replacing the object world

image estimate Ô given by (3) in (2), we express the

functional J in terms of the background world image

B and the object template T . The complete deriva-

tion is given in [6]. We obtain

J =
X
x;y

T (x; y)Q(x; y) + Constant (5)

Q(x; y) = Q1(x; y)�Q2(x; y) (6)
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Consider the minimization of J given by (5) over

the template T , given the background world image B.

It is clear from (5), that the minimization of J with

respect to each spatial location of T is independent



from the minimization over the other locations. The

template T̂ that minimizes J is given by the following

test evaluated at each pixel:

Q1(x; y)

T̂ (x; y) = 0
>

<

T̂ (x; y) = 1

Q2(x; y) (9)

In the spatial locations where the di�erences between

each frame I i(qi) and the background B(qi;p
#
i ) are

greater than the di�erences between each pair of co-

registered frames In(qn) and Ik(qk), we estimate

T̂ (x; y) = 1, these regions belong to the moving ob-

ject. If not, the regions belong to the background.

For regions with low contrast between the mov-

ing object and the background, the test may ini-

tially, for a small number of frames, be inconclusive

(Q1(x; y) ' Q2(x; y)). As more frames are processed

and small di�erences accumulate, the initial test am-

biguity is resolved and the region is assigned to the

moving object or to the background.

4 IMS Algorithm
After processing a number of images, the estimate

T̂ does not change signi�cantly as new images become

available. To see this, we replace the image model

given by (1) in (7) and (8), and compute the expected

value EfQg = EfQ1�Q2g with respect to the obser-

vation noise. See [6] for the complete derivation. We

obtain

E fQg= [1� T ]
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As we process more images, E fQ(x; y)g becomes more

negative in the spatial locations where T (x; y) = 1,

and more positive where T (x; y) = 0 (note that the

coe�cients that multiply T and [1 � T ] in (10) are

non-negative). After processing a su�ciently large

number of frames the sign of Q at each pixel (x; y)

stabilizes, which in turn, through test (9), stabilizes

the estimate T̂ of the template. These considerations

motivate splitting the algorithm in two phases - tem-

plate acquisition and recursive world image updating.

Template acquisition. This phase detects and

solves the template ambiguities mentioned before.

It implements the sequential method described in

section 3 with an increasing larger set of frames.

The background world image estimate B̂ is given

by expression (4), replacing the previous esti-

mate T̂ . The template estimate T̂ is given by

the test (9), replacing the previous estimate B̂.

The template acquisition phase lasts until the test

Q1
n(x; y)

>

<Q
2
n(x; y) is conclusive at all spatial loca-

tions, leading to the template estimate T̂ (x; y).

Recursive world image generation. From expres-

sions (3) and (4), we obtain the following recursive

updates, for �xed T = T̂ :
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where we de�ne the weights Sb
n as the denominator

of (4), and the element Sb
n(x; y) is the number of times

the pixel B(x; y) is observed in the �rst n frames.

5 Experimental Results
We test the algorithm with a sequence of 20 images

from a robot soccer game, see [7], showing a robot

pursuing a ball, see �gure 1. Due to the white stripes

on the �eld, the robot template is ambiguous during

the �rst frames of the sequence. Only after the robot

rotates, is it possible to determine its template.

Figure 1: Image sequence. Frames 1; 4; 8; 16.

The initialization phase takes 5 frames. It detects

three motions, the static background, the moving ball,

and the moving robot. According to test (9), the ball

template is unambiguous after the 5 frames used in

the initialization step. Figure 2 shows the evolution

of the robot template. Regions where the test is in-

conclusive are grey, regions classi�ed as being part of

the robot template are white. The black regions are



classi�ed as either background or as belonging to the

ball template. The acquisition phase is ended after 10

frames. The �nal robot template estimate is shown on

the right side of �gure 2.

Figure 2: Robot template after frames 2; 4; 6; 10.

Figure 3 illustrates the evolution of the matrix Q.

The curves on the left side represent the value of

Q(x; y) for several pixels (x; y) that belong to the tem-

plate of the robot. These curves start close to zero and

decrease with the number of frames processed, as pre-

dicted by expression (10). The curves on the right side

of �gure 3 were obtained for several pixels that do not

belong to the template of the robot. For these pixels,

Q(x; y) increases with the number of frames.
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Figure 3: Evolution of Q.

Figure 4 shows the world images for the two moving

objects and background, after processing the entire

sequence of 20 frames.

6 Conclusion
The Incremental Motion Segmentation algo-

rithm described here achieves segmentation from mo-

Figure 4: Ball, robot and background world images.

tion of objects with low contrast. It is computation-

ally simple, resolving the ambiguities that arise by in-

tegrating over time the information contents of the

image sequence. The experimental results show that

IMS is suitable for 2D object-based video analysis.
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