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Abstract. This paper addresses the problem of registering a 3D mogjaler
sented as a cloud of points lying over a surface, to a set ofeéfbrahing image
trajectories in the image plane. The proposed approach dapt $0 a scenario
where the 3D model to register is not an exact descriptiohehteasured image
data. This results in finding the best 2D-3D registratiomegithe complexity
of having both 2D deforming data and a coarse descriptioh@frnage obser-
vations. The method acts in two distinct phases. First, fineagtep computes a
factorization for both the 2D image data and the 3D modelgiaijpint subspace
decomposition. This initial solution is then upgraded bylifiiy the best projec-
tion to the image plane complying with the metric constiaigiven by a scaled
orthographic camera. Both steps are computed efficientiosed-form with the
additional feature of being robust to degenerate motioristwimay possibly af-
fect the 2D image data (i.e. lack of relevant rigid motion)prgbver, we present
an extension of the approach for the case of missing image 8ghthetic and
real experiments show the robustness of the method in regyist tasks such as
pose estimation of a talking face using a single 3D model.

1 Introduction

The analysis of non-rigid motion has great relevance in mdeyscience and engi-
neering tasks. This need arises from the observation thstt ofithe natural shapes are
constantly modifying their topology. Such variations mapear smooth and tiny as in
the bending of the arm muscles or drastic and violent, asdrré¢hctions taking place
at the molecular level. Such degrees of variation have cpresgly brought new chal-
lenges in the Structure from Motion (SfM) [3, 12, 2, 1] and geaegistration fields [4,
8, 14]. The problem is made more difficult because the assampf rigidity is now
broken and the classical metric constraints used in righd BfL] are weakened if not
irremediably lost. Here specifically, we study the problemegistering a 3D model to
a set of 2D trajectories extracted from an image sequenaeci@ilienge is represented
by the fact that the 3D model to register may not be an exactiggi®n of the 2D mo-
tion shown in the image sequence as exemplified in Figure Tdneaanalysis domain.
The aim is to provide a new set of tools which adapt to the ndarinmation provided
by the image sequence. This problem occurs more often thartke rapid advance-
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(a) Rigid sequence (b) Non-rigid 2D image sequence

Fig. 1. The figure shows an example of our problem. In the top row ofréiga), a 3D shape
can be recovered from a rigid image sequence with standddafforithms. The model in the
bottom row has now to be registered to a new non-rigid imagaesgce (b) with 2D trajectories
extracted from a subject with different somatic traits. \Weksthe best registration given both 2D
and 3D data which satisfy the metric constraints of the shapfaite dots represent the 2D image
data and the red circlesour algorithm result.

ments of the modern sensor technologies. Nowadays, it isre likely occurrence
to have available measurements coming from different @svielowever, temporally
evolving data is mainly restricted to 2D observation (eidew from cameras, MRI and
ultrasound images) while full 3D information is capturedparser time instances (e.g.
scans given by CT and range sensors). For this reason, a @ZIwBD registration of
data coming from different sources is more often requiredré@dver such registration
has to adapt to the given observed image motion, since ikedylthat the given 3D
surface may not be an exact representation of the evolviagesh

This paper proposes a novel registration procedure thatsitte given 3D shape to
the 2D data. In order to solve the problem, a general twofstepulation is introduced.
First, a compact low-rank description is extracted fromhlibe 2D measurements and
the 3D rigid shape. This first decomposition is up to a genaffine transformation.
Then, this solution is corrected by finding the best tramsfdion that complies with
the metric constraints given the image motion and the stapegister. To the authors
knowledge, the closest work to the proposed algorithm isotiee by Xiao et al. [14]
where the scope of the authors was not only restricted tetragion but also to the
inference of a full deformable model. Their closed form solu however makes use
of the assumption that there exists a set of independerg bhapes and results may
vary if this choice is not accurate as noted in [2, 12]. Full i@@onstruction is out of
the scope of this paper since our main aim is to find the mosoapiate rigid motion
describing the non-rigid image trajectories without anguasptions about the model
underlying the deformations.

1.1 Contributions and paper organization

We first introduce the mathematical framework and a standahation for the 2D—
3D registration problem with rigid models. Such an algarithowever cannot cope
properly when the registration is done with inaccurate 3Benbations such as the
one shown in Figure 1(b). The proposed method instead pesfan affine registration
procedure which is derived from the work of Del Bue [5]. Thetficontribution is a
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new set of metric constraints which jointly force the prdjec constraints for the 2D
data and 3D data. This problem is then formulated by findingraective transform
which enforces the given constraints. This optimization lba solved either in closed
form with Least Squares (LS) or by defining the problem witloatéunction which is
minimised using convex optimization. In this way, we consatly not only perform a
registration but also the reconstruction of a new rigid shapdeformable model which
adapts automatically to the image measurement and 3D shegpeedric constraints.
This solution is particularly robust to degenerate 2D motjiven this new set of metric
constraints. The second contribution is an iterative esitenof the proposed approach
which deals with the likely event of missing data in the 2D gedrajectory.

The paper is structured as follows. Section 2 introducepitbielem and a first initial
solution. Section 3 presents the new approach when the 3 sieeds adaptation to
deal with the variations in the 2D data. In the case of misdatg, Section 4 provides an
iterative solution to the problem. Section 5 shows syntreatid real data while Section
6 points out the possible improvements and direction farritvork.

2 Rigid and non-rigid 2D-3D registration

2.1 Rigid registration with an exact 3D model

Consider first the problem of registering a single rigid shapa set of 2D image tra-
jectories. The 2D image measurements are stored in a siraghéxmi of size2F x P
with the following structure:

Wi ... W1p W1
W= Do =], Q)

whereF" and P are the total number of frames and the number of points réispic
The2-vectorw,;; = (u;; v;;)7 stores the image coordinates at each fraared point;.
Given a known rigid shapeof size3 x P our aim is then to compute the best projection
that aligns the 3D shape to the 2D data. In this work thereveoentain assumptions.
The assignments between the image trajectoriésand the 3D points i are given
and that, initially,w does not contain missing data. However, this last assumptith

be relaxed later in this paper.

The image projection model considered here is a scaledgndpbic model denoted
as a2 x 3 matrix M; such thaM; = ¢;R; with the orthogonality constraints given by
R;R] = I,. The 2D-3D registration problem can be then re-stated asptieization
of the following cost function:

min || — mB|* 2)

whereM is the matrix obtained by stacking all the sub-blotk$or each frame as:
My
M= | ! |. 3)
Mg
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A solution to this problem satisfying the exact orthograunstraints can be obtained
in two steps. First, by finding an affine Maximum Likelihood [(Msolution using the
pseudoinverse d givingM = WBT (BBT)~! and then forcing the orthogonality con-
straints inM. This final step is not performed globally for the collectiohthe 2 x 3
sub-blockst; as done in the Tomasi-Kanade factorization [11]. Insteslatfine block
is projected into the closest scaled orthographic cametaxngR; as presented by
Marques and Costeira [7] in a 3D reconstruction contexth§uojection is given by:

R, =0V and ¢; = (01 4 02)\2 4)

whereM; = UDV” is the SVD of the affine motion matrix angd; for d = 1,2 are
the singular values stored in Such projection is preferred to the global LS solution
which may not exactly comply with the scaled orthographimeea matrix constraints.
Differently, eq. (4) always gives a matriks that complies with the given constraints as
pointed out in [7, Appendix B].

Note that the solution obtained in step 2 of Algorithm 1 isimat with the assump-
tion of isotropic and zero-mean Gaussian noise affectiegrteasurements in Such
assumption is generally valid when accurate 2D measurenagatobtained from the
image tracks of a rigid object. However, when trajectories extracted from shapes
with consistent directional deformations, such assumgswiolated as it was noticed
by Xiao et al. [14] in a medical context.

Algorithm 1 Rigid registration with image projections
Require: The 2D image datd and the 3D shape.
Ensure: A metric 2D-3D registration of the shape to the image measens.
1: Compute the image centroid b= %W].P and register the data &s= W — t1%
2: Estimate the affine motiamasy = wB” (BB” ) ~'.
3: Project eack x 3 sub-block; to the closest scaled orthographic matrix using eq. (4).

2.2 Registration bias with inexact models

Deformation directionality is less noticeable when nagietimotion is nearly isotropic
to the shape centroid or with strong symmetries. Figure 2vshe case when a 2D
image of a cylinder is bending and the actual registratimergiAlgorithm 1 with a

rigid 3D shape from the ground truth at rest. As expected naistent bias in the 2D—
3D registration appears when the shape is bending towaedditbction of maximal

variation. In such cases, a rigid registration of a sirgjis unfit since it cannot deal
with the deformations. When the data is non-rigid we haveaahdrame that:

W; = ;R X; with X; € ?RSXP (5)

whereX; represents the metric time-varying shape. For the wholef<tD shapes, the
most popular representation used is to paramet#fias a set of linear basis shapes [3]
givingX; = >, l;aSq4. These linear bases are usually sufficient to representerigeset

of deformations however they may require a high number astsmpes when dealing
with non-linear deformations as to the bending cylinderigufe 2.
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Frame 1 Frame 120

Fig. 2. Black dotse represent the 2D measurements, red circlasalf-cylinder 3D shape regis-
tered by Algorithm 1 and blue crossgesthe results by the proposed Algorithm 2. The image data
show the cylinder starting from a rest position in Frame 1n&hhbe registration is perfect. The
cylinder is bending at the last 3 semi-circles and the regfish at the maximum deformation is
strongly biased toward the deformation direction.

3 Adaptive registration using joint subspaces

Algorithm 1 may perform well wheB represents a single instance of the deformations
appearing in the image sequence. However such a case iglyrifiknany registration
scenarios and a method which encompasses some degree tet@mamay strongly
reduce the registration error. In the following, the givarfaceB is not a current obser-
vation of the 2D image trajectories (i%. # B fori = 1... F). This will consequently
affects the estimated motion parameters in Algorithm 1ngjan additional bias from
the unfitness oB. In order to reduce this effect we propose a different apghreghich

first finds an affine joint subspace belonging to the{seB} and then computes the
best solution to registration given the joint metric coastts.

3.1 Affine joint subspace computation

The main idea here is to join the information containea iwith the available mea-
surements inv in order to extract an affine fit which is dependent on both comepts.
In order to do so, we follow the strategy used in [5] for a 3Doregtruction scenario.
A Generalised Singular Value Decomposition (GSVD) is used to compute a joint row
space between the image data and the model to register. irasway, we decompose
both matrices with GSVD as: .

W=UDy X

B = VDy XT (6)

wherex” is a P x P matrix which spans the common row space{@fB}, U is a

2F x 2F matrix with orthonormal columng/{ U = T) andV is a3 x 3 matrix such that
vV = 1. The diagonal value matric@g andDy, of size2F x P and3 x P respectively
are given by:

Dy = |:Z(;] g:):| andDy = [ZV 0]. (7
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The diagonal matricesy = diag(o1,...,03) andLy = diag(u, ..., pg) of size
3 x 3 are constrained such the, + £, = I and the diagonal entries ordered as:

OSO’lS...SO’gSlandlzulZ...Z/L3>O.

In order to guarantee a well-conditioned decompositiomglsiscaling of the data is
performed imposing thalw||>=||B||? [6]. Given the initial factorisation with GSVD, it
is possible after some matrix operations [5] to arrange iffierdnt factors as:

_ B
W= HapweSexp = [My] Mi] [B}I} @)

B = N3x3Bs

where theJ subscript refers to the components obtained from the jpiats of8 and

W while the I refers to the remaining ones. The dimensionality of thetjoiw space
B; depends directly on the dimension of the model to registausTin the case of rigid
registration, the matri8 ; has size3 x P and ther = (¢ — 3) dimension oB; depends
on the rank of the independent components. Such value castibeated by inspecting
the singular values of the remaining 2D data and choosing/hich contains most of
the energy. Notice that this parameter is not importanttfergroposed approach since
it relies only on the joint componentis andB ;.

3.2 Joint metric upgrade

The next step is to find a corrective transform for both thenaf§ubspaces; andN
which complies with the metric constraints of the 3D shapedtgster and the 2D image
trajectories. This results in computingax 3 transformation matrixy which enforces
the metric constraints such th&Q = M andNQ = Z whereZ is a rotation matrix with
zz" = 15. The following problem is non-linear given the joint set offmgonality con-
straints. However, a closed form solution can be compute® i€onsider the quadratic
formH = QQ” and forming the orthogonality constraints as:

mgiHmui — mfiHmm» =0
m? Hm,; = 0
NHNT = I

wherem,,; andm,,; refer to the motion components of the horizontal and vdiiticage
coordinates respectively such that:

. M1
m .
My, = |:m774:| whereM; = . (9)

v

Myp

As followsH is a symmetric matrix which can be computed with LS for thewsiique
parameters by rearranging eq. (9). Therq i positive semidefinite, the matrixis
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given byH =% q = Uy/A with U anda being the eigenvectors and eigenvalues respec-
tively. On the contrary, if the matrix is not positive senfidée, we estimate the closest
Q by defining:

MiQ (M Q)77

F= : and G = : (10)

MrQ (MrQ™)T
whereq is a SVD approximation of using the estimateti (i.e @ = UD if H = Uupv7”").
Then the closesl given the metric constraints is computed@s- Q./F\G where\
denotes the left matrix division.

Alternatively to this solution, we obtained more accuratitts by solving the prob-
lem using Semi-Definite Programming (SDP). In this case vmeccanpute explicitlyd
such thatl = 0. First we define the cost function by separating the jointiomoatrix
My in its horizontal and vertical image components such that:

m/, my;

My, = and My, = (11)
T T
muf me

The problem is then re-formulated as the minimization offtllewing cost function:

ming diagM,HMT)|| + ||diagM, HME — M, HMT 12
{ [|ciagt, BT | + |ciag(oe, T — 10,047 (12)

+ [T — 1|}
such that
H>0
m{ Hm{; =d

where the last constraimb’; HmZ, = d imposes an arbitrary value over the first frame
to avoid the zero solution. This problem can be solved efftgjewith current SDP
toolboxes such as SeDuMi [10] since optimization is run avemall3 x 3 matrix
independently from the size @fandB.

3.3 Registration algorithm and discussions

The full approach is finally summarized in Algorithm 2. The#dat the basis of this
procedure is to obtain the best possible registration elvémei3D shape to register
is not an exact description of the image data. In this serigendhe first initial 3D
shapeB, we search for a common representation of the{@eB} using GSVD. This
representation is then used to find the best metric solutienaa joint set of metric
constraints. This not only solves for the registration, &lsb compute a new metric
shapeB given the contribution of both data.

Enforcing the metric constraints for both the 2D measurémand the 3D shape
give robustness to degenerate motioi.irhis happens often in non-rigid motion anal-
ysis whenever a non-rigid shape is not performing enougdti ngtion compared to the
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Algorithm 2 Rigid registration using a joint subspace
Require: The 2D image datd and the 3D shape.
Ensure: A metric 2D-3D registration of the shape to the non-rigid gmaneasurements.
1: Compute the image centroid b= %W].P and register the data #s= W — t1%
2: Estimate the joint affine motions; andN together with the joint shap®; as in Section 3.1.
3: Given the affine solution, compute the best metric motiwth shape as shown in section 3.2
such that:

Wp = M;Q Qilsj =M B (13)
=NQQ's;=28 (14)

4: Project eacl x 3 sub-blocki; to the closest scaled orthographic matrix using eq. (4).

variations given by the deformations. In such cases, oibigia reliable estimation of
the depth of the shape is rather complex since, withoutiootat is very ambiguous to
compute reliable estimates.

4 Registration with missing data

If the 2D image trajectories are interrupted due to occhssior tracking failures, we
have to additionally solve for the missing entriesiinin such a task, the cost function
to optimise is the following:

min D ® (W —MB)||” (15)
R;RT =I5

whereD is a2F x P mask matrix with eithed if the 2D point is present ob if it
is missing. Given the missing entries, it is not possibledives for the cost function
in closed form. Thus we revert to an iterative approach. e an initialisation of
the missing entries, the approach first computes an affingieolwith GSVD forM
givens. After a projection to the correct orthographic camera ioes; missing entries
in W are filled given the 3D shape estimated with the joint subspacovided by the
GSVD. The algorithm stops when the updated values have rainiamiations from one
iteration to the other. Regarding the initialisation, bestults were achieved by filling
the missing entries at each trajectory with the mean valuwepced from the known
trajectory points inW. Note that in this case we have also to estimate the shape 2D
centroidt at each iteration of the algorithm since it depends on thenagtd missing
data. The algorithm is resumed in the table for Algorithm 3.

5 Experiments

5.1 Synthetic data

The algorithm performance are evaluated with the followaygthetic experimental
setup. The 2D data is created from a randomly generated @b@d pointssS,,can
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Algorithm 3 Rigid registration with missing data

Require: An initialisation for the 2D image datéand the 3D shapg .

Ensure: A metric 2D-3D registration of the shape to the non-rigid gmaneasurements.
1: Compute the image centroid from the current estimateast — %Wlp.
2: Givenii = W — t1% andB, estimate the joint affine motions; andN together with the joint
shapeB; as in Section 3.1.

. Given the affine solution, compute the best metric motiwh shape with Algorithm 2.

. Project eacl x 3 sub-blocki; to the closest scaled orthographic matrix using eq. (2).

. Given the metric solutiof andB, input the missing entries &s= M B.

. lterate until the update on the 2D missing data pointssis {feen a given threshold.

o 0hA W

sampled inside a sphere of radius one. Deformations wergrtmted with a set ok’
random linear basis; . .. Sk . Each time-varying shapg was computed by the linear
combination of random linear weights givikg = S.ncan + Zle l;aSq. In order to
control the deformation intensity, tHeeformation Power ratio (D Pr) is defined as:
DPr = ||fSmeanl| \ || Zfil Zle 1;aS4||. Finally, 50 random orthographic camera
matricesr; and translatiort; are used to form the 2D measurements onto the image
plane. The generation of the shape to register is made bgtisgjean initial random
X; = B. Then, in order to simulate distortion # random affine transformatiof
are applied t® such thatB = AB. In more detail, this distortion was computed as
A = I3+ N whereX was a3 x 3 matrix of Gaussian noise with varianog. To
conclude, zero-mean Gaussian noise with varianeg, @hage pixel was added to the
measurements stored iRggx20. The 2D data was finally scaled in order to fit into a
320 x 240 image frame. In the following tests the root mean squared)emror was
always used to compute the 2D registration error in pixetspoént and the rotation
misalignment in degrees given the known ground truth.

gt gt e 1fersag

g e

BgrAcd, L . g 5 5" *a0=04

s s 5 9 5
R R E 2 ¢
Sa gaM ~

7 Z?A\A,X/l b

1f 2 2

05 1 15 05 1 15 05 1 15 05 1 15
Noise o Noise o Noise o Noise o
Algorithm 1 Algorithm 2 Algorithm 1 Algorithm 2

Fig. 3. Results for a synthetic sequence withPr = 0.45. The figures show the result for the
rotation error in degrees and the rms 2D error in image pigeppint.

Figure 3 shows a test result obtained by fixibg’r = 0.15 and after runnin@00
trials for each configuration of noise and affine distortio(i.e. 25 configurations in
total). The results show that both algorithms are relafivebust to the added image
Gaussian noise however a difference is noticeable whenatvad) the 2D and rotation
error atincreasing distortions rates for the 3D shapen important fact to keep in mind
when evaluating the 2D errors is that we are evaluating atregion of a rigid shape to
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Fig. 4. Results for a synthetic sequence withPr = 0.45. The figures show the result for the
rotation error in degrees and the rms 2D error in image pigeppint.

a non-rigid sequence. Thus there is always a constant edsihen plotting the error
(bottom plots in Figure 3). In contrast, here we put more emsfghon the worsening of
the error with the increase of the affine distortiarin such case, Algorithm 2 is rather
robust for both 2D and rotation error due to the distortignstil the last level of noise
where the algorithm starts to perform worse. Algorithm lomepa very high 2D error
up to18 pixels rms for the stronger distortion (out of the plot sgaldnis is expected as
the shape is fixed. More interesting is the plot showing thatianal error, indicating
slightly better results for tiny distortions in respect ttgérithm 2 but then diverging
again up to5 degrees for higher distortions. Figure 4 shows analogohawers for
both algorithms but in the case of stronger deformationfignimage measurements
(DPr = 0.45). Algorithm 2 shows decreased the performance as expeciestilh
maintains reasonable values. Differently, Algorithm lctess a misalignment up
degrees.

Fig.5. Real sequence 2D-3D registration with a 3D shape as in Fib{ire In the top row,
white dots show the 2D tracks extracted from the sequenatcReeso shows the registration
with Algorithm 1. Yellow circles show the registration with Algorithm 2 which achieves bette
reprojection error especially in the eyeborow, mouth antple areas. Bottom row shows frontal,
top and side view of the joint 3D shapeobtained from the registration algorithm.
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5.2 Realdata

The scenario here considered is the registration of a 3D ifacgel to a set of 2D
image trajectories obtained from an AAM tracker [13]. Netibat the 3D model that
represents oW of size3 x 48 was computed from a subject with different somatic traits
as it was shown in Figure 1(a). The model buildin@afas performed using 2D points
obtained from nearly rigid motion of the subject followeddyigid 3D reconstruction
using factorization [11]. The target 2D sequence came fraiffarent video footage
as presented in Figure 5. Results for both registrationrélgns are shown in Figure
5 with the reprojected image tracks. Algorithm 2 shows itgp@rties of adaptation by
registering and computing a joint shape closer to the nejestlraits. This can be
noticed especially in the different eyebrow shape compaittdthe registration of the
original B obtained by Algorithm 1. Finally for this test, bottom rowfeifjure 5 shows
three views of the reconstructed joint 3D sha&pehich qualitatively describe well the
3D shape of the subject.

A further test presents the performance of the algorithntisercase of a degenerate
talking face sequence. This test is especially aimed to shewelevance of the joint
metric constraints in this type of image sequences. We usedame rigid shape as
the previous example and plotted the registration overriege sequence in Figure
6. Again the subjects presented different physical tragmfthe reference 3D model
B. Figure 6(a) shows a side and top view of the joint shaysemputed with the joint
metric constraints as in Section 3.2. Figure 6(b) insteademts the same computation
omitting the cost tern|NHEN” — I3 || in eq. (12). The resulting 3D shape is geometrically
distorted and it is not representing the correct metric attaristics.

Image sequence with registration (a) Joint metric (b) 2Drimet

Fig. 6. The figure shows the registration results for Algorithm M(c&rcleso) and Algorithm 2
(yellow circles ). The top three figures show the image sequence of a subjkictgtand per-
forming minimal rigid motion. Registration is made with tBB shape as shown in Figure 1(b).
Bottom line shows first (a) two views of the shapextracted using the joint metric constraints
and figure (b) the distorted shape obtained from the metristcaints of the 2D data alone.

A final experiment shows the algorithm behavior on the IMMatiaise [9] which
contains a set df40 manually annotated face images. The dataset is dividédift
ferent poses fod0 subjects. Among those six pos@spf them are showing non-rigid
motion. Each face is manually annotated withpoints as shown in Figure 7. A global
mean 3D shape is reconstructed from all the subjects by mgrairigid Tomasi and
Kanade [11] factorization on the first, third and fourth pagesach subject. These
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frames were showing predominant rigid motion thus they wa@gropriate for the task.
Figure 7 shows as well three views of the 3D rigid reconstonct

This mean shape was then registered to every image in thbad&taising Algo-
rithm 1 and Algorithm 2 as presented in the paper. Note th#tisicase we havé0
sequences for each subject composed by six frames. Fighon& she results odsub-
jects. White dots show the 2D tracks manually extracted fach short sequence. Red
circleso shows the registration with Algorithm 1. Yellow circleshow the registration
with Algorithm 2. Again the proposed algorithm shows its pi@déion capabilities when
dealing with a large set of people with different somatidsra

il .

Fig. 7.a) A subject from the database. The white dots representdneafly annotated 2D points.
b) Front, top and side views of the mean 3D shape reconstficis the database.

Fig. 8. Four selected frames from subjée and35 in the IMM database.

5.3 Evaluation with missing data

The performance of Algorithm 3 was initially tested with #lyetic data as showed in
the previous setup. Given the same amount of points and irfftagess, The affine
distortion was fixed tary = .20 and DPr = 0.25. The evaluation included5 tests
for each configuration of missing data and noise leg25 (ests in total) Experiments
were made with increasing percentages of missing data awkesha robustness of the
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Fig. 9. Results for a synthetic sequence withPr = 0.25 using Algorithm 3 and randomly
generated noise and missing data.

Image sequence with registration Joint 3D shape

Fig. 10. The figures on the top show the image sequence together wittegfistration given by
Algorithm 3 with 30% of missing data. White dots show the available 2D data whiteyellow
circles represent the estimated registration. The three imagelseobdattom present front, top
and side view of the joint 3D shape.

approach untilt0% ratio as shown in Figure 9. The maximum number of iteratioas w
fixed to50 and a stop criteria was fixed #~% on the update of the reprojection error
of the missing 2D points. Note here that, even if the rept@acerror is minimised
for the case 050% missing data, the error in degrees is arodfidinits thus we can
consider the registration compromised. For higher levitsissing data, the algorithm
fails to obtain a reliable registration and thus resultsmatgoresented in the plots.

The real test shown in Figure 10 presents the results on theesee in Figure 5
where occlusions were randomly created up 89% ratio. The algorithm converged
after 74 iterations with a threshold on the 2D points updatd ®@f°. The registration
quality is barely degraded still showing a reasonable egérof face side and frontal
profiles. We realised that most of the misalignement wersgurewhen the shape was
turning on the side. It is possible to notice that now thetess symmetry in the recon-
structed 3D shape with a wider gap in the side view corresipgro points lying on
the upper jaw. Still most of the depth of the shape was estidnaliably.

6 Conclusions

This paper presented a new approach to the 2D-3D registratablem in the case
of non-rigid 2D image trajectories and a shape represerstedsat of 3D points. The
method is designed for the case when the shape is not an eeswiption of the 2D
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trajectories and it can deal with degeneracies in the 2Danofihis solution is targeted
for the face analysis and medical registration scenariaevbfien single 3D observa-
tions have to be fit to a set of 2D trajectories. The formulatgiven the joint subspace
may also give some intuition on how to solve the greatest ofttkese methods; the
matching problem between the 3D shape and the 2D image p®imiswill represent
the starting point for future investigations together vifie application of the proposed
joint metric constraints to the tracking and non-rigid 3@amstruction domains.
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