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Abstract. This paper addresses the problem of registering a 3D model, repre-
sented as a cloud of points lying over a surface, to a set of 2D deforming image
trajectories in the image plane. The proposed approach can adapt to a scenario
where the 3D model to register is not an exact description of the measured image
data. This results in finding the best 2D–3D registration, given the complexity
of having both 2D deforming data and a coarse description of the image obser-
vations. The method acts in two distinct phases. First, an affine step computes a
factorization for both the 2D image data and the 3D model using a joint subspace
decomposition. This initial solution is then upgraded by finding the best projec-
tion to the image plane complying with the metric constraints given by a scaled
orthographic camera. Both steps are computed efficiently inclosed-form with the
additional feature of being robust to degenerate motions which may possibly af-
fect the 2D image data (i.e. lack of relevant rigid motion). Moreover, we present
an extension of the approach for the case of missing image data. Synthetic and
real experiments show the robustness of the method in registration tasks such as
pose estimation of a talking face using a single 3D model.

1 Introduction

The analysis of non-rigid motion has great relevance in manylife science and engi-
neering tasks. This need arises from the observation that most of the natural shapes are
constantly modifying their topology. Such variations may appear smooth and tiny as in
the bending of the arm muscles or drastic and violent, as in the reactions taking place
at the molecular level. Such degrees of variation have consequently brought new chal-
lenges in the Structure from Motion (SfM) [3, 12, 2, 1] and image registration fields [4,
8, 14]. The problem is made more difficult because the assumption of rigidity is now
broken and the classical metric constraints used in rigid SfM [11] are weakened if not
irremediably lost. Here specifically, we study the problem of registering a 3D model to
a set of 2D trajectories extracted from an image sequence. Our challenge is represented
by the fact that the 3D model to register may not be an exact description of the 2D mo-
tion shown in the image sequence as exemplified in Figure 1 in aface analysis domain.
The aim is to provide a new set of tools which adapt to the new information provided
by the image sequence. This problem occurs more often thanksto the rapid advance-
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(a) Rigid sequence (b) Non-rigid 2D image sequence

Fig. 1. The figure shows an example of our problem. In the top row of figure (a), a 3D shape
can be recovered from a rigid image sequence with standard SfM algorithms. The model in the
bottom row has now to be registered to a new non-rigid image sequence (b) with 2D trajectories
extracted from a subject with different somatic traits. We seek the best registration given both 2D
and 3D data which satisfy the metric constraints of the shapes. White dots represent the 2D image
data and the red circles◦ our algorithm result.

ments of the modern sensor technologies. Nowadays, it is a more likely occurrence
to have available measurements coming from different devices. However, temporally
evolving data is mainly restricted to 2D observation (e.g. video from cameras, MRI and
ultrasound images) while full 3D information is captured atsparser time instances (e.g.
scans given by CT and range sensors). For this reason, a robust 2D-3D registration of
data coming from different sources is more often required. Moreover such registration
has to adapt to the given observed image motion, since it is likely that the given 3D
surface may not be an exact representation of the evolving shape.

This paper proposes a novel registration procedure that adapts the given 3D shape to
the 2D data. In order to solve the problem, a general two-stepformulation is introduced.
First, a compact low-rank description is extracted from both the 2D measurements and
the 3D rigid shape. This first decomposition is up to a genericaffine transformation.
Then, this solution is corrected by finding the best transformation that complies with
the metric constraints given the image motion and the shape to register. To the authors
knowledge, the closest work to the proposed algorithm is theone by Xiao et al. [14]
where the scope of the authors was not only restricted to registration but also to the
inference of a full deformable model. Their closed form solution however makes use
of the assumption that there exists a set of independent basis shapes and results may
vary if this choice is not accurate as noted in [2, 12]. Full 3Dreconstruction is out of
the scope of this paper since our main aim is to find the most appropriate rigid motion
describing the non-rigid image trajectories without any assumptions about the model
underlying the deformations.

1.1 Contributions and paper organization

We first introduce the mathematical framework and a standardsolution for the 2D–
3D registration problem with rigid models. Such an algorithm however cannot cope
properly when the registration is done with inaccurate 3D observations such as the
one shown in Figure 1(b). The proposed method instead performs an affine registration
procedure which is derived from the work of Del Bue [5]. The first contribution is a
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new set of metric constraints which jointly force the projection constraints for the 2D
data and 3D data. This problem is then formulated by finding a corrective transform
which enforces the given constraints. This optimization can be solved either in closed
form with Least Squares (LS) or by defining the problem with a cost function which is
minimised using convex optimization. In this way, we consequently not only perform a
registration but also the reconstruction of a new rigid shape or deformable model which
adapts automatically to the image measurement and 3D shape geometric constraints.
This solution is particularly robust to degenerate 2D motion given this new set of metric
constraints. The second contribution is an iterative extension of the proposed approach
which deals with the likely event of missing data in the 2D image trajectory.

The paper is structured as follows. Section 2 introduces theproblem and a first initial
solution. Section 3 presents the new approach when the 3D shape needs adaptation to
deal with the variations in the 2D data. In the case of missingdata, Section 4 provides an
iterative solution to the problem. Section 5 shows synthetic and real data while Section
6 points out the possible improvements and direction for future work.

2 Rigid and non-rigid 2D–3D registration

2.1 Rigid registration with an exact 3D model

Consider first the problem of registering a single rigid shape to a set of 2D image tra-
jectories. The 2D image measurements are stored in a single matrix W of size2F × P

with the following structure:

W =







w11 . . . w1P

...
. . .

...
wF1 . . . wFP






=







W1
...
WF






, (1)

whereF andP are the total number of frames and the number of points respectively.
The2-vectorwij = (uij vij)

T stores the image coordinates at each framei and pointj.
Given a known rigid shapeB of size3×P our aim is then to compute the best projection
that aligns the 3D shape to the 2D data. In this work there are two main assumptions.
The assignments between the image trajectories inW and the 3D points inB are given
and that, initially,W does not contain missing data. However, this last assumption will
be relaxed later in this paper.

The image projection model considered here is a scaled orthographic model denoted
as a2 × 3 matrix Mi such thatMi = ciRi with the orthogonality constraints given by
RiR

T
i = I2. The 2D–3D registration problem can be then re-stated as theoptimization

of the following cost function:

min
RiR

T

i
=I2

‖W− MB‖2 (2)

whereM is the matrix obtained by stacking all the sub-blocksMi for each frame as:

M =







M1
...
MF






. (3)
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A solution to this problem satisfying the exact orthographic constraints can be obtained
in two steps. First, by finding an affine Maximum Likelihood (ML) solution using the
pseudoinverse ofB giving M̃ = WBT (BBT )−1 and then forcing the orthogonality con-
straints inM̃. This final step is not performed globally for the collectionof the 2 × 3
sub-blocks̃Mi as done in the Tomasi-Kanade factorization [11]. Instead, the affine block
is projected into the closest scaled orthographic camera matrix ciRi as presented by
Marques and Costeira [7] in a 3D reconstruction context. Such projection is given by:

Ri = UV
T and ci = (σ1 + σ2)\2 (4)

where M̃i = UDVT is the SVD of the affine motion matrix andσd for d = 1, 2 are
the singular values stored inD. Such projection is preferred to the global LS solution
which may not exactly comply with the scaled orthographic camera matrix constraints.
Differently, eq. (4) always gives a matrixRi that complies with the given constraints as
pointed out in [7, Appendix B].

Note that the solution obtained in step 2 of Algorithm 1 is optimal with the assump-
tion of isotropic and zero-mean Gaussian noise affecting the measurements inW. Such
assumption is generally valid when accurate 2D measurements are obtained from the
image tracks of a rigid object. However, when trajectories are extracted from shapes
with consistent directional deformations, such assumption is violated as it was noticed
by Xiao et al. [14] in a medical context.

Algorithm 1 Rigid registration with image projections
Require: The 2D image dataW and the 3D shapeB .
Ensure: A metric 2D–3D registration of the shape to the image measurements.
1: Compute the image centroid oft = 1

P
W1P and register the data asW̄ = W− t1

T

P

2: Estimate the affine motioñM asM̃ = W̄B
T (BBT )−1.

3: Project each2× 3 sub-blockM̃i to the closest scaled orthographic matrix using eq. (4).

2.2 Registration bias with inexact models

Deformation directionality is less noticeable when non-rigid motion is nearly isotropic
to the shape centroid or with strong symmetries. Figure 2 shows a case when a 2D
image of a cylinder is bending and the actual registration given Algorithm 1 with a
rigid 3D shape from the ground truth at rest. As expected, a consistent bias in the 2D–
3D registration appears when the shape is bending towards the direction of maximal
variation. In such cases, a rigid registration of a singleB is unfit since it cannot deal
with the deformations. When the data is non-rigid we have at each frame that:

Wi = ciRiXi with Xi ∈ ℜ3×P (5)

whereXi represents the metric time-varying shape. For the whole setof 3D shapes, the
most popular representation used is to parameterizeXi as a set of linear basis shapes [3]
givingXi =

∑

d lidSd. These linear bases are usually sufficient to represent a generic set
of deformations however they may require a high number of basis shapes when dealing
with non-linear deformations as to the bending cylinder in Figure 2.
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Frame 1 Frame 120

Fig. 2.Black dots• represent the 2D measurements, red circles◦ a half-cylinder 3D shape regis-
tered by Algorithm 1 and blue crosses× the results by the proposed Algorithm 2. The image data
show the cylinder starting from a rest position in Frame 1 where the registration is perfect. The
cylinder is bending at the last 3 semi-circles and the registration at the maximum deformation is
strongly biased toward the deformation direction.

3 Adaptive registration using joint subspaces

Algorithm 1 may perform well whenB represents a single instance of the deformations
appearing in the image sequence. However such a case is unlikely in many registration
scenarios and a method which encompasses some degree of adaptation may strongly
reduce the registration error. In the following, the given surfaceB is not a current obser-
vation of the 2D image trajectories (i.e.Xi 6= B for i = 1 . . . F ). This will consequently
affects the estimated motion parameters in Algorithm 1 giving an additional bias from
the unfitness ofB. In order to reduce this effect we propose a different approach which
first finds an affine joint subspace belonging to the set{W, B} and then computes the
best solution to registration given the joint metric constraints.

3.1 Affine joint subspace computation

The main idea here is to join the information contained inB with the available mea-
surements inW in order to extract an affine fit which is dependent on both components.
In order to do so, we follow the strategy used in [5] for a 3D reconstruction scenario.
A Generalised Singular Value Decomposition (GSVD) is used to compute a joint row
space between the image data and the model to register. In such a way, we decompose
both matrices with GSVD as:

W = U DU XT

B = V DV XT
(6)

whereXT is a P × P matrix which spans the common row space of{W, B}, U is a
2F × 2F matrix with orthonormal columns (UT U = I) andV is a3× 3 matrix such that
VTV = I. The diagonal value matricesDU andDV of size2F×P and3×P respectively
are given by:

DU =

[

ΣU 0

0 I

]

andDV =
[

ΣV 0
]

. (7)
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The diagonal matricesΣU = diag(σ1, . . . , σ3) andΣV = diag(µ1, . . . , µ3) of size
3× 3 are constrained such thatΣ2U + Σ2V = I and the diagonal entries ordered as:

0 ≤ σ1 ≤ . . . ≤ σ3 ≤ 1 and1 ≥ µ1 ≥ . . . ≥ µ3 > 0.

In order to guarantee a well-conditioned decomposition a single scaling of the data is
performed imposing that‖W‖2=‖B‖2 [6]. Given the initial factorisation with GSVD, it
is possible after some matrix operations [5] to arrange the different factors as:

W = M̃2f×tS̃t×p = [MJ | MI ]
[

BJ

BI

]

B = N3×3BJ

(8)

where theJ subscript refers to the components obtained from the joint space ofB and
W while theI refers to the remaining ones. The dimensionality of the joint row space
BJ depends directly on the dimension of the model to register. Thus, in the case of rigid
registration, the matrixBJ has size3× P and ther = (t− 3) dimension ofBI depends
on the rank of the independent components. Such value can be estimated by inspecting
the singular values of the remaining 2D data and choosing ar which contains most of
the energy. Notice that this parameter is not important for the proposed approach since
it relies only on the joint componentsMJ andBJ .

3.2 Joint metric upgrade

The next step is to find a corrective transform for both the affine subspacesMJ andN
which complies with the metric constraints of the 3D shape toregister and the 2D image
trajectories. This results in computing a3 × 3 transformation matrixQ which enforces
the metric constraints such thatMJQ = M andNQ = Z whereZ is a rotation matrix with
ZZT = I3. The following problem is non-linear given the joint set of orthogonality con-
straints. However, a closed form solution can be computed ifwe consider the quadratic
form H = QQT and forming the orthogonality constraints as:

m
T
uiHmui −m

T
viHmvi = 0

m
T
uiHmvi = 0

NHNT = I3

wheremui andmvi refer to the motion components of the horizontal and vertical image
coordinates respectively such that:

MJi =

[

m
T
ui

m
T
vi

]

whereMJ =







MJ1
...

MJF






. (9)

As followsH is a symmetric matrix which can be computed with LS for the sixunique
parameters by rearranging eq. (9). Then, ifH is positive semidefinite, the matrixQ is
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given byH
eig−→ Q = U

√
∆ with U and∆ being the eigenvectors and eigenvalues respec-

tively. On the contrary, if the matrix is not positive semidefinite, we estimate the closest
Q by defining:

F =







M1Q̃

...
MF Q̃






and G =







((M1Q̃)
T )†

...
((MF Q̃)

T )†






(10)

whereQ̃ is a SVD approximation ofQ using the estimatedH (i.e Q̃ = UD if H = UDVT ).
Then the closestQ given the metric constraints is computed asQ = Q̃

√

F\G where\
denotes the left matrix division.

Alternatively to this solution, we obtained more accurate results by solving the prob-
lem using Semi-Definite Programming (SDP). In this case we can compute explicitlyH
such thatH � 0. First we define the cost function by separating the joint motion matrix
MJ in its horizontal and vertical image components such that:

MJu =







m
T
u1

...
m

T
uf






and MJv =







m
T
v1

...
m

T
vf






(11)

The problem is then re-formulated as the minimization of thefollowing cost function:

minH

{

∥

∥diag(MuHMTv )
∥

∥+
∥

∥diag(MuHMTu − MvHM
T
v )

∥

∥

+
∥

∥NHNT − I3

∥

∥

}

such that
H � 0

m
T
u1Hm

T
u1 = d

(12)

where the last constraintmT
u1Hm

T
u1 = d imposes an arbitrary value over the first frame

to avoid the zero solution. This problem can be solved efficiently with current SDP
toolboxes such as SeDuMi [10] since optimization is run overa small3 × 3 matrix
independently from the size ofW andB.

3.3 Registration algorithm and discussions

The full approach is finally summarized in Algorithm 2. The idea at the basis of this
procedure is to obtain the best possible registration even if the 3D shape to register
is not an exact description of the image data. In this sense, given the first initial 3D
shapeB, we search for a common representation of the set{W, B} using GSVD. This
representation is then used to find the best metric solution given a joint set of metric
constraints. This not only solves for the registration, butalso compute a new metric
shapêB given the contribution of both data.

Enforcing the metric constraints for both the 2D measurements and the 3D shape
give robustness to degenerate motion inW. This happens often in non-rigid motion anal-
ysis whenever a non-rigid shape is not performing enough rigid motion compared to the
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Algorithm 2 Rigid registration using a joint subspace
Require: The 2D image dataW and the 3D shapeB .
Ensure: A metric 2D–3D registration of the shape to the non-rigid image measurements.
1: Compute the image centroid oft = 1

P
W1P and register the data asW̄ = W− t1

T

P

2: Estimate the joint affine motionsMJ andN together with the joint shapeBJ as in Section 3.1.
3: Given the affine solution, compute the best metric motion and shape as shown in section 3.2

such that:

WB = MJQ Q
−1

SJ = M̂ B̂ (13)

B = NQ Q
−1

SJ = Ẑ B̂ (14)

4: Project each2× 3 sub-blockM̂i to the closest scaled orthographic matrix using eq. (4).

variations given by the deformations. In such cases, obtaining a reliable estimation of
the depth of the shape is rather complex since, without rotation, it is very ambiguous to
compute reliable estimates.

4 Registration with missing data

If the 2D image trajectories are interrupted due to occlusions or tracking failures, we
have to additionally solve for the missing entries inW. In such a task, the cost function
to optimise is the following:

min
RiR

T

i
=I2

‖D⊙ (W− MB)‖2 (15)

whereD is a 2F × P mask matrix with either1 if the 2D point is present or0 if it
is missing. Given the missing entries, it is not possible to solve for the cost function
in closed form. Thus we revert to an iterative approach. Provided an initialisation of
the missing entries, the approach first computes an affine solution with GSVD forM
givenS. After a projection to the correct orthographic camera matrices, missing entries
in W are filled given the 3D shape estimated with the joint subspaces provided by the
GSVD. The algorithm stops when the updated values have minimal variations from one
iteration to the other. Regarding the initialisation, bestresults were achieved by filling
the missing entries at each trajectory with the mean value computed from the known
trajectory points inW. Note that in this case we have also to estimate the shape 2D
centroidt at each iteration of the algorithm since it depends on the estimated missing
data. The algorithm is resumed in the table for Algorithm 3.

5 Experiments

5.1 Synthetic data

The algorithm performance are evaluated with the followingsynthetic experimental
setup. The 2D data is created from a randomly generated cloudof 20 pointsSmean
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Algorithm 3 Rigid registration with missing data
Require: An initialisation for the 2D image dataW and the 3D shapeB .
Ensure: A metric 2D–3D registration of the shape to the non-rigid image measurements.
1: Compute the image centroid from the current estimate ofW ast = 1

P
W1P .

2: GivenW̄ = W− t1
T

P andB, estimate the joint affine motionsMJ andN together with the joint
shapeBJ as in Section 3.1.

3: Given the affine solution, compute the best metric motion and shape with Algorithm 2.
4: Project each2× 3 sub-blockM̂i to the closest scaled orthographic matrix using eq. (2).
5: Given the metric solution̂M andB̂, input the missing entries as̄W = M̂ B̂.
6: Iterate until the update on the 2D missing data points is less then a given threshold.

sampled inside a sphere of radius one. Deformations were constructed with a set ofK
random linear basisS1 . . .SK . Each time-varying shapeXi was computed by the linear
combination of random linear weights givingXi = Smean +

∑K

d=1
lidSd. In order to

control the deformation intensity, theDeformation Power ratio (DPr) is defined as:
DPr = ||fSmean|| \ ||∑f

i=1

∑K

d=1
lidSd||. Finally, 50 random orthographic camera

matricesRi and translationti are used to form the 2D measurements onto the image
plane. The generation of the shape to register is made by selecting an initial random
Xi = B. Then, in order to simulate distortion inB, random affine transformationA
are applied toB such that:̃B = AB. In more detail, this distortion was computed as
A = I3 + ℵ whereℵ was a3 × 3 matrix of Gaussian noise with varianceσℵ. To
conclude, zero-mean Gaussian noise with variance ofσW image pixel was added to the
measurements stored inW100×20. The 2D data was finally scaled in order to fit into a
320 × 240 image frame. In the following tests the root mean squared (rms) error was
always used to compute the 2D registration error in pixels per point and the rotation
misalignment in degrees given the known ground truth.
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Fig. 3. Results for a synthetic sequence withDPr = 0.45. The figures show the result for the
rotation error in degrees and the rms 2D error in image pixel per point.

Figure 3 shows a test result obtained by fixingDPr = 0.15 and after running200
trials for each configuration of noise and affine distortionA (i.e. 25 configurations in
total). The results show that both algorithms are relatively robust to the added image
Gaussian noise however a difference is noticeable when evaluating the 2D and rotation
error at increasing distortions rates for the 3D shapeB. An important fact to keep in mind
when evaluating the 2D errors is that we are evaluating a registration of a rigid shape to
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Fig. 4. Results for a synthetic sequence withDPr = 0.45. The figures show the result for the
rotation error in degrees and the rms 2D error in image pixel per point.

a non-rigid sequence. Thus there is always a constant residual when plotting the error
(bottom plots in Figure 3). In contrast, here we put more emphasis on the worsening of
the error with the increase of the affine distortionA. In such case, Algorithm 2 is rather
robust for both 2D and rotation error due to the distortionsℵ until the last level of noise
where the algorithm starts to perform worse. Algorithm 1 reports a very high 2D error
up to18 pixels rms for the stronger distortion (out of the plot scale). This is expected as
the shape is fixed. More interesting is the plot showing the rotational error, indicating
slightly better results for tiny distortions in respect to Algorithm 2 but then diverging
again up to5 degrees for higher distortions. Figure 4 shows analogous behaviors for
both algorithms but in the case of stronger deformations in the image measurements
(DPr = 0.45). Algorithm 2 shows decreased the performance as expected but still
maintains reasonable values. Differently, Algorithm 1 reaches a misalignment up to9
degrees.

Fig. 5. Real sequence 2D–3D registration with a 3D shape as in Figure1(b). In the top row,
white dots show the 2D tracks extracted from the sequence. Red circles◦ shows the registration
with Algorithm 1. Yellow circles◦ show the registration with Algorithm 2 which achieves better
reprojection error especially in the eyeborow, mouth and temple areas. Bottom row shows frontal,
top and side view of the joint 3D shapeB̂ obtained from the registration algorithm.
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5.2 Real data

The scenario here considered is the registration of a 3D facemodel to a set of 2D
image trajectories obtained from an AAM tracker [13]. Notice that the 3D model that
represents ourB of size3×48was computed from a subject with different somatic traits
as it was shown in Figure 1(a). The model building ofB was performed using 2D points
obtained from nearly rigid motion of the subject followed bya rigid 3D reconstruction
using factorization [11]. The target 2D sequence came from adifferent video footage
as presented in Figure 5. Results for both registration algorithms are shown in Figure
5 with the reprojected image tracks. Algorithm 2 shows its properties of adaptation by
registering and computing a joint shape closer to the new subject traits. This can be
noticed especially in the different eyebrow shape comparedwith the registration of the
originalB obtained by Algorithm 1. Finally for this test, bottom row ofFigure 5 shows
three views of the reconstructed joint 3D shapeB̂ which qualitatively describe well the
3D shape of the subject.

A further test presents the performance of the algorithms inthe case of a degenerate
talking face sequence. This test is especially aimed to showthe relevance of the joint
metric constraints in this type of image sequences. We used the same rigid shape as
the previous example and plotted the registration over the image sequence in Figure
6. Again the subjects presented different physical traits from the reference 3D model
B. Figure 6(a) shows a side and top view of the joint shapeB̂ computed with the joint
metric constraints as in Section 3.2. Figure 6(b) instead presents the same computation
omitting the cost term

∥

∥NHNT − I3

∥

∥ in eq. (12). The resulting 3D shape is geometrically
distorted and it is not representing the correct metric characteristics.

Image sequence with registration (a) Joint metric (b) 2D metric

Fig. 6. The figure shows the registration results for Algorithm 1 (red circles◦) and Algorithm 2
(yellow circles◦). The top three figures show the image sequence of a subject talking and per-
forming minimal rigid motion. Registration is made with the3D shape as shown in Figure 1(b).
Bottom line shows first (a) two views of the shapeB̂ extracted using the joint metric constraints
and figure (b) the distorted shape obtained from the metric constraints of the 2D data alone.

A final experiment shows the algorithm behavior on the IMM database [9] which
contains a set of240 manually annotated face images. The dataset is divided in6 dif-
ferent poses for40 subjects. Among those six poses,2 of them are showing non-rigid
motion. Each face is manually annotated with58 points as shown in Figure 7. A global
mean 3D shape is reconstructed from all the subjects by running a rigid Tomasi and
Kanade [11] factorization on the first, third and fourth poseof each subject. These
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frames were showing predominant rigid motion thus they wereappropriate for the task.
Figure 7 shows as well three views of the 3D rigid reconstruction.

This mean shape was then registered to every image in the database using Algo-
rithm 1 and Algorithm 2 as presented in the paper. Note that inthis case we have40
sequences for each subject composed by six frames. Figure 8 shows the results on2 sub-
jects. White dots show the 2D tracks manually extracted fromeach short sequence. Red
circles◦ shows the registration with Algorithm 1. Yellow circles◦ show the registration
with Algorithm 2. Again the proposed algorithm shows its adaptation capabilities when
dealing with a large set of people with different somatic traits.

Fig. 7.a) A subject from the database. The white dots represent the manually annotated 2D points.
b) Front, top and side views of the mean 3D shape reconstructed from the database.

Fig. 8. Four selected frames from subject♯22 and♯35 in the IMM database.

5.3 Evaluation with missing data

The performance of Algorithm 3 was initially tested with synthetic data as showed in
the previous setup. Given the same amount of points and imageframes, The affine
distortion was fixed toσℵ = .20 andDPr = 0.25. The evaluation included25 tests
for each configuration of missing data and noise level (225 tests in total) Experiments
were made with increasing percentages of missing data and showed a robustness of the
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Fig. 9. Results for a synthetic sequence withDPr = 0.25 using Algorithm 3 and randomly
generated noise and missing data.

Image sequence with registration Joint 3D shape

Fig. 10.The figures on the top show the image sequence together with the registration given by
Algorithm 3 with30% of missing data. White dots show the available 2D data while the yellow
circles◦ represent the estimated registration. The three images on the bottom present front, top
and side view of the joint 3D shape.

approach until40% ratio as shown in Figure 9. The maximum number of iterations was
fixed to50 and a stop criteria was fixed at10−6 on the update of the reprojection error
of the missing 2D points. Note here that, even if the reprojection error is minimised
for the case of50% missing data, the error in degrees is around10 units thus we can
consider the registration compromised. For higher levels of missing data, the algorithm
fails to obtain a reliable registration and thus results arenot presented in the plots.

The real test shown in Figure 10 presents the results on the sequence in Figure 5
where occlusions were randomly created up to a30% ratio. The algorithm converged
after74 iterations with a threshold on the 2D points update of10−6. The registration
quality is barely degraded still showing a reasonable estimate of face side and frontal
profiles. We realised that most of the misalignement were present when the shape was
turning on the side. It is possible to notice that now there isless symmetry in the recon-
structed 3D shape with a wider gap in the side view corresponding to points lying on
the upper jaw. Still most of the depth of the shape was estimated reliably.

6 Conclusions

This paper presented a new approach to the 2D–3D registration problem in the case
of non-rigid 2D image trajectories and a shape represented as a set of 3D points. The
method is designed for the case when the shape is not an exact description of the 2D
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trajectories and it can deal with degeneracies in the 2D motion. This solution is targeted
for the face analysis and medical registration scenario where often single 3D observa-
tions have to be fit to a set of 2D trajectories. The formulation, given the joint subspace
may also give some intuition on how to solve the greatest cruxof these methods; the
matching problem between the 3D shape and the 2D image points. This will represent
the starting point for future investigations together withthe application of the proposed
joint metric constraints to the tracking and non-rigid 3D reconstruction domains.
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