Nonlinear Control Systems

António Pedro Aguiar
pedro@isr.ist.utl.pt

7. Feedback Linearization

IST-DEEC PhD Course
http://users.isr.ist.utl.pt/\~pedro/NCS2012/

Feedback Linearization

Given a nonlinear system of the form

$$
\begin{aligned}
\dot{x} & =f(x)+G(x) u \\
y & =h(x)
\end{aligned}
$$

Does exist a state feedback control law

$$
u=\alpha(x)+\beta(x) v
$$

and a change of variables

$$
z=T(x)
$$

that transforms the nonlinear system into a an equivalent linear system $(\dot{z}=A z+B v)$?

Feedback Linearization

Example: Consider the following system

$$
\dot{x}=A x+B \gamma(x)(u-\alpha(x))
$$

where $\gamma(x)$ is nonsingular for all x in some domain D.
Then,

$$
u=\alpha(x)+\beta(x) v, \quad \text { with } \beta(x)=\gamma^{-1}(x)
$$

yields

$$
\dot{x}=A x+B v
$$

If we would like to stabilize the system, we design

$$
v=-K x \quad \text { such that } A-B K \text { is Hurwitz }
$$

Therefore

$$
u=\alpha(x)-\beta(x) K x
$$

Feedback Linearization

Example: Consider now this example:

$$
\begin{aligned}
& \dot{x}_{1}=a \sin x_{2} \\
& \dot{x}_{2}=-x_{1}^{2}+u
\end{aligned}
$$

How can we do this? We cannot simply choose u to cancel the nonlinear term $a \sin x_{2}$!
However, if we first change the variables

$$
\begin{aligned}
& z_{1}=x_{1} \\
& z_{2}=a \sin x_{2}=\dot{x}_{1}
\end{aligned}
$$

then

$$
\begin{aligned}
& \dot{z}_{1}=z_{2} \\
& \dot{z}_{2}=a \cos x_{2} \dot{x}_{2}=a \cos x_{2}\left(-x_{1}^{2}+u\right)
\end{aligned}
$$

Therefore with

$$
u=x_{1}^{2}+\frac{1}{a \cos x_{2}} v, \quad-\pi / 2<x_{2}<\pi / 2
$$

we obtain the linear system

$$
\begin{aligned}
& \dot{z}_{1}=z_{2} \\
& \dot{z}_{2}=v
\end{aligned}
$$

Feedback Linearization

- A continuously differentiable map $T(x)$ is a diffeormorphism if $T^{-1}(x)$ is continuously differentiable. This is true if the Jacobian matrix $\frac{\partial T}{\partial x}$ is nonsingular $\forall x \in D$.
- $T(x)$ is a global diffeormorphism if and only if $\frac{\partial T}{\partial x}$ is nonsingular $\forall x \in \mathbb{R}^{n}$ and $T(x)$ is proper, that is, $\lim _{\|x\| \rightarrow \infty}\|T(x)\|=\infty$.

Definition

A nonlinear system

$$
\begin{equation*}
\dot{x}=f(x)+G(x) u \tag{1}
\end{equation*}
$$

where $f: D \rightarrow \mathbb{R}^{n}$ and $G: D \rightarrow \mathbb{R}^{n \times p}$ are sufficiently smooth on a domain $D \subset \mathbb{R}^{n}$ is said to be feedback linearizable (or input-state linearizable) if there exists a diffeomorphism $T: D \rightarrow \mathbb{R}^{n}$ such tat $D_{z}=T(D)$ contains the origin and the change of variables $z=T(x)$ transforms (1) into the form

$$
\dot{z}=A z+B \gamma(x)(u-\alpha(x))
$$

Feedback Linearization

Suppose that we would like to solve the tracking problem for the system

$$
\begin{aligned}
\dot{x}_{1} & =a \sin x_{2} \\
\dot{x}_{2} & =-x_{1}^{2}+u \\
y & =x_{2}
\end{aligned}
$$

If we use state feedback linearization we obtain

$$
\begin{aligned}
z_{1} & =x_{1} \\
z_{2} & =a \sin x_{2}=\dot{x}_{1} \\
u & =x_{1}^{2}+\frac{1}{a \cos x_{2}} v
\end{aligned} \quad \longrightarrow \quad \begin{aligned}
\dot{z}_{1} & =z_{2} \\
\dot{z}_{2} & =v \\
y & =\sin ^{-1}\left(z_{2} / a\right)
\end{aligned}
$$

which is not good!
Linearizing the state equation does not necessarily linearize the output equation.
Notice however if we set $u=x_{1}^{2}+v$ we obtain

$$
\begin{aligned}
\dot{x}_{2} & =v \\
y & =x_{2}
\end{aligned}
$$

There is one catch: The linearizing feedback control law made x_{1} unobservable from y. We have to make sure that x_{1} whose dynamics are given by $\dot{x}_{1}=a \sin x_{2}$ is well behaved. For example, if $y=y_{d}=c t e \longrightarrow x_{1}(t)=x_{1}(0)+t a \sin y_{d}$. It is unbounded!

Input-Output Linearization

SISO system

$$
\begin{aligned}
\dot{x} & =f(x)+g(x) u \\
y & =h(x)
\end{aligned}
$$

where f, g, h are sufficiently smooth in a domain $D \subset \mathbb{R}^{n}$. The mappings $f: D \rightarrow \mathbb{R}^{n}$ and $g: D \rightarrow \mathbb{R}^{n}$ are called vector fields on D.

Computing the first output derivative...

$$
\dot{y}=\frac{\partial h}{\partial x} \dot{x}=\frac{\partial h}{\partial x}[f(x)+g(x) u]=: L_{f} h(x)+L_{g} h(x) u
$$

In the sequel we will use the following notation:

$$
\begin{aligned}
L_{f} h(x) & =\frac{\partial h}{\partial x} f(x) \longrightarrow \text { Lie Derivative of } h \text { with respect to } f \\
L_{g} L_{f} h(x) & =\frac{\partial\left(L_{f} h\right)}{\partial x} g(x) \\
L_{f}^{0} h(x) & =h(x) \\
L_{f}^{2} h(x) & =L_{f} L_{f} h(x)=\frac{\partial\left(L_{f} h\right)}{\partial x} f(x) \\
L_{f}^{k} h(x) & =L_{f} L_{f}^{k-1} h(x)=\frac{\partial\left(L_{f}^{k-1} h\right)}{\partial x} f(x)
\end{aligned}
$$

Input-Output Linearization

$$
\dot{y}=L_{f} h(x)+L_{g} h(x) u
$$

If $L_{g} h(x) u=0$ then $\dot{y}=L_{f} h(x)$ (independent of u).
Computing the second derivative...

$$
y^{(2)}=\frac{\partial\left(L_{f} h\right)}{\partial x}[f(x)+g(x) u]=L_{f}^{2} h(x)+L_{g} L_{f} h(x) u
$$

If $L_{g} L_{f} h(x) u=0$ then $\dot{y}^{(2)}=L_{f}^{2} h(x)$ (independent of u).
Repeating this process, it follows that if

$$
\begin{aligned}
& L_{g} L_{f}^{i-1} h(x)=0, \quad i=1,2, \ldots, \rho-1 \\
& L_{g} L_{f}^{\rho-1} h(x) \neq 0
\end{aligned}
$$

then u does not appear in $y, \dot{y}, \ldots, y^{(\rho-1)}$ and

$$
y^{(\rho)}=L_{f}^{\rho} h(x)+L_{g} L_{f}^{(\rho-1)} h(x) u
$$

Input-Output Linearization

$$
y^{(\rho)}=L_{f}^{\rho} h(x)+L_{g} L_{f}^{\rho-1} h(x) u
$$

Therefore, by setting

$$
u=\frac{1}{L_{g} L_{f}^{\rho-1} h(x)}\left[-L_{f}^{\rho} h(x)+v\right]
$$

the system is input-output linearizable and reduces to

$$
y^{(\rho)}=v \longrightarrow \text { chain of } \rho \text { integrators }
$$

Definition

The nonlinear system

$$
\begin{aligned}
& \dot{x}=f(x)+g(x) u \\
& y=h(x)
\end{aligned}
$$

is said to have relative degree $\rho, 1 \leq \rho \leq n$, in the region $D_{0} \subset D$ if for all $x \in D_{0}$

$$
\begin{aligned}
& L_{g} L_{f}^{i-1} h(x)=0, \quad i=1,2, \ldots, \rho-1 \\
& L_{g} L_{f}^{\rho-1} h(x) \neq 0
\end{aligned}
$$

Examples

Example 1: Van der Pol system

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-x_{1}+\epsilon\left(1-x_{1}^{2}\right) x_{2}+u, \quad \epsilon>0
\end{aligned}
$$

1. $y=x_{1}$

Calculating the derivatives...

$$
\begin{aligned}
& \dot{y}=\dot{x}_{1}=x_{2} \\
& \ddot{y}=\dot{x}_{2}=-x_{1}+\epsilon\left(1-x_{1}^{2}\right) x_{2}+u
\end{aligned}
$$

Thus the system has relative degree $\rho=2$ in \mathbb{R}^{2}.
2. $y=x_{2}$

Then

$$
\dot{y}=\dot{x}_{2}=-x_{1}+\epsilon\left(1-x_{1}^{2}\right) x_{2}+u
$$

In this case the system has relative degree $\rho=1$ in \mathbb{R}^{2}.
3. $y=x_{1}+x_{2}^{2}$

Then

$$
\dot{y}=x_{2}+2 x_{2}\left(-x_{1}+\epsilon\left(1-x_{1}^{2}\right) x_{2}+u\right)
$$

In this case the system has relative degree $\rho=1$ in $D_{0}=\left\{x \in \mathbb{R}^{2}: x_{2} \neq 0\right\}$.

Examples

Example 2:

$$
\begin{aligned}
\dot{x}_{1} & =x_{1} \\
\dot{x}_{2} & =x_{2}+u \\
y & =x_{1}
\end{aligned}
$$

Calculating the derivatives...

$$
\dot{y}=\dot{x}_{1}=x_{1}=y \longrightarrow y^{(n)}=y=x_{1}, \forall n \geq 1
$$

The system does not have a well defined relative degree!
Why? Because the output $y(t)=x_{1}(t)=e^{t} x_{1}(0)$ is independent of the input u.

Examples

Example 3:

$$
H(s)=\frac{b_{m} s^{m}+b_{m-1} s^{m-1}+\cdots+b_{0}}{s^{n}+a_{n-1} s^{n-1}+\cdots+a_{0}}
$$

where $m<n$ and $b_{m} \neq 0$.
A state model of the system is the following

$$
\begin{aligned}
& \dot{x}=A x+B u \\
& y=C x
\end{aligned}
$$

with

$$
A=\left[\begin{array}{cccccc}
0 & 1 & 0 & \cdots & & 0 \\
0 & 0 & 1 & 0 & \cdots & \vdots \\
\vdots & & \ddots & & \ddots & 0 \\
0 & \cdots & & \cdots & 0 & 1 \\
-a_{0} & -a_{1} & \cdots & & \cdots & -a_{n-1}
\end{array}\right]_{n \times n}
$$

$$
B=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
1
\end{array}\right]_{n \times 1} \quad C=\left[\begin{array}{llllll}
b_{0} & b_{1} & \cdots & b_{m} & 0 & \cdots 0
\end{array}\right]_{1 \times n}
$$

What is the relative degree ρ ?

Examples

$$
\begin{array}{r}
\dot{y}=C A x+C B u \\
\text { If } m=n-1 \longrightarrow C B=b_{m} \neq 0 \longrightarrow \rho=1
\end{array}
$$

Otherwise, $C B=0$

$$
y^{(2)}=C A^{2} x+C A B u
$$

Note that CA is obtained by shifting the elements of C one position to the right and $C A^{i}$ by shifting i positions.

Therefore,

$$
\begin{gathered}
C A^{i-1} B=0, \quad \text { for } i=1,2, \ldots n-m-1 \\
C A^{n-m-1} B=b_{m} \neq 0 \\
y^{(n-m)}=C A^{n-m} x+C A^{n-m-1} B u \longrightarrow \rho=n-m
\end{gathered}
$$

In this case the relative degree of the system is the difference between the degrees of the denominator and numerator polynomials of $H(s)$.

Consider again the linear system given by the transfer function

$$
H(s)=\frac{N(s)}{D(s)} \text { with }\left\{\begin{aligned}
\operatorname{deg} D & =n \\
\operatorname{deg} N & =m<n \\
\rho & =n-m
\end{aligned}\right.
$$

$D(s)$ can be written as

$$
D(s)=Q(s) N(s)+R(s)
$$

where the degree of the quotient $\operatorname{deg} Q=n-m=\rho$ and the degree of the reminder $\operatorname{deg} R<m$

Thus

$$
H(s)=\frac{N(s)}{Q(s) N(s)+R(s)}=\frac{\frac{1}{Q(s)}}{1+\frac{1}{Q(s)} \frac{R(s)}{N(s)}}
$$

and therefore we can conclude that $H(s)$ can be represented as a negative feedback connection with $1 / Q(s)$ in the forward path and $R(s) / N(s)$ in the feedback path.

Note that the ρ-order transfer function $1 / Q(s)$ has no zeros and can be realized by

$$
\begin{aligned}
& \dot{\xi}=\left(A_{c}+B_{c} \lambda^{T}\right) \xi+B_{c} b_{m} e \\
& y=C_{c} \xi
\end{aligned}
$$

where

$$
\xi=\left[\begin{array}{llll}
y & \dot{y} & \ldots & y^{(\rho-1)}
\end{array}\right]^{T} \in \mathbb{R}^{\rho}
$$

and $\left(A_{c}, B_{c}, C_{c}\right)$ is a canonical form representation of a chain of ρ integrators:

$$
\begin{gathered}
\left.A_{c}=\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \cdots & 0 \\
\vdots & & \ddots & & \vdots \\
\vdots & & & 0 & 1 \\
0 & \cdots & \cdots & 0 & 0
\end{array}\right]_{\rho \times \rho} \quad B_{c}=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right]_{\rho \times 1} \quad C_{c}=\left[\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right]\right]_{1 \times \rho} \\
B_{c} \lambda^{T}=\left[\begin{array}{ccc}
0 & \cdots & 0 \\
\vdots & & \vdots \\
0 & \cdots & 0 \\
& \lambda^{T}
\end{array}\right], \quad \lambda \in \mathbb{R}^{\rho}
\end{gathered}
$$

$$
\begin{aligned}
R(s) \\
N(s)
\end{aligned} \quad \begin{aligned}
\dot{\eta} & =A_{0} \eta+B_{0} y \\
w & =C_{0} \eta
\end{aligned}
$$

The eigenvalues of A_{0} are the zeros of the polynomial $N(s)$, which are the zeros of the transfer function $H(s)$.

Thus, the system $H(s)$ can be realized by the state model

$$
\begin{aligned}
\dot{\eta} & =A_{0} \eta+B_{0} C_{c} \xi \\
\dot{\xi} & =A_{c} \xi+B_{c}\left(\lambda^{T} \xi-b_{m} C_{0} \eta+b_{m} u\right) \\
y & =C_{c} \xi
\end{aligned}
$$

Note that $y=C_{c} \xi$ and

$$
\dot{\xi}=A_{c} \xi+B_{c}\left(\lambda^{T} \xi-b_{m} C_{0} \eta+b_{m} u\right) \longleftrightarrow \begin{aligned}
\dot{\xi}_{1} & =\xi_{2} \\
\dot{\xi}_{2} & =\xi_{3} \\
\vdots & \\
\dot{\xi}_{\rho} & =\lambda^{T} \xi-b_{m} C_{0} \eta+b_{m} u
\end{aligned}
$$

and therefore $y^{(\rho)}=\lambda^{T} \xi-b_{m} C_{0} \eta+b_{m} u$

$$
y^{(\rho)}=\lambda^{T} \xi-b_{m} C_{0} \eta+b_{m} u
$$

Thus, setting

$$
u=\frac{1}{b_{m}}\left[-\lambda^{T} \xi+b_{m} C_{0} \eta+v\right]
$$

results in
$\dot{\eta}=A_{0} \eta+B_{0} C_{c} \xi \longrightarrow$ Internal dynamics: It is unobservable from the output y
$\dot{\xi}=A_{c} \xi+B_{c} v \longrightarrow$ chain of integrators
$y=C_{c} \xi$

Suppose we would like to stabilize the output y at a constant reference r, that is, $\xi \rightarrow \xi^{\star}=(r, 0, \ldots, 0)^{T}$.
Defining $\zeta=\xi-\xi^{\star}$ we obtain

$$
\dot{\zeta}=A_{c} \zeta+B_{c} v
$$

Therefore, setting

$$
v=-K \zeta=-K\left(\xi-\xi^{\star}\right)
$$

with $\left(A_{c}-B_{c} K\right)$ Hurwitz we obtain the closed-loop system

$$
\begin{aligned}
\dot{\eta} & =A_{0} \eta+B_{0} C_{c}\left(\xi^{\star}+\zeta\right) \\
\dot{\zeta} & =\left(A_{c}-B_{c} K\right) \zeta \\
y & =C_{c} \xi
\end{aligned}
$$

where the eigenvalues of A_{0} are the zeros of $H(s)$. If $H(s)$ is minmum phase (zeros in the open left-half complex plan) then A_{0} is Hurwitz.

Feedback Linearization

Can we extend this result

$$
\begin{aligned}
& \dot{\eta}=A_{0} \eta+B_{0} C_{c} \eta \\
& \dot{\xi}=A_{c} \xi+B_{c}\left(\lambda^{T} \xi-b_{m} C_{0} \eta+b_{m} u\right) \\
& y=C_{c} x
\end{aligned}
$$

for the nonlinear system (SISO)

$$
\begin{aligned}
& \dot{x}=f(x)+g(x) u \\
& y=h(x)
\end{aligned}
$$

that is find a $z=T(x)$, where

$$
z=\left[\begin{array}{c}
\eta \\
\xi
\end{array}\right]=\left[\begin{array}{c}
\phi_{1}(x) \\
\vdots \\
\phi_{n-\rho}(x) \\
h(x) \\
\vdots \\
L_{f}^{\rho-1} h(x)
\end{array}\right]
$$

such that $T(x)$ is a diffeomorphism on $D_{0} \subset D$ and $\frac{\partial \phi_{i}}{\partial x} g(x)=0$, for $1 \leq i \leq n-\rho, \forall x \in D$. Note that

$$
\dot{\eta}=\frac{\partial \phi_{i}}{\partial x} \dot{x}=\frac{\partial \phi_{i}}{\partial x} f(x)+\frac{\partial \phi_{i}}{\partial x} g(x) u
$$

Does exist such $T(x)$?

Normal form

Theorem (13.1)
Consider the SISO system

$$
\begin{aligned}
& \dot{x}=f(x)+g(x) u \\
& y=h(x)
\end{aligned}
$$

and suppose that it has relative degree $\rho \leq n$ in D. Then, for every $x_{0} \in D$, there exists a such diffeomorphism $T(x)$ on a neighborhood of x_{0}.

Using this transformation we obtain the system re-written in normal form:

$$
\begin{aligned}
\dot{\eta} & =f_{0}(\eta, \xi) \\
\dot{\xi} & =A_{c} \xi+B_{c} \gamma(x)[u-\alpha(x)] \\
y & =C_{c} \xi
\end{aligned}
$$

where $\xi \in \mathbb{R}^{\rho}, \eta \in \mathbb{R}^{n-\rho}$ and $\left(A_{c}, B_{c}, C_{c}\right)$ is the canonical form representation of a chain of integrators, and

$$
f_{0}(\eta, \xi):=\left.\frac{\partial \phi}{\partial x} f(x)\right|_{x=T^{-1}(z)} \quad \gamma(x)=L_{g} L_{f}^{\rho-1} h(x) \quad \alpha(x)=-\frac{L_{f}^{\rho} h(x)}{L_{g} L_{f}^{\rho-1} h(x)}
$$

$$
\begin{aligned}
\dot{\eta} & =f_{0}(\eta, \xi) \\
\dot{\xi} & =A_{c} \xi+B_{c} \gamma(x)[u-\alpha(x)] \\
y & =C_{c} \xi
\end{aligned}
$$

The external part can be linearized by

$$
u=\alpha(x)+\beta(x) v
$$

with $\beta(x)=\gamma^{-1}(x)$. The internal part is described by

$$
\dot{\eta}=f_{0}(\eta, \xi)
$$

Setting $\xi=0$ result

$$
\dot{\eta}=f_{0}(\eta, 0) \quad \longrightarrow \text { This is called the zero-dynamics }
$$

Note that for the linear case we have $\dot{\eta}=A_{0} \eta$, where the eigenvalues of A_{0} are the zeros of $H(s)$.

Definition

The system is said to be minimum phase if $\dot{\eta}=f_{0}(\eta, 0)$ has an asymptotically stable equilibrium point in the domain of interest.

The zero dynamics can be characterized in the original coordinates by notting that

$$
y(t)=0, \forall t \geq 0 \Rightarrow \xi(t)=0 \Rightarrow u(t)=\alpha(x(t))
$$

where the first implication is due to the fact that $\xi=[y, \dot{y}, \ldots]^{T}$ and the second due to $\dot{\xi}=A_{0} \xi+B_{0} \gamma(x)[u-\alpha(x)]$.

Thus, when $y(t)=0$, the solution of the state equation is confined to the set

$$
Z^{*}=\left\{x \in D_{0}: h(x)=L_{f} h(x)=\ldots=L_{f}^{\rho-1} h(x)=0\right\}
$$

and the input

$$
u=u^{*}(x):=\left.\alpha(x)\right|_{x \in Z^{*}}
$$

that is

$$
\dot{x}=f^{*}(x):=[f(x)+g(x) \alpha(x)]_{x \in Z^{*}}
$$

In the special case that $\rho=n \Rightarrow \eta$ does not exist. In that case the system has no zero dynamics and by default is said to be minimum phase.

Example

Example 1

$$
\begin{aligned}
\dot{x}_{1} & =x_{2} \\
\dot{x}_{2} & =-x_{1}+\epsilon\left(1-x_{1}^{2}\right) x_{2}+u \\
y & =x_{2}
\end{aligned}
$$

It is in the normal form $\left(\xi=y, \eta=x_{1}\right)$
Zero-dynamics?
$\dot{x}_{1}=0$, which does not have an asymptotic stable equilibrium point. Hence, the system is not minimum phase.

Example 2

$$
\begin{aligned}
\dot{x}_{1} & =-x_{1}+\frac{2+x_{3}}{1+x_{3}^{2}} u \\
\dot{x}_{2} & =x_{3} \\
\dot{x}_{3} & =x_{2} x_{3}+u \\
y & =x_{2}
\end{aligned}
$$

What is the relative degree and the zero dynamics?

$$
\begin{aligned}
\dot{x}_{1} & =-x_{1}+\frac{2+x_{3}}{1+x_{3}^{2}} u \\
\dot{x}_{2} & =x_{3} \\
\dot{x}_{3} & =x_{2} x_{3}+u \\
y & =x_{2}
\end{aligned}
$$

Computing the time-derivative...

$$
\begin{aligned}
& \dot{y}=\dot{x}_{2}=x_{3} \\
& \ddot{y}=\dot{x}_{3}=x_{1} x_{3}+u
\end{aligned}
$$

Thus, the relative degree is $\rho=2$. Analyzing the zero-dynamics we have

$$
\begin{aligned}
& y=0 \\
& \dot{y}=0 \\
& \ddot{y}=0
\end{aligned}
$$

we have $x_{2}=x_{3}=0$ and from the last we have $u=-x_{1} x_{3}=0$. Therefore, $\dot{x}_{1}=-x_{1}$ and the system is minimum phase.

Full-State Linearization

The single-input system

$$
\dot{x}=f(x)+g(x) u
$$

with f, g sufficiently smooth in a domain $D \subset \mathbb{R}^{n}$ is feedback linearizable if there exists a sufficiently smooth $h: D \rightarrow \mathbb{R}$ such that the system

$$
\begin{aligned}
& \dot{x}=f(x)+g(x) u \\
& y=h(x)
\end{aligned}
$$

has relative degree n in a region $D_{0} \subset D$.
This implies that the normal form reduces to

$$
\begin{aligned}
& \dot{z}=A_{c} z+B_{c} \gamma(x)[u-\alpha(x)] \\
& y=C_{c} z
\end{aligned}
$$

Note that

$$
z=T(x)
$$

Thus

$$
\dot{z}=\frac{\partial T}{\partial x} \dot{x}
$$

which is equivalent to

$$
A_{c} z+B_{c} \gamma(x)[u-\alpha(x)]=\frac{\partial T}{\partial x}[f(x)+g(x) u]
$$

Splinting in two we obtain

$$
\begin{gather*}
\frac{\partial T}{\partial x} f(x)=A_{c} T(x)-B_{c} \gamma(x) \alpha(x) \tag{2}\\
\frac{\partial T}{\partial x} g(x)=B_{c} \gamma(x) \tag{3}
\end{gather*}
$$

Equation (2) is equivalent to

$$
\begin{aligned}
\frac{\partial T_{1}}{\partial x} f(x) & =T_{2}(x) \\
\frac{\partial T_{2}}{\partial x} f(x) & =T_{3}(x) \\
& \vdots \\
\frac{\partial T_{n-1}}{\partial x} f(x) & =T_{n}(x) \\
\frac{\partial T_{n}}{\partial x} f(x) & =-\alpha(x) \gamma(x)
\end{aligned}
$$

and (3) is equivalent to

$$
\begin{aligned}
\frac{\partial T_{1}}{\partial x} g(x) & =0 \\
\frac{\partial T_{2}}{\partial x} g(x) & =0 \\
& \vdots \\
\frac{\partial T_{n-1}}{\partial x} g(x) & =0 \\
\frac{\partial T_{n}}{\partial x} g(x) & =\gamma(x) \neq 0
\end{aligned}
$$

Setting $h(x)=T_{1}$, we see that

$$
T_{i+1}(x)=L_{f} T_{i}(x)=L_{f}^{i} h(x), i=1,2, \ldots, n-1
$$

and

$$
\begin{align*}
& L_{g} L_{f}^{i-1} h(x)=0, i=1,2, \ldots, n-1 \\
& L_{g} L_{f}^{n-1} \neq 0 \tag{4}
\end{align*}
$$

Therefore we can conclude that if $h($.$) satisfies (4) the system is feedback linearizable.$

The existence of $h($.$) can be characterized by necessary and sufficient conditions on$ the vector fields f and g. First we need some terminology.

Definition

Given two vector fields f and g on $D \subset \mathbb{R}^{n}$, the Lie Bracket $[f, g]$ is the vector field

$$
[f, g](x)=\frac{\partial g}{\partial x} f(x)-\frac{\partial f}{\partial x} g(x)
$$

Note that

$$
\begin{aligned}
& {[f, g]=-[g, f]} \\
& f=g=c t e \Rightarrow[f, g]=0
\end{aligned}
$$

Adjoint representation

$$
\begin{aligned}
a d_{f}^{0} g(x) & =g(x) \\
a d_{f}^{1} g(x) & =[f, g](x) \\
a d_{f}^{k} g(x) & =\left[f, a d_{f}^{k-1} g\right](x), k \geq 1
\end{aligned}
$$

Example 1

$$
f(x)=\left[\begin{array}{c}
x_{2} \\
-\sin x_{1}-x_{2}
\end{array}\right], \quad g(x)=\left[\begin{array}{c}
0 \\
x_{1}
\end{array}\right]
$$

Then,

$$
\begin{aligned}
{[f, g](x) } & =\frac{\partial g}{\partial x} f(x)-\frac{\partial f}{\partial x} g(x)=\left[\begin{array}{ll}
\frac{\partial g_{1}}{\partial x_{1}} & \frac{\partial g_{1}}{\partial x_{2}} \\
\frac{\partial g_{2}}{\partial x_{1}} & \frac{\partial g_{2}}{\partial x_{2}}
\end{array}\right] f(x)-\left[\begin{array}{cc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}}
\end{array}\right] g(x) \\
& =\left[\begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
x_{2} \\
-\sin x_{1}-x_{2}
\end{array}\right]-\left[\begin{array}{cc}
0 & 1 \\
-\cos x_{1} & -1
\end{array}\right]\left[\begin{array}{c}
0 \\
x_{1}
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
x_{2}
\end{array}\right]-\left[\begin{array}{c}
x_{1} \\
-x_{1}
\end{array}\right]=\left[\begin{array}{c}
-x_{1} \\
x_{1}+x_{2}
\end{array}\right] \\
a d_{f}^{2} g & =\left[f, a d_{f} g\right]=\frac{\partial a d_{f} g}{\partial x} f(x)-\frac{\partial f}{\partial x} a d_{f} g(x) \\
& =\left[\begin{array}{cc}
-1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
-\sin x_{1}-x_{2}
\end{array}\right]-\left[\begin{array}{c}
-\cos x_{1} \\
-1
\end{array}\right]\left[\begin{array}{c}
-x_{1} \\
x_{1}+x_{2}
\end{array}\right] \\
& =\left[\begin{array}{ll}
x_{1}+x_{2}-\sin x_{1}-x_{1} \cos x_{1}
\end{array}\right]
\end{aligned}
$$

Example 2: $f(x)=A x$ and $g(x)=g$ is a constant vector field.
Then,

$$
\begin{gathered}
a d_{f} g(x)=[f, g](x)=\frac{\partial g}{\partial x} f(x)-\frac{\partial f}{\partial x} g(x)=-A g \\
a d_{f}^{2} g(x)=\left[f, a d_{f} g\right](x)=\frac{\partial a d_{f} g}{\partial x} f-\frac{\partial f}{\partial x} a d_{f} g=-A(-A g)=A^{2} g \\
a d_{f}^{k} g=(-1)^{k} A^{k} g
\end{gathered}
$$

Definition

For vector fields $f_{1}, f_{2}, \ldots, f_{k}$ on $D \subset \mathbb{R}^{n}$, a distribution Δ is a collection of all vector spaces $\Delta(x)=\operatorname{span}\left\{f_{1}(x), \ldots, f_{k}(x)\right\}$, where for each fixed $x \in D, \Delta(x)$ is the subspace of \mathbb{R}^{n} spanned by the vectors $f_{1}(x), \ldots, f_{k}(x)$.
The dimension of $\Delta(x)$ is defined by

$$
\operatorname{dim}(\Delta(x))=\operatorname{rank}\left[f_{1}(x), f_{2}(x), \ldots, f_{k}(x)\right]
$$

which may depend on x.
If $f_{1}, f_{2}, \ldots, f_{k}$ are linearly independent, then $\operatorname{dim}(\Delta(x))=k, \forall x \in D$. In this case, we say that Δ is a nonsingular distribution on D. A distribution Δ is involutive if

$$
g_{1} \in \Delta, g_{2} \in \Delta \Rightarrow\left[g_{1}, g_{2}\right] \in \Delta
$$

If Δ is a nonsingular distribution on D, generated by f_{1}, \ldots, f_{k} then it is involutive if and only if $\left[f_{i}, f_{j}\right] \in \Delta, \forall 1 \leq i, j \leq k$

Example 3

Let $D=\mathbb{R}^{3}, \Delta=\operatorname{span}\left\{f_{1}, f_{2}\right\}$ and

$$
f_{1}=\left[\begin{array}{c}
2 x_{2} \\
1 \\
0
\end{array}\right], \quad f_{2}=\left[\begin{array}{c}
1 \\
0 \\
x_{2}
\end{array}\right]
$$

$\operatorname{dim}(\Delta(x))=\operatorname{rank}\left[f_{1}, f_{2}\right]=2, \forall x \in D$
is Δ involutive?
$\left[f_{1}, f_{2}\right]=\frac{\partial f_{2}}{\partial x} f_{1}-\frac{\partial f_{1}}{\partial x} f_{2}=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{c}2 x_{2} \\ 1 \\ 0\end{array}\right]-\left[\begin{array}{lll}0 & 2 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]\left[\begin{array}{c}1 \\ 0 \\ x_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
Checking that $\left[f_{1}, f_{2}\right] \in \Delta$ is the same to see if $\left[f_{1}, f_{2}\right]$ can be generated by f_{1}, f_{2}, that is if $\operatorname{rank}\left[f_{1}(x), f_{2}(x),\left[f_{1}, f_{2}\right](x)\right]=2, \forall x \in D$. But

$$
\operatorname{rank}\left[\begin{array}{ccc}
2 x_{2} & 1 & 0 \\
1 & 0 & 0 \\
0 & x_{2} & 1
\end{array}\right]=3, \forall x \in D
$$

Hence, Δ is not involutive.

Theorem 13.2

Theorem

The system $\dot{x}=f(x)+g(x) u$, with $x \in \mathbb{R}^{n}, u \in \mathbb{R}$ is feedback linearizable if and only if there is a domain $D_{0} \subset D$ such that

1. The matrix $G(x)=\left[g(x), a d_{f} g(x), \ldots, a d_{f}^{n-1} g\right]$ has rank $n \forall x \in D_{0}$.
2. The distribution $D=\operatorname{span}\left\{g, a d_{f} g(x), \ldots, a d_{f}^{n-2} g\right\}$ is involutive in D_{0}.

Example

$$
\dot{x}=f(x)+g u, \quad f(x)=\left[\begin{array}{c}
a \sin x_{2} \\
-x_{1}^{2}
\end{array}\right], \quad g=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

we have seen that

$$
a d_{f} g=[f, g]=\frac{\partial g}{\partial x} f-\frac{\partial f}{\partial x} g=-\left[\begin{array}{cc}
0 & a \cos x_{2} \\
-2 x_{1} & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-a \cos x_{2} \\
0
\end{array}\right]
$$

The matrix $G=\left[g, a d_{f} g\right]=\left[\begin{array}{cc}0 & -a \cos x_{2} \\ 1 & 0\end{array}\right]$ has rank $G=2, \forall \cos x_{2} \neq 0$. The distribution $D=\operatorname{span}\{g\}$ is involutive. Thus, we can conclude that there exists a $T(x)$ in $D_{0}=\left\{x \in \mathbb{R}^{2}: \cos x_{2} \neq 0\right\}$ that allow us to do feedback linearization.

Now we have to find $h(x)$ that satisfies

$$
\begin{aligned}
& \frac{\partial h}{\partial x} g=0 ; \quad \frac{\partial\left(L_{f} h\right)}{\partial x} g \neq 0 ; \quad h(0)=0 \\
& {\left[\begin{array}{cc}
\frac{\partial h}{\partial x_{1}} & \frac{\partial h}{\partial x_{2}}
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\frac{\partial h}{\partial x_{2}}=0}
\end{aligned}
$$

Thus, $h($.$) must be independent of x_{2}$.

$$
\begin{aligned}
& L_{f} h(x)=\frac{\partial h}{\partial x} f(x)=\left[\begin{array}{cc}
\frac{\partial h}{\partial x_{1}} & 0
\end{array}\right]\left[\begin{array}{c}
a \sin x_{2} \\
-x_{1}^{2}
\end{array}\right]=\frac{\partial h}{\partial x_{1}} a \sin x_{2} \\
& \frac{\partial L_{f} h}{\partial x} g=\left[\begin{array}{ll}
\frac{\partial}{\partial x_{1}}\left(\frac{\partial h}{\partial x_{1}} a \sin x_{2}\right) \quad \frac{\partial}{\partial x_{2}}\left(\frac{\partial h}{\partial x_{1}} a \sin x_{2}\right)
\end{array}\right]\left[\begin{array}{c}
0 \\
1
\end{array}\right]=\frac{\partial h}{\partial x_{1}} a \cos x_{2} \neq 0
\end{aligned}
$$

In conclusion, $\frac{\partial h}{\partial x_{1}} \neq 0$ and $\frac{\partial h}{\partial x_{2}}=0$.
Examples of such $h(x)$ include $h(x)=x_{1}$ or $h(x)=x_{1}+x_{1}^{3}$. Given $h(x)$ we can now perform input-output linearization.

Example 2

A single link manipulator with flexible points

$$
\begin{aligned}
& \dot{x}=f(x)+g u \\
& f(x)=\left[\begin{array}{c}
x_{2} \\
-a \sin x_{1}-b\left(x_{1}-x_{3}\right) \\
x_{4} \\
c\left(x_{1}-x_{3}\right)
\end{array}\right], \quad g=\left[\begin{array}{l}
0 \\
0 \\
0 \\
d
\end{array}\right] \quad a, b, c, d>0 \\
& G=\left[g, a d_{f} g, a d_{f}^{2} g, a d_{f}^{3} g\right] \\
& a d_{f} g=[f, g]=\frac{\partial g}{\partial x} f-\frac{\partial f}{\partial x} g=0-\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-a \cos x_{1}-b & 0 & b & 0 \\
0 & 0 & 0 & 1 \\
c & 0 & -c & 0
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
0 \\
d
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
-d \\
0
\end{array}\right] \\
& a d_{f}^{2} g=\left[f, a d_{f} g\right]=\frac{\partial\left(a d_{f} g\right)}{\partial x} f-\frac{\partial f}{\partial x} a d_{f} g \\
& =0-\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-a \cos x_{1}-b & 0 & b & 0 \\
0 & 0 & 0 & 1 \\
c & 0 & -c & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
-d \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
b d \\
0 \\
-c d
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
a d_{f}^{3} g & =\left[f, a d_{f}^{2} g\right]=\frac{\partial a d_{f}^{2} g}{\partial x} f-\frac{\partial f}{\partial x} a d_{f}^{2} g \\
& =0-\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-a \cos x_{1}-b & 0 & b & 0 \\
0 & 0 & 0 & 1 \\
c & 0 & -c & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
b d \\
0 \\
-c d
\end{array}\right]=\left[\begin{array}{c}
-b d \\
0 \\
c d \\
0
\end{array}\right]
\end{aligned}
$$

Thus,

$$
G=\left[\begin{array}{cccc}
0 & 0 & 0 & -b d \\
0 & 0 & b d & 0 \\
0 & -d & 0 & c d \\
d & 0 & -c d & 0
\end{array}\right] \rightarrow \operatorname{rank} G=4, \forall x \in \mathbb{R}^{4}
$$

The distribution $\Delta=\operatorname{span}\left\{g, a d_{f} g, a d_{f}^{2}\right\}$ is involutive since $g, a d_{f} g, a d_{f}^{2}$ are constant vector fields $\left(\left[g, a d_{f} g\right]=0\right)$.
Therefore, we can conclude that there exists an $h(x): \mathbb{R}^{4} \rightarrow \mathbb{R}$ and a $T(x)$ that make the system full state feedback linearizable. In particular, $h(x)$ must satisfy

$$
\begin{gathered}
\frac{\partial L_{f}^{i-1} h}{\partial x} g=0, \quad i=1,2,3 \\
\frac{\partial L_{f}^{3} h}{\partial x} g \neq 0, \quad h(0)=0
\end{gathered}
$$

For $i=1$, we have $\frac{\partial h}{\partial x} g=0 \Rightarrow \frac{\partial h}{\partial x_{4}}=0$ and so $h(x)$ must be independent of x_{4}.
$L_{f} h(x)=\frac{\partial h}{\partial x} f(x)=\frac{\partial h}{\partial x_{1}} x_{2}+\frac{\partial h}{\partial x_{2}}\left[-a \sin x_{1}-b\left(x_{1}-x_{3}\right)\right]+\frac{\partial h}{\partial x_{3}} x_{4}$.
From

$$
\frac{\partial L_{f} h}{\partial x} g=0 \Rightarrow \frac{\partial L_{f} h}{\partial x_{4}}=0 \Rightarrow \frac{\partial h}{\partial x_{3}}=0
$$

Thus, $h(x)$ is independent of x_{3}.
Thus,

$$
L_{f} h(x)=\frac{\partial h}{\partial x_{1}} x_{2}+\frac{\partial h}{\partial x_{2}}\left[-a \sin x_{1}-b\left(x_{1}-x_{3}\right)\right]
$$

$$
\begin{aligned}
& L_{f}^{2} h(x)=L_{f} L_{f} h(x)=\frac{\partial\left(L_{f} h\right)}{\partial x} f(x)=\frac{\partial\left(L_{f} h\right)}{\partial x_{1}} x_{2}+\frac{\partial\left(L_{f} h\right)}{\partial x_{2}}\left[-a \sin x_{1}-b\left(x_{1}-x_{3}\right)\right] \\
& \quad+\frac{\partial\left(L_{f} h\right)}{\partial x_{3}} x_{4}+\frac{\partial\left(L_{f} h\right)}{\partial x_{4}} c\left(x_{1}-x_{3}\right)
\end{aligned}
$$

For $i=2$,

$$
\frac{\partial\left(L_{f}^{2} h\right)}{\partial x} g=0 \Rightarrow \frac{\partial\left(L_{f} h\right)}{\partial x_{3}}=0 \Rightarrow \frac{\partial h}{\partial x_{2}}=0
$$

Thus h is independent of x_{2}.

Hence,

$$
\begin{aligned}
L_{f}^{3} h(x) & =L_{f} L_{f}^{2} h=\frac{\partial\left(L_{f}^{2} h\right)}{\partial x} f(x)=\frac{\partial\left(L_{f}^{2} h\right)}{\partial x_{1}} x_{2}+\frac{\partial\left(L_{f}^{2} h\right)}{\partial x_{1}}\left[-a \sin x_{1}-b\left(x_{1}-x_{3}\right)\right] \\
& +\frac{\partial\left(L_{f}^{2} h\right)}{\partial x_{3}} x_{4}+\frac{\partial\left(L_{f}^{2} h\right)}{\partial x_{4}} c\left(x_{1}-x_{3}\right)
\end{aligned}
$$

Also, from condition

$$
\frac{\partial L_{f}^{3} h(x)}{\partial x} g \neq 0 \Rightarrow \frac{\partial L_{f}^{2} h}{\partial x_{3}} \neq 0 \Rightarrow \frac{\partial L_{f} h}{\partial x_{2}} \neq 0 \Rightarrow \frac{\partial h}{\partial x_{1}} \neq 0
$$

Therefore, let $h(x)=x_{1}$. Then, the change of variables

$$
\begin{aligned}
& z_{1}=h(x)=x_{1} \\
& z_{2}=L_{f} h(x)=x_{2} \\
& z_{3}=L_{f}^{2} h(x)=-a \sin x_{1}-b\left(x_{1}-x_{3}\right) \\
& z_{4}=L_{f}^{3} h(x)=-a \cos x_{1} \dot{x}_{1}-b \dot{x}_{1}+b \dot{x}_{3}=-a x_{2} \cos x_{1}-b x_{2}+b x_{4}
\end{aligned}
$$

transforms the state equation into

$$
\begin{aligned}
& \dot{z}_{1}=z_{2} \\
& \dot{z}_{2}=z_{3} \\
& \dot{z}_{3}=z_{4} \\
& \dot{z}_{4}=-\left(a \cos z_{1}+b+c\right) z_{3}+a\left(z_{2}^{2}-c\right) \sin z_{1}+b d u
\end{aligned}
$$

Example - field controlled DC motor

Consider the system

$$
\dot{x}=f(x)+g u
$$

with

$$
f(x)=\left[\begin{array}{c}
-a x_{1} \\
-b x_{2}+k-c x_{1} x_{3} \\
\theta x_{1} x_{2}
\end{array}\right], \quad g=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Computing the

$$
\begin{gathered}
a d_{f} g=[f, g]=\left[\begin{array}{c}
a \\
c x_{3} \\
-\theta x_{2}
\end{array}\right], \quad a d_{f}^{2} g=\left[f, a d_{f} g\right]=\left[\begin{array}{c}
a^{2} \\
(a+b) c x_{3} \\
(b-a) \theta x_{2}-\theta k
\end{array}\right] \\
G=\left[g, a d_{f} g, a d_{f}^{2} g\right]=\left[\begin{array}{ccc}
1 & a & a^{2} \\
0 & c x_{3} & (a+b) c x_{3} \\
0 & -\theta x_{2} & (b-a) \theta x_{2}-\theta k
\end{array}\right]
\end{gathered}
$$

Rank of G ?
$\operatorname{det} G=c \theta\left(-k+2 b x_{2}\right) x_{3}$.
Hence G has rank 3 for $x_{2} \neq \frac{k}{2 b}$ and $x_{3} \neq 0$. Let's check the distribution $D=\operatorname{span}\left\{g, a d_{f} g\right\}$

$$
\left[g, a d_{f} g\right]=\frac{\partial\left(a d_{f} g\right)}{\partial x} g=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & c \\
0 & -\theta & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Hence D is involutive because $\left[g, a d_{f} g\right] \in D$.
Therefore, the conditions of Theorem 13.2 are satisfied in particular for the domain

$$
D_{0}=\left\{x \in \mathbb{R}^{3}: x_{2}>\frac{k}{2 b}, x_{3}>0\right\}
$$

$h()=$. ?

$$
\dot{x}=f(x)+g u
$$

with

$$
f(x)=\left[\begin{array}{c}
-a x_{1} \\
-b x_{2}+k-c x_{1} x_{3} \\
\theta x_{1} x_{2}
\end{array}\right], \quad g=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

Equilibrium points: $x_{1}=0, x_{2}=\frac{k}{b}, x_{3}=c t e$.
Suppose we are interested in the desired operating point $x^{*}=\left[0 \frac{k}{b} w_{0}\right]^{T}$.
Then, $h(x)$ must satisfy $(n=3)$

$$
\frac{\partial h}{\partial x} g=0 ; \quad \frac{\partial\left(L_{f} h\right)}{\partial x} g=0 ; \quad \frac{\partial\left(L_{f}^{2} h\right)}{\partial x} g \neq 0
$$

and $h\left(x^{*}\right)=0$.

$$
\frac{\partial h}{\partial x} g=0 \Rightarrow \frac{\partial h}{\partial x_{1}}=0
$$

that is, h must be independent of x_{1}.
$L_{f} h(x)=\ldots$

State feedback control

Consider the system

$$
\dot{x}=f(x)+G(x) u
$$

and let $z=T(x)=\left[T_{1}(x), T_{2}(x)\right]^{T}$ such that

$$
\begin{aligned}
\dot{\eta} & =f_{0}(\eta, \xi) \\
\dot{\xi} & =A \xi+B \gamma(x)[u-\alpha(x)]
\end{aligned}
$$

Suppose that (A, B) is controllable, $\gamma(x)$ is nonsingular $\forall x \in D, f_{0}(0,0)=0$ and $f_{0}(\eta, \xi), \alpha(x), \gamma(x) \in C^{1}$.

Goal: Design a state feedback control law to stabilize the origin $z=0$.
Setting $u=\alpha(x)+\beta(x) v, \beta(x)=\gamma^{-1}(x)$, we obtain the triangular system

$$
\begin{aligned}
& \dot{\eta}=f_{0}(\eta, \xi) \\
& \dot{\xi}=A \xi+B v
\end{aligned}
$$

Let $v=-K \xi$ with $(A-B K)$ Hurwitz then we can conclude the following:

State feedback control

Lemma (13.1)

The origin $z=0$ is asymptotically stable (AS) if the origin of $\dot{\eta}=f_{0}(\eta, 0)$ is $A S$ (that is, if the system is minimum phase).

Proof.

By the converse theorem $\exists V_{1}(\eta): \frac{\partial V_{1}}{\partial \eta} f_{0}(\eta, 0) \leq-\alpha_{3}(\|x\|)$ in some neighborhood of $\eta=0$, where $\alpha_{3} \in \mathcal{K}$. Let $P=P^{T}>0$ be the solution of the Lyapunov equation $P(A-B K)+(A-B K)^{T} P=-I$.

$$
\begin{aligned}
& V=V_{1}+k \sqrt{\xi^{T} P \xi}, \quad k>0 \\
& \dot{V} \leq \frac{\partial V_{1}}{\partial \eta} f_{0}(\eta, \xi)+\frac{k}{2 \sqrt{\xi^{T} P \xi}} \xi^{t}\left[P(A-B K)+(A-B K)^{T} P\right] \xi \\
& \leq \frac{\partial V_{1}}{\partial \eta} f_{0}(\eta, 0)+\frac{\partial V_{1}}{\partial \eta}\left[f_{0}(\eta, \xi)-f_{0}(\eta, 0)\right]-\frac{k \xi^{T} \xi}{2 \sqrt{\xi^{T} P \xi}} \\
& \leq-\alpha_{3}(\|\eta\|)+k_{1}\|\xi\|-k k_{2}\|\xi\|, \quad k_{1}, k_{2}>0
\end{aligned}
$$

where the last inequality follows from restricting the state to be in any bounded neighborhood of the origin and using the continuous differentiability property of V_{1} and f_{0}. Thus, choosing $k>k_{1} / k_{2}$ ensures that $\dot{V}<0$, which follows that the origin is AS.

State feedback control

Lemma (13.2)
The origin $z=0$ is GAS if $\dot{\eta}=f_{0}(\eta, \xi)$ is ISS.
Note that if $\dot{\eta}=f_{0}(\eta, 0)$ is GAS or GES does NOT imply ISS. But, if it is GES + globally Lipschitz then it is ISS.
Otherwise, we have to prove ISS by further analysis.

Example:

$$
\begin{aligned}
& \dot{\eta}=-\eta+\eta^{2} \xi \\
& \dot{\xi}=v
\end{aligned}
$$

Zero dynamics: $\dot{\eta}=-\eta \longrightarrow \eta=0$ is GES but $\dot{\eta}=-\eta+\eta^{2} \xi$ is not ISS, e.g., if $\xi(t)=1$ and $\eta(0) \geq 2$ then $\dot{\eta}(t) \geq 2, \forall t \geq 0$, which implies that η grows unbounded.

However with $v=-K \xi, K>0$ we achieve AS.

To view this, let $\nu=\eta \xi$, then

$$
\begin{aligned}
\dot{\nu} & =\eta \dot{\xi}+\dot{\eta} \xi \\
& =\eta v-\eta \xi+\eta^{2} \xi^{2} \\
& =-K \eta \xi-\eta \xi+\eta^{2} \xi^{2} \\
& =-(1+K) \nu+v^{2}=-[(1+K)-\nu] \nu^{2}
\end{aligned}
$$

Thus, with $\nu(0)<1+K \Rightarrow v \rightarrow 0$ and therefore we can also conclude that $\exists T \geq t_{0}: v(t) \leq \frac{1}{2}, \forall t \geq T$.

Consider now $V=1 / 2 \eta^{2}$. Then

$$
\begin{aligned}
\dot{V} & =\eta \dot{\eta} \\
& =-\eta^{2}+\eta^{3} \xi \\
& =-\eta^{2}(1-\eta \xi)=-\eta^{2}(1-\nu)<0, \forall t \geq T
\end{aligned}
$$

Thus, $\eta \rightarrow 0$ and note also that $\dot{\xi}=-K \xi$. Therefore, the control law $v=-K \xi$ can achieve semiglobal stabilization.

One may think that we can assign the eigenvalues of $(A-B K)$ to the left half-complex plane to make $\dot{\xi}=(A-B K) \xi$ decay to zero arbitrarily fast. BUT this may have consequences: the zero-dynamics may go unstable! This is due to the peaking phenomenon.

Example

$$
\begin{aligned}
& \dot{\eta}=-\frac{1}{2}\left(1+\xi_{2}\right) \eta^{3} \\
& \dot{\xi}_{1}=\xi_{2} \\
& \dot{\xi}_{2}=v
\end{aligned}
$$

Setting $v=-K \xi=-k^{2} \xi_{1}-2 k \xi_{2} \longrightarrow A-B K=\left[\begin{array}{cc}0 & 1 \\ -k^{2} & -2 k\end{array}\right]$ and the eigenvalues are $-k,-k$. Note that

$$
e^{(A-B K) t}=\left[\begin{array}{cc}
(1+k t) e^{-k t} & t e^{-k t} \\
-k^{2} t e^{-k t} & (1-k t) e^{-k t}
\end{array}\right]
$$

which shows that as $k \rightarrow \infty, \xi(t)$ will decay to zero arbitrary fast.
However, the element $(2,1)$ reaches a maximum value k / e at $t=\frac{1}{k}$. There is a peak of order k ! Furthermore, the interaction of peaking with nonlinear growth could destabilize the system.
E.g., consider the initial conditions

$$
\begin{aligned}
& \eta(0)=\eta_{0} \\
& \xi_{1}(0)=1 \\
& \xi_{2}(0)=0
\end{aligned}
$$

Then,

$$
\xi_{2}(t)=-k^{2} t e^{-k t}
$$

and

$$
\begin{aligned}
\dot{\eta} & =-\frac{1}{2}\left(1+\xi_{2}\right) \eta^{3} \\
& =-\frac{1}{2}\left(1-k^{2} t e^{-k t}\right) \eta^{3}
\end{aligned}
$$

In this case the solution $\eta(t)$ is given by

$$
\eta^{2}(t)=\frac{\eta_{0}^{2}}{1+\eta_{0}^{2}\left[t+(1+k t) e^{-k t}-1\right]}
$$

which has a finite escape if $\eta_{0}>1$.

Tracking

$$
\begin{aligned}
\dot{\eta} & =f_{0}(\eta, \xi) \\
\dot{\xi} & =A_{0} \xi+B_{0} \gamma(x)[u-\alpha(x)] \\
y & =C_{0} \xi
\end{aligned}
$$

Goal: Design u such that y asymptotically tracks a reference signal $r(t)$. Assume that $r(t), \dot{r}(t), \ldots, r^{(\rho)}$ are bounded and available on-line. Note that the reference signal could be the output of a pre-filter.
Example: If $\rho=2$, the pre-filter could be

$$
G(s)=\frac{w_{n}^{2}}{s^{2}+2 \xi w_{n} s+w_{n}}
$$

Then

$$
\begin{aligned}
& \dot{y}_{1}=y_{2} \\
& \dot{y}_{2}=-w_{n}^{2} y_{1}-2 \xi w_{n} y_{2}+w_{n}^{2} y_{d} \\
& r=y_{1}
\end{aligned}
$$

Note that in this case $\dot{r}=\dot{y}_{1}=y_{2}$ and $\ddot{r}=\dot{y}_{2}$.
Consider a system with relative degree ρ. Let

$$
\mathbf{r}=\left[\begin{array}{c}
r \\
\vdots \\
r^{(\rho-1)}
\end{array}\right], \text { and } e=\left[\begin{array}{c}
\xi_{1}-r \\
\vdots \\
\xi_{\rho}-r^{(\rho-1)}
\end{array}\right]=\xi-\mathbf{r}
$$

Then, the error system is given by

$$
\begin{aligned}
& \dot{\eta}=f_{0}(\eta, e+\mathbf{r}) \\
& \dot{e}=A_{c} e+B_{c}\left(\gamma(x)[u-\alpha(x)]-r^{(\rho)}\right)
\end{aligned}
$$

Setting $u=\alpha(x)+\beta(x)\left[v-r^{(\rho)}\right]$ with $\beta=\frac{1}{\gamma(x)}$ it follows that

$$
\begin{aligned}
& \dot{\eta}=f_{0}(\eta, e+\mathbf{r}) \\
& \dot{e}=A_{c} e+B_{c} v
\end{aligned}
$$

Thus, selecting $v=-K e$ with $\left(A_{c}-B_{c} K\right)$ Hurwitz we can conclude that the states of the closed-loop system

$$
\begin{aligned}
& \dot{\eta}=f_{0}(\eta, e+\mathbf{r}) \\
& \dot{e}=\left(A_{0}-B_{0} K\right) e
\end{aligned}
$$

are bounded if $\dot{\eta}=f_{0}(\eta, e+R)$ is ISS and that $e \rightarrow 0$ as $t \rightarrow \infty$.

