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5. Input-Output Stability

Input-Output Stability

y = Hu

• H denotes a mapping or operator that specifies y in terms of u
• u is an input signal that map the time interval [0,∞) into the Euclidean space

Rm, that is, u : [0,∞)→ Rm

Typical spaces of signals:
• Lm∞ – space of piecewise continuous, bounded functions, where the norm of
u : [0,∞)→ Rm is defined as

‖u‖L∞ = sup
t≥0
‖u(t)‖ <∞

• Lm2 – space of piecewise continuous, square-integrable functions with

‖u‖L2 =

sZ ∞
0

uT (t)u(t)dt <∞

• Lmp for 1 ≤ p <∞ is the set of all piecewise continuous functions
u : [0,∞)→ Rm such that

‖u‖Lp =

„Z ∞
0
‖u(t)‖pdt

« 1
p

<∞
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5. Input-Output Stability

Input-Output Stability

For technical reasons, we have to introduce the extended space

Lme = {u : uτ ∈ Lm, ∀τ ∈ [0,∞)}

where

uτ (t) =


u(t), 0 ≤ t ≤ τ
0, t > τ

Note that uτ is a truncation of u.

Example u(t) = t /∈ L∞ but its truncation belongs to L∞ for every finite τ . Hence
u(t) = t ∈ L∞e
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5. Input-Output Stability

Input-Output Stability

Definition

A mapping H : Lme → L
p
e is L stable if

∃α ∈ K, β ≥ 0 : ‖(Hu)τ‖L ≤ α(‖uτ‖L) + β

for all u ∈ Lme and τ ∈ [0,∞).

It is finite-gain L stable if

∃γ, β ≥ 0 : ‖(Hu)τ‖L ≤ γ‖uτ‖L + β

for all u ∈ Lme and τ ∈ [0,∞).

In particular for L∞, the system is L∞ stable if for every bounded input u(t), the
output Hu(t) is bounded. Given the system

ẋ = f(t, x, u), x(0) = x0

y = h(t, x, u)

when is it L∞ stable?
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5. Input-Output Stability

Theorem 5.3

Theorem 5.3

Consider the system

ẋ = f(t, x, u), x(0) = x0 (1)

y = h(t, x, u) (2)

Suppose that

• (1) is ISS, that is

‖x(t)‖ ≤ β(‖x0‖, t− t0) + γ( sup
τ∈[0,t]

‖u(τ)‖)

• h satisfies the inequality

‖h(t, x, u)‖ ≤ α1(‖x‖) + α2(‖x‖) + η

α1, α2 ∈ K, η > 0

Then, for each x0 ∈ Rn, system (1)-(2) is L∞ stable.
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5. Input-Output Stability

Proof

‖y(t)‖ ≤ α1(β(‖x0‖, t− t0)) + γ( sup
τ∈[0,t]

‖u(τ)‖) + α2(‖u‖) + η

since α(a+ b) ≤ α(2a) + α(2b), then

‖y(t)‖ ≤ α1(2β(‖x0‖, t− t0)) + α1(2γ( sup
τ∈[0,t]

‖u(τ)‖)) + α2(‖u‖) + η

Thus
‖yτ‖L∞ ≤ γ0(‖uτ‖L∞ ) + β0

where
γ0 = α1 ◦ 2γ + α2, β0 = α1(2β(‖x0‖, 0)) + η
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5. Input-Output Stability

Example

Is the following system L∞ stable?

ẋ1 = −x3
1 + g(t)x2

ẋ2 = −g(t)x1 − x3
2 + u

y = x1 + x2

Consider

V =
1

2
x2
1 + x2

2

Thus,

V̇ = −x4
1 + g(t)x1x2 − g(t)x1x2 − x4

2 + x2u

= −x4
1 − x4

2 + x2u

Since

1

2
‖x‖4 =

1

2
(x2

1 + x2
2)4/2 =

1

2
x4
1 +

1

2
x4
2 +

2

2
x2
1x

2
2

≤
1

2
x4
1 +

1

2
x4
2 +

1

2
x4
1 +

1

2
x4
2

≤ x4
1 + x4

2
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5. Input-Output Stability

Example

Then

V̇ ≤ −
1

2
‖x‖4 + ‖x‖|u|

= −
1

2
(1− θ)‖x‖4 −

1

2
θ‖x‖4 + ‖x‖|u|, 0 < θ < 1

≤ −
1

2
(1− θ)‖x‖4, ∀‖x‖ ≥

„
2|u|
θ

«1/3

Thus V is an ISS-Lyapunov function and the state equation is ISS.
Moreover

h(t) =
ˆ

1 1
˜ » x1

x2

–
→ ‖h(t)‖ ≤

√
2‖x‖

Thus the system is L∞ stable.
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5. Input-Output Stability

L2 Gain

Theorem 5.4

Consider the linear time-invariant system

ẋ = Ax+Bu

y = Cx+Du

where A Hurwitz. The L2 gain of the linear system is given by

γ = sup
w∈R
‖G(jw)‖2 =

q
λmax(GT (−jw)G(jw)) = σmax(G(jw))

where G(s) = C(sI −A)−1B +D. Moreover, in this case,

‖y‖L2 = γ‖u‖L2
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5. Input-Output Stability

L2 Gain

Theorem 5.5

Consider the nonlinear system

ẋ = f(x) +G(x)u, x(0) = x0

y = h(x)

where f(x) is locally Lipschitz, G ∈ Rn×m and h : Rn → Rq are continuous, and
f(0) = 0, h(0) = 0.
Let γ be a positive number and suppose that there is a C1, positive semidefinite
function V (x) that satisfies the Hamilton-Jacobi inequality

∂V

∂x
f(x) +

1

2γ2
G(x)GT (x)

„
∂V

∂x

«T
+

1

2
hT (x)h(x) ≤ 0

Then, ∀x0 ∈ Rn, the system is finite-gain L2 stable and its L2 gain is less than or
equal to γ.
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5. Input-Output Stability

Proof

V̇ (x) =
∂V

∂x
f(x) +

∂V

∂x
G(x)u

≤ −
1

2γ2

∂V

∂x
G(x)GT (x)

„
∂V

∂x

«T
−

1

2
hT (x)h(x) +

∂V

∂x
G(x)u

By completing the squares, the right hand-side term is equal to

−
1

2
γ2

‚‚‚‚‚u− 1

γ2
GT (x)

„
∂V

∂x

«T ‚‚‚‚‚
2

+
1

2
γ2‖u‖2 −

1

2
‖y‖2

Hence
∂V

∂x
f(x) +

∂V

∂x
G(x)u ≤

1

2
γ2‖u‖2 −

1

2
‖y‖2

Integrating

V (x(τ))− V (x0) ≤
1

2
γ2

Z τ

0
‖u(τ)‖2dτ −

1

2

Z τ

0
‖y(τ)‖2dτ

Since V (x) ≥ 0

1

2

Z τ

0
‖y(τ)‖2dτ ≤

1

2
γ2

Z τ

0
‖u(τ)‖2dτ + 2V (x0)

Taking the square roots and using
√
a2 + b2 ≤ a+ b for a, b ≥ 0 yields

‖yτ‖L2 ≤ γ‖uτ‖L2 +
p

2V (x0)
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5. Input-Output Stability

The Small-Gain Theorem

Let H1 : Lme → Lqe and H2 : Lqe → Lme and

• Suppose both systems are finite-gain L stable, that is,

‖y1τ‖L ≤ γ1‖e1τ‖L + β1, ∀e1 ∈ Lme , ∀τ ∈ [0,∞)
‖y2τ‖L ≤ γ2‖e2τ‖L + β2, ∀e2 ∈ Lqe, ∀τ ∈ [0,∞)

• Suppose that the feedback is well defined and let

u =

»
u1

u2

–
, y =

»
y1
y2

–
, e =

»
e1
e2

–
Then, the feedback connection is finite-gain L stable if γ1γ2 < 1.
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5. Input-Output Stability

Proof
Let e1τ = u1τ − (H2e2)τ and e2τ = u2τ − (H1e1)τ .
Then

‖e1τ‖L ≤ ‖u1τ‖L + ‖(H2e2)τ‖L
≤ ‖u1τ‖L + γ2‖e2τ‖L + β2

≤ ‖u1τ‖L + γ2 (‖u2τ‖L + γ1‖e1τ‖L + β1) + β2

= γ1γ2‖e1τ‖L + (‖u1τ‖L + γ2‖u2τ‖L + β2 + γ2β1)

Thus
(1− γ1γ2)‖e1τ‖L = ‖u1τ‖L + γ2‖u2τ‖L + β2 + γ2β1

Since γ1γ2 < 1, then

‖e1τ‖L ≤
1

1− γ1γ2
(‖u1τ‖L + γ2‖u2τ‖L + β2 + γ2β1)

for all τ ∈ [0,∞). Similarly,

‖e2τ‖L ≤
1

1− γ1γ2
(‖u2τ‖L + γ1‖u1τ‖L + β1 + γ1β2)

Thus, using
‖e‖L ≤ ‖e1‖L + ‖e2‖L

we conclude the result.
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5. Input-Output Stability

Example 1

Suppose we have two systems:

• H1 : linear time-invariant system, where G(s) is a Hurwitz square transfer
function matrix

• H2: y2 = φ(t, e2) such that ‖φ(t, y)‖ ≤ γ2‖y‖

Some remarks

• H1 is finite gain L2 stable with L2 gain given by γ1 = supw∈R ‖G(jw)‖2
• H2 is finite gain L2 stable with L2 gain less that or equal to γ2

Thus, the interconnection (assuming that is well defined) is finite-gain L2 stable if
γ1γ2 < 1
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5. Input-Output Stability

Example 2: Robustness of the controller
with respect to unmodeled actuator dynamics

Consider the system

ẋ = f(t, x, v + d1(t)) −→ plant dynamics

εż = Az +B[u+ d2(t)] −→ ”fast” actuator dynamics

v = Cz

where f is a smooth function, ε > 0 is a small parameter (fast dynamics), A is
Hurwitz, −CA−1B = I, and d1, d2 ∈ L∞ are disturbance signals with ḋ1, ḋ2 ∈ L∞.

Goal: Attenuate the effect of the disturbance on the state x

This can be achieved if the feedback control law can be designed such that the
closed-loop input-output map from (d1, d2) to x is finite-gain L stable with L gain
less than some given tolerance δ > 0.
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5. Input-Output Stability

Example 2

Neglecting the actuator dynamics by setting ε = 0 we have z = −A−1B(u+ d2) and
v = −CA−1B(u+ d2) = u+ d2
Thus, we obtain

ẋ = f(t, x, u+ d), d = d1 + d2

Suppose we design a control law
u = K(t, x)

such that
‖x‖L∞ ≤ γ‖d‖L∞ + β (3)

for some γ < δ.

Is the controller robust with respect to the unmodeled actuator dynamics?
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5. Input-Output Stability

Example 2
Closed-loop dynamics:

ẋ = f(t, x, cz + d1(t))

εż = Az +B[K(t, x) + d2(t)]

Let η be the error, that is,

η = z − z|ε=0 = z +A−1B[K(t, x) + d2(t)]

Then,

εη̇ = Az +B[K(·) + d2] + εA−1B[K̇(·) + ḋ2]

= Aη −AA−1B[K(·) + d2] +B[K(·) + d2] + εA−1B[K̇(·) + ḋ2]

Let e2 := K̇(·) + ḋ2 then

η̇ =
1

ε
Aη +A−1Be2

Notice also that

ẋ = f(t, x, Cη − CA−1B[K(·) + d2] + d1)

= f(t, x,K(·) + Cη + d) = f(t, x,K(·) + e1)

where −CA−1B = I and e1 := Cη + d
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5. Input-Output Stability

Example 2

Assume that

‖
∂K

∂t
+
∂K

∂x
f(t, x,K(t, x) + e1)‖ ≤ c1‖x‖+ c2‖e1‖

Then using (3)

‖y1‖L∞ ≤ c1γ‖e1‖L∞ + c1β + c2‖e1‖L∞ = γ‖e1‖L∞ + β1

where γ1 = c1γ + c2 and β1 = c1β. Since H2 is a linear system then

‖y2‖L ≤ εγf‖e2‖L∞ + β2

Thus, we can conclude that if εγ1γf < 1, then the closed-loop system is L∞ stable.
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