Nonlinear Control Systems
 Homework \#4

(Due date: March 28, 2012)

March 23, 2012

1. For a linear system

$$
\dot{x}=A x+B u,
$$

the state-feedback control law that minimizes the quadratic cost function

$$
J=\int_{0}^{\infty}\left(x^{T} Q x+u^{T} R u\right) d t, \quad R=R^{T}>0, \quad Q=Q^{T} \geq 0
$$

is given by

$$
u=-K x
$$

where $K=R^{-1} B^{T} P$ and $P=P^{T}>0$ satisfies the Riccati equation

$$
P A+A^{T} P+Q-P B R^{-1} B^{T} P=0
$$

Using $V(x)=x^{T} P x$ as Lyapunov function candidate, show that the origin is globally asymptotically stable (GAS) when
a) $Q>0$
b) $Q=C^{T} C$ and the pair (A, C) is observable.

Hint: Recall that for an observable pair (A, C), the vector $C e^{A t} x=0, \forall t \geq 0$, if and only if $x=0$.

