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4. Lyapunov Stability

Autonomous System
Consider the autonomous system

ẋ = f(x) (1)

where f : D → Rn is a locally Lipschitz map from a domain D ⊂ Rn into Rn and
there is at least one equilibrium point x̄, that is f(x̄) = 0.

Goal: Stability analysis of the equilibrium point x̄ ∈ D.

Without loss of generality, we consider that x̄ = 0.
Why? If it is not, then consider the change of variables y = x− x̄. Then

ẏ = f(x) = f(y + x̄) := g(y)

where g(0) = 0

Definition
The equilibrium point x = 0 of (1) is

• stable if, for each ε > 0, there is δ = δ(ε) > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ 0

• unstable if it is not stable

• asymptotically stable if it is stable and δ can be chosen such that

‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0
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4. Lyapunov Stability

Example - Pendulum

ẋ1 = x2

ẋ2 = − g
l

sin (x1)− β
m
x2

where x1 = θ, x2 = θ̇, and β is the friction. The following equilibrium points

• x = (0, 0) (which is a stable focus) is asymptotically stable

• x = (π, 0) (which is a saddle point) is unstable

For β = 0 then the above equilibrium points are stable (but not asymptotically).
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4. Lyapunov Stability

A function V : D → R is said to be

• positive definite if V (0) = 0 and V (x) > 0, ∀x 6= 0

• positive semidefinite if V (0) = 0 and V (x) ≥ 0, ∀x 6= 0

• negative definite (resp. negative semi definite) if −V (x) is definite positive (resp.
definite semi positive).

In particular, for V (x) = xTPx (quadratic form), where P is a real symmetric matrix,
V (x) is positive (semi)definite if and only if all the eigenvalues of P are positive
(nonnegative), which is true if all leading principal minors of P are positive (all
principal minors of P are nonnegative).

Example

V (x) = ax2
1 + 2x1x3 + ax2

2 + 4x2x3 + ax2
3

=
ˆ
x1 x2 x3

˜ 24 a 0 1
0 a 2
1 2 a

3524 x1
x2
x3

35 = xTPx

The leading principal minors of P are a,

˛̨̨̨
a 0
0 a

˛̨̨̨
= a2, and

˛̨̨̨
˛̨ a 0 1

0 a 2
1 2 a

˛̨̨̨
˛̨ = a3 − a− 4a = a

`
a2 − 5

´
Therefore, V (x) > 0 if a >

√
5.
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4. Lyapunov Stability

Lyapunov’s stability theorem

Theorem 4.1 - Lyapunov’s stability theorem

Let x = 0 be an equilibrium point for ẋ = f(x) and D ⊂ Rn be a domain containing
x = 0. Let V : D → R be a continuously differentiable function such that

• V (0) = 0, V (x) > 0, ∀x ∈ D\ {0}

• V̇ (x) ≤ 0, ∀x ∈ D

Then, x = 0 is stable. Moreover, if

V̇ (x) < 0, ∀x ∈ D\ {0}

then x = 0 is asymptotically stable.
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4. Lyapunov Stability

Proof

• Given ε > 0, chose r ∈ (0, ε] such that

Br = {x ∈ Rn : ‖x‖ ≤ r} ⊂ D

• Let α = min‖x‖=r V (x). Then α > 0.
Take β ∈ (0, α) and let

Ωβ = {x ∈ Br : V (x) ≤ β}

Then Ωβ ⊂ Br.
Why? Because if it was not, then there is a point p ∈ Ωβ that lies on the
boundary of Br. But V (p) ≥ α > β, although for all x ∈ Ωβ , V (x) ≤ β which is
a contradiction.

• The set Ωβ is an invariant set, that is, for any trajectory starting in Ωβ at t = 0
stays in Ωβ , ∀t ≥ 0.
Why? Because

V̇ (x(t)) ≤ 0⇒ V (x(t)) ≤ V (x(0)) ≤ β, ∀t ≥ 0

Note also that there exists a unique solution defined for all t ≥ 0 whenever
x(0) ∈ Ωβ because Ωβ is a compact set (closed and bounded since it is contained
in Br).
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4. Lyapunov Stability

Proof

• By continuity of V (x) and V (0) = 0, we conclude that there is a δ > 0 such that

‖x(t)‖ ≤ δ ⇒ V (x) < β

Then,
Bδ ⊂ Ωβ ⊂ Br

and
x(0) ∈ Bδ ⇒ x(0) ∈ Ωβ ⇒ x(t) ∈ Ωβ ⇒ x(t) ∈ Br

Therefore,
‖x(0)‖ < δ ⇒ ‖x(t)‖ < r ≤ ε, ∀t ≥ 0

which shows that the equilibrium point x = 0 is stable.
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4. Lyapunov Stability

Proof

To prove asymptotically stability and assuming that V̇ (x) < 0 ∀x ∈ D\{0} we have to
show that x(t)→ 0 as t→∞, that is

∀a > 0 ∃τ > 0 : ‖x(t)‖ < a, ∀t > τ

But
∀a > 0 ∃b > 0 : Ωb ⊂ Ba

So it is sufficient to show that

V (x(t))→ 0 as t→∞

Since V is monotonically decreasing and bounded from below by zero, then

V (x(t))→ c ≥ 0 as t→∞

We need to show that c = 0. By contradiction, suppose that c > 0, which implies that
the trajectory lies outside the ball Bd ⊂ Ωc. But

V (x) = V (x(0)) +

Z t

0
V̇ (x(τ))dτ ≤ V (x(0))− γt

because V̇ (x(τ)) ≤ −γ = maxd≤‖x‖≤r V̇ (x). Thus, V will eventually become
negative, which is a contradiction since V > 0.
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4. Lyapunov Stability

Examples

1.
ẋ = −g(x), x ∈ R

with g locally Lipschitz on (−a, a) and

g(0) = 0, xg(x) > 0, ∀x 6= 0, x ∈ (−a, a)

Let

V (x) =

Z x

0
g(y)dy

It is continuously differentiable and positive definite. Thus, V (x) is a valid
Lyapunov function candidate. To check if it is a Lyapunov function, we compute

V̇ (x) = −
∂V

∂x
g(x) = −g(x)2 < 0, ∀x ∈ D\{0}

Hence, the origin is asymptotically stable.
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4. Lyapunov Stability

Examples

2. Consider the Pendulum example without friction

ẋ1 = x2

ẋ2 = −a sin (x1)

Assume the following energy function

V (x) =

Z x1

0
a sin(y)dy +

1

2
x2
2 = a(1− cos(x1)) +

1

2
x2
2.

Clearly, V (0) = 0 and V (x) > 0, −2π < x1 < 2π, x1 6= 0.

V̇ (x) = a sin(x1)ẋ1 + x2ẋ2

= a sin(x1)x2 − x2a sin(x1) = 0

Thus the origin is stable. Since V̇ (x) = 0, we can also conclude that the origin is
not asymptotically stable.
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4. Lyapunov Stability

Examples

3. Pendulum equation, but this time with friction

ẋ1 = x2

ẋ2 = −a sin (x1)− bx2

Consider

V (x) = a(1− cos(x1)) +
1

2
x2
2

Then,
V̇ (x) = −bx2

2 ≤ 0

which is negative semidefinite.
why? because V̇ (x) = 0 for x2 = 0 irrespective of the value of x1.

We can only conclude that the origin is stable!
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4. Lyapunov Stability

Examples

3. However, we know that is asymptotically stable. Let us try

V (x) =
1

2
xTPx+ a(1− cos(x1))

where P given by

P =

»
P11 P12

P12 P22

–
is positive definite if P11 > 0 and P11P22 − P 2

12 > 0.

Computing V̇ and taking P22 = 1, P11 = bP12, P12 = b/2, yields

V̇ = −
1

2
a b x1 sin(x1)−

1

2
b x2

2

The term x1 sin(x1) > 0 for all 0 < |x1| < π.
Taking D = {x ∈ R2 : |x1| < π} we conclude that V is a Lyapunov function and
the origin is asymptotically stable.
This example emphasizes an important feature:

The Lyapunov theorem’s conditions are only sufficient!
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4. Lyapunov Stability

Region of attraction

Let φ(t, x) be the solution of ẋ = f(x) that starts at initial state x at time t = 0.
Then, the region of attraction is defined as the set of all points x such that φ(t, x) is
defined for all t ≥ 0 and

lim
t→∞

φ(t, x) = 0.

If the Lyapunov function satisfies the conditions of asymptotic stability over a domain
D, then the set

Ωc = {x ∈ Rn : V (x) ≤ c} ⊂ D

is an estimate of the region of attraction.

When the region of attraction is Rn?
That is, when x = 0 is globally asymptotically stabe (GAS)?
Clearly D = Rn, but is this enought?
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NO!

V (x) =
x2
1

1 + x2
1

+ x2
2

Ωc is unbounded with c large! For Ωc to be in the interior of a ball Br, c must satisfies

c < inf
‖x‖≥r

V (x).

If
l = lim

r→∞
inf
‖x‖≥r

V (x) <∞

then Ωc is bounded only if c < l. In the example

l = lim
r→∞

min
‖x‖=r

[
x2
1

1 + x2
1

+ x2
2] = lim

‖x1‖→∞
[
x2
1

1 + x2
1

] = 1

Thus Ωc is bounded only for c < 1. To ensure that Ωc is bounded for all values of
c > 0 we need the radially unbounded condition

V (x)→∞ as ‖x‖ → ∞

14



4. Lyapunov Stability

Laypunov Stability - Globally Asymptotically Stability

Theorem 4.2 - GAS

Let x = 0 be an equilibrium point for ẋ = f(x). Let V : Rn → R be a continuously
differentiable function such that

• V (0) = 0 and V (x) > 0, ∀x 6= 0

• ‖x‖ → ∞⇒ V (x)→∞

• V̇ (x) < 0, ∀x 6= 0.

Then x = 0 is globally asymptotically stable (GAS).
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Instability Theorem

Theorem 4.3 - Instability Theorem

Let x = 0 be an equilibrium point for ẋ = f(x). Let V : D → R be a continuously
differentiable function such that V (0) = 0 and V (x0) > 0 for some x0 with arbitrarily
small ‖x0‖. Choose r > 0 such that the ball Br = {x ∈ Rn : ‖x‖ ≤ r} is contained in
D. Define a set U given by

U = {x ∈ Br : V (x) > 0}

and suppose that V̇ (x) > 0 in U . Then, x = 0 is unstable.
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4. Lyapunov Stability

The Invariant Principle

Definitions

• P is said to be a positive limit point of x(t) if there is a sequence {tn}, with
tn →∞ as x→∞ such that x(tn)→ p as n→∞.

• The set of all positive limit points is called positive limit set.

• A set M is said to be a positively invariant set if

x(0) ∈M ⇒ x(t) ∈M, ∀t ≥ 0

• x(t) approaches a set M as t→∞, if

∀ε > 0 ∃T > 0 : dist(x(t),M) < ε, ∀t > T

where dist(p,M) = infx∈M ‖p− x‖.

Lemma 4.1

If a solution x(t) of ẋ = f(x) is bounded and belongs to D for t ≥ 0, then its positive
limit set L∗ is a nonempty, compact, invariant set. Moreover, x(t) approaches L∗ as
t→∞.
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4. Lyapunov Stability

La Salle’s Theorem

Theorem 4.11 - La Salle’s Theorem
Let

• Ω ⊂ D be a compact positively invariant set.

• V : D → R be a continuously differentiable function such that V̇ (x) ≤ 0 in Ω.

• E = {x ∈ Ω : V̇ (x) = 0}.

• M be the largest invariant set in E.

Then every solution starting in Ω approaches M as t→∞.

Proof.
(Outline)

- continuity of V (x)
- Ω is bounded and closed

- V̇ (x) = 0
=⇒

- V (x)→ a
- L+ ⊂ Ω
- V (x) = a on L+

From Lemma 4.1 we have that L+ is an invariant set, V̇ (x) = 0 on L+. Thus, we
conclude that L∗ ⊂M ⊂ E ⊂ Ω. Since x(t) is bounded, x(t)→ L+ as t→∞ (by
Lemma 4.1). Hence, x(t)→M as t→∞.

Note that V (x) is not needed to be positive definite.
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When E is the origin?

Corollary 4.1

Let x = 0 be an equilibrium point of ẋ = f(x). Let V : D → R be a C1 positive
definite function containing the origin x = 0 such that V̇ ≤ 0 in D. Let
S = {x ∈ D : V̇ = 0} and suppose that no solution can stay identically in S, other
than the trivial solution x(t) = 0. Then, the origin is asymptotically stable.

Corollary 4.2

Let x = 0 be an equilibrium point of ẋ = f(x). Let V : Rn → R be a C1, radially
unbounded, positive definite function such that V̇ ≤ 0 for all x ∈ Rn. Let
S = {x ∈ Rn : V̇ = 0} and suppose that no solution can stay identically in S, other
than the trivial solution x(t) = 0. Then x = 0 is GAS.
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Example

ẋ1 = x2

ẋ2 = −h1(x1)− h2(x2)

where hi(0) = 0 and y hi(y) > 0, ∀y 6= 0, i = 1, 2. Also assume thatR y
0 h1(z)dz →∞ as ‖y‖ → ∞.

Consider

V (x) =

Z x1

0
h1(y)dy +

1

2
x2
2

Clearly V (0) = 0, V (x) > 0, ∀x 6= 0 and V (x)→∞ as |x| → ∞.

V̇ (x) = h1(x1)ẋ1 + x2ẋ2

= h1(x1)x2 − x2h1(x1)− x2h2(x2)

= −x2h2(x2) ≤ 0

i.e, negative semidefinite.

Is it GAS?
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4. Lyapunov Stability

S = {x ∈ R2 : V̇ (x) = 0} = {x ∈ R2 : x2 = 0}

Let x(t) be a solution that belongs identically to S:

x2(t) = 0⇒ ẋ2 = 0⇒ x1 = 0

Therefore, the only solution that can stay identically in S is the trivial solution
x(t) = 0. Thus, x = 0 is GAS.

Remark: LaSalle’s theorem extends Lyapunov theorem in three ways besides the one
that we saw above:

1. Can be used in cases where the system has an equilibrium set,

2. It can give an estimate of the region of attraction which is not necessarily of the
form Ωc = {x : V (x) ≤ c},

3. V (x) does not have to be positive definite.
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Example

ẏ = ay + u

where y ∈ R, a is an unknown but constant parameter and u is the input signal.
Consider the following adaptive control law

u = −ky, k̇ = γy2, γ > 0

Let x1 = y and x2 = k then the closed loop system is given by

ẋ1 = −(x2 − a)x1

ẋ2 = γx2
1

We have an equilibrium set Se = {x ∈ R2 : x1 = 0}.

Goal: Show that y → 0, that is, x approaches Se as t→∞.
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4. Lyapunov Stability

Goal: Show that y → 0, that is, x approaches Se as t→∞.

Consider the Lyapunov function candidate

V (x) =
1

2
x2
1 +

1

2γ
(x2 − b)2

where b > a but we do not know its value explicitly.

V̇ (x) = x1ẋ1 +
1

γ
(x2 − b)ẋ2

= −(x2 − a)x2
1 +

1

γ
(x2 − b)γx2

1

= −(b− a)x2
1 ≤ 0.

Let Ωx = {x ∈ R2 : V (x) ≤ c} where c can be chosen large enough since V is radially
unbounded. Let E = {x ∈ R2 : x1 = 0}. By LaSalle’s theorem with r = rc we
conclude that x(t) approaches M = E since E is an invariant set.
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Linear systems and Linearization

Consider the time-invariant linear system

ẋ = Ax

Theorem 4.6

A matrix A is Hurwitz, that is, Re(λi) < 0 for all eigenvalues of A, if and only if, for
any given Q = QT > 0 there exists a P = PT > 0 that satisfies the Lyapunov
equation

PA+ATP = −Q (2)

Moreover, if A is Hurwitz, then P is unique solution of (2).

How can we use this result to study the stability of ẋ = f(x) ?
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Linear systems and Linearization

Goal: Study the stability of ẋ = f(x) using linearization

ẋ = f(x) ⇔ ẋ = Ax+ g(x)

where A =
∂f(x)
∂x

˛̨̨
x=0

and g(x) = f(x)−Ax.

In particular,

gi(x) = fi(x)−
∂fi(0)

∂x
By the mean value theorem

fi(x) = fi(0) +
∂fi(zi)

∂x
x,

where zi is a point on the line segment connecting x to the origin.
Therefore

gi(x) =

»
∂fi(zi)

∂x
(zi)−

∂fi(0)

∂x
(zi)

–
x

and satisfies

|gi(x)| ≤
‚‚‚‚∂fi(zi)∂x

(zi)−
∂fi(0)

∂x
(zi)

‚‚‚‚ ‖x‖
By continuity of ∂f

∂x
we can conclude that

‖g(x)‖
‖x‖

→ 0 as ‖x‖ → 0
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Lyapunov’s indirect method

Theorem 4.7 - Lyapunov’s indirect method

Let x = 0 be an equilibrium point for the nonlinear system

ẋ = f(x)

where f : D → Rn is C1 and D is a neighborhood of the origin. Let

A =
∂f(x)

∂x

˛̨̨̨
x=0

Then,

1. The origin is asymptotically stable if Re(λi) < 0 for all eigenvalues of A.

2. The origin is unstable if Re(λi) > 0 for one or more of the eigenvalues of A.

Remark that if λi = 0, ∀i we cannot say nothing about it. For example

ẋ = ax3 ⇒ A = ∂f
∂x

˛̨̨
x=0

= 3ax3
˛̨
x=0

= 0. For a = 0, ẋ = 0, which implies that the

origin is stable. Taking V = 1
2
x2 we have V̇ = ax4 and if a < 0 the origin is

asymptotically stable, if a > 0 then it is unstable.
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Proof

Starting with the proof of (1). Consider the following Lyapunov function candidate

V (x) = xTPx

The derivative of V (x) along the trajectories is given by

V̇ (x) = xTPf(x) + f(x)TPx

= xTP [Ax+ g(x)] + [xTAT + gT (x)]Px

= xT (PA+ATP )x+ 2xTPg(x)

= −xTQx+ 2xPg(x)

Since A is Hurwitz, xTQX > 0. Regarding the other term, note that

‖g(x)‖2
‖x‖2

→ 0

as ‖x‖2 → 0.
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Proof

Therefore ∀γ > 0 ∃r > 0 such that

‖g(x)‖2
‖x‖2

< γ, ∀ ‖x‖2 < r

which implies that
‖g(x)‖2 < γ‖x‖2, ∀ ‖x‖2 < r

Hence,
V̇ (x) < −xTQx+ 2γ‖P‖2‖x‖22, ∀‖x‖2 < r

Using the fact that

0 < λmin(Q)‖x‖22 ≤ xTQx ≤ λmax(Q)‖x‖22

it follows that

V̇ (x) < −[λmin(Q)− 2γ‖P‖2]‖x‖22, ∀‖x‖2 < r

Choosing γ such that λmin(Q) > 2γ‖P‖2, that is,

γ <
λmin(Q)

2‖P‖2
⇒ V̇ (x) < 0

and therefore x = 0 is asymptotically stable.
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Comparison Functions

Definition

A continuous function α : [0, a)→ [0,∞) is said to belong to class K if it is strictly
increasing and α(0) = 0. It is of class K∞ if a =∞ and α(r)→∞ as r →∞.

Definition

A continuous function β : [0, a)× [0,∞)→ [0,∞) is said to belong to class KL if, for
each fixed t, the mapping β(r, t) belong to class K with respect to r and, for each
fixed r, the mapping β(r, t) is decreasing with respect to t and β(r, t)→ 0 as t→∞.
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Examples

• Class K∞
α(r) = rc, c > 0

α′(r) = crc−1 > 0, lim
r→∞

α(r) =∞

• Class K
α(r) = tan−1(r)

• Class KL
1.

β(r, t) = r
c
e
−t
, c > 0

2.

β(r, t) =
r

ktr + 1
, k > 0,

∂β

∂r
=

1

(ktr + 1)2
> 0,

∂β

∂t
=

−kr2

(ktr + 1)2
< 0

so β(r, t)→ 0 as t→∞.
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Properties

Lemma (Properties)
Let α1, α2 ∈ K on [0, a), α3, α4 ∈ K∞ and β ∈ KL and α−1

i denotes the inverse of
αi:

1. α−1
1 is defined on [0, α1(a)) and belongs to class K

2. α−1
3 is defined on [0,∞) and belongs to class K∞

3. α1 ◦ α2 belongs to class K
4. α3 ◦ α4 belongs to class K∞
5. σ(r, t) = α1(β(α2(r), t)) belongs to class KL
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Comparison Functions

Lemma 4.3

Let V : D → R be a continuous positive definite function defined on a domain
D ⊂ Rn that contains the origin. Let Br ⊂ D for some r > 0. Then, there exist
α1, α2 ∈ K defined on [0, a] such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), ∀x ∈ Br

If D = Rn, α1 and α2 are defined on [0,∞). Moreover, if V (x) is radially unbounded,
then α1, α2 ∈ K∞.

Example: Consider a quadratic positive definite function

V (x) = xTPx

We know that
λmin(P )‖x‖22 ≤ xTPx ≤ λmax(P )‖x‖22

and so we can define α1(r) = λmin(P )r2 and α2(r) = λmax(P )r2

32



4. Lyapunov Stability

Comparison Functions

Lemma 4.4

Consider the scalar autonomous differential equation

ẏ = −α(y), y(t0) = y0

where α is a locally Lipschitz class K function defined on [0, a). Then, for all
0 ≤ y0 < a, the solution is unique and defined for all t ≥ t0. Moreover,

y(t) = β(y0, t− t0)

where β ∈ KL is defined on [0, a)× [0,∞).

a) ẏ = −ky, k > 0 the solution is given by y(t) = y0e−k(t−t0) and we can define
β(r, t) = re−kt

b) ẏ = −ky2, k > 0 the solution is given by y(t) = y0
ky0(t−t0)+1

and we can define

β(r, t) = r
krt+1
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Alternative proof of Lyapunov Theorem (Theorem 4.1)

In the proof, given an ε > 0, we choose r ≤ ε such that Br ⊂ D. Now, we would like
to choose β and δ such that

Bδ ⊂ Ωβ ⊂ Br
But V (x) satisfies

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖)

Therefore select
β ≤ α1(r)

Why?
V (x) ≤ β ≤ α1(r)⇒ α1(‖x‖) ≤ α1(r)⇔ ‖x‖ ≤ r

so we conclude that ∀x ∈ Ωβ ⇒ x ∈ Br.
Also select

δ ≤ α−1
2 (β)

Why?
‖x‖ ≤ δ ⇒ V (x) ≤ α2(δ) ≤ β ⇒ Bδ ⊂ Ωβ
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Alternative proof of Lyapunov Theorem

To prove asymptotic stability note that

V̇ (x) < 0⇒ ∃α3, α4 ∈ K : α3(‖x‖) ≤ −V̇ (x) ≤ α4(‖x‖)

In particular we have that V̇ (x) ≤ −α3(‖x‖). Hence

V̇ ≤ −α3(α−1
2 (V ))

Using the comparison lemma it follows that V ≤ y for

ẏ = −α3(α−1
2 (y)), y(0) = V (x(0))

From Lemma 4.2 it follows that α3 ◦ α−1
2 ∈ K and from Lemma 4.4 we conclude that

y(t) = β(y(0), t), β ∈ KL

In conclusion V (x(t)) ≤ β(V (x(0)), t), which shows that V is bounded and V → 0 as
t→∞.
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Alternative proof of Lyapunov Theorem

In fact we can estimate a bound for x(t)

From

V (x(t)) ≤ V (x(0))⇒ α1(‖x(t)‖) ≤ V (x(t)) ≤ V (x(0)) ≤ α2(‖x(0)‖)

and therefore,
‖x(t)‖ ≤ α−1

1 (α2(‖x(0)‖))

where α−1
1 ◦ α2 ∈ K

Similarly, from

V (x(t)) ≤ β(V (x(0)), t)⇒ α1(‖x‖) ≤ V (x(t)) ≤ β(V (x(0)), t) ≤ β(α2(‖x(0)‖), t)

we obtain
‖x‖ ≤ α−1

1 (β(α2(‖x(0)‖), t)) := σ(‖x(0)‖, t)

with σ ∈ KL.
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4. Lyapunov Stability

Nonautonomous Systems

Suppose we would like to analyze the stability behavior of the solution ȳ(t) of the
system

ẏ = g(t, y)

How can we do this?

Define
x(t) = y(t)− ȳ(t)

Then, we have

ẋ = g(t, y)− ˙̄y = g(t, x(t) + ȳ(t))− ˙̄y(t) := f(t, x)

and therefore we obtain the nonautonomous system

ẋ = f(t, x)

with f(t, 0) = 0, ∀t ≥ 0.

This means that we only need to study the stability of the equilibrium point x = 0.
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4. Lyapunov Stability

Nonautonomous Systems

Consider the nonautonomous system

ẋ = f(t, x)

Definition
The origin is an equilibrium point at t = 0 if

f(t, 0) = 0, ∀t ≥ 0.
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4. Lyapunov Stability

Nonautonomous Systems
Consider the nonautonomous system

ẋ = f(t, x)

Definition

The equilibrium point x = 0 of the nonautonomous system is

• Stable if ∀ε > 0 ∃δ = δ(ε, t0) > 0 : ‖x(t0)‖ < δ ⇒ ‖x(t)‖ < ε, ∀t ≥ t0 ≥ 0

• Uniformly Stable (US) if δ is independent of t0

• Asymptotically Stable if it is stable and ∃c = c(t0) : x(t)→ 0 as t→∞
∀‖x(t0)‖ < c

• Uniformly Asymptotically Stable (UAS) if c is independent of t0 and the
convergence is uniformly in t0, that is

∀η > 0 ∃T = T (η) > 0 : ‖x(t)‖ < η, ∀t ≥ t0 + τ(η),∀‖x(t0)‖ < c

• Globally Uniformly Asymptotic Stable (GUAS) if δ(ε) can be chosen to satisfies
limε→∞ δ(ε) =∞ and

∀(η, c) ∃T = T (η, c) > 0 : ‖x(t)‖ < η, ∀t ≥ t0 + T (η, c), ∀‖x(t0)‖ < c
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4. Lyapunov Stability

Nonautonomous Systems

The following lemma make the above definitions more clear.

Lemma 4.5

The equilibrium point x = 0 of the nonautonomous system is

• US ⇔ there exist α ∈ K and c > 0 (independent of t0) such that

‖x(t)‖ ≤ α(‖x(t0)‖), ∀t ≥ t0 ≥ 0, ∀‖x(t0)‖ < c

• UAS ⇔ there exist β ∈ KL and c > 0 (independent of t0) such that

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0), ∀t ≥ t0 ≥ 0, ∀‖x(t0)‖ < c

• GUAS ⇔ the inequality in UAS holds for all x(t0), that is c =∞
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4. Lyapunov Stability

Definition
The equilibrium point x = 0 is exponentially stable if there exists positive constants
c, k and λ such that

‖x(t)‖ ≤ k‖x(t0)‖e−λ(t−t0), ∀‖x(t0‖ < c

and globally exponentially stable if this inequality is satisfied ∀x(t0)

Theorem 4.8

Let x = 0 be an equilibrium point that belongs to D ⊂ Rn. Let V : [0,∞)×D → R
be a C1 function such that

W1(x) ≤ V (t, x) ≤W2(x)

and
∂V

∂t
+
∂V

∂x
f(t, x) ≤ 0, ∀t ≥ 0 ∀x ∈ D

where W1(x), W2(x) are continuous positive functions on D. Then, x = 0 is
uniformly stable.
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4. Lyapunov Stability

Proof

Choose r > 0 and c > 0 such that Br ⊂ D and
0 < c < min‖x‖=rW1(x)⇒ {x ∈ Br : W1(x) ≤ c} ⊂ Br
Define a time-dependent set Ωt,c such that

{x ∈ Br : W2(x) ≤ c} ⊂ Ωt,c = {x ∈ Br : V (t, x) ≤ c} ⊂ {x ∈ Br : W1(x) ≤ c}

Hence the solution is bounded and defined for all t ≥ t0. Moreover, since V̇ ≤ 0 we
have that V (t, x(t)) ≤ V (t0, x(t0)),∀t ≥ t0.
Also

∃α1,α2∈K : α1(‖x‖) ≤W1(x) ≤ V (t, x) ≤W2(x) ≤ α2(‖x‖)

and therefore,

‖x(t)‖ ≤ α−1
1 (V (t, x(t))) ≤ α−1

1 (V (t0, x(t0))) ≤ α−1
1 (α2(‖x(t0)‖))

Thus, we can conclude that x = 0 is US since α−1
1 ◦ α2 ∈ K.
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4. Lyapunov Stability

Theorem 4.9

Same assumptions as Theorem 4.8 but with

∂V

∂t
+
∂V

∂x
f(t, x) ≤ −W3(x), ∀t ≥ 0 ∀x ∈ D

where W3(x) is a continuous positive definite function on D. Then, x = 0 is UAS.
Moreover, if r and c are such that

Br = {‖x‖ ≤ r} ⊂ D

and
c < min

‖x‖≤r
W1(x)

Then

∀x0 ∈ {x ∈ Br : W2(x) ≤ c}, ‖x(t)‖ ≤ β(‖x(t0)‖, t− t0), ∀t ≥ t0 ≥ 0

for some β ∈ KL.
If in addition D = Rn and W1(x) is radially unbounded then x = 0 is GUAS.
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4. Lyapunov Stability

Proof

V̇ (t, x) =
∂V

∂t
+
∂V

∂x
f(t, x) ≤ −W3(x) ≤ −α3(‖x‖),

for some α3 ∈ K,

V ≤ α2(‖x‖)⇔ α−1
2 (V ) ≤ ‖x‖ ⇔ α3(α−1

2 (V )) ≤ α3(‖x‖)

Thus,
V̇ ≤ −α3(α−1

2 (V )) := −α(V ), (3)

where α ∈ K.
Without loss of generality α is locally Lipschitz. Why? If not we can always choose
γ ∈ K, with γ Lipschitz such that α(r) ≥ γ(r). Then V̇ ≤ −γ(V ).
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4. Lyapunov Stability

Proof

For example, suppose α(r) =
√
r is a class K function, but not locally Lipschitz at

r = 0. Define

γ (r) =


r, r < 1√
r, r ≥ 1

and so, γ ∈ K locally Lipschitz and α(r) ≥ γ(r), ∀r ≥ 0.

Returning to (3) and resorting to the comparison lemma,

ẏ = −α(y), y(t0) = V (t0, x(t0)) ≥ 0⇒ V (t, x(t)) ≤ y(t), ∀t ≥ t0

By Lemma 4.4, ∃σ ∈ KL such that

V (t, x(t)) ≤ σ(V (t0, x(t0)), t− t0)

In conclusion, ∀x(t0) ∈ {x ∈ Br : W2(x) ≤ c} we have

‖x‖ ≤ α−1
1 (V (t, x(t))) ≤ σ(V (t0, x(t0)), t−t0) ≤ σ(α2(‖x(t0)‖), t−t0) =: β(‖x(t0)‖, t−t0)
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4. Lyapunov Stability

Definition

• V (t, x) is said to be positive semidefinite if V (t, x) ≥ 0

• V (t, x) is said to be positive definite if V (t, x) ≥W1(x), for some W1(x) positive
definite function.

• V (t, x) is radially unbounded if W1(x) is radially unbounded.

Theorem 4.10

Let x = 0 be an equilibrium point for the nonautonomous system ẋ = f(t, x) that
belongs to some D ⊂ Rn. Let V : [0,∞)×D → R be a C1 function such that

k1‖x‖a ≤ V (t, x) ≤ k2‖x‖a

∂V

∂t
+
∂V

∂x
f(t, x) ≤ −k3‖x‖a, ∀t ≥ 0, ∀x ∈ D

where k1, k2, k3 and a are positive constants. Then x = 0 is exponentially stable. If
the assumption holds globally. Then x = 0 is GES.
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4. Lyapunov Stability

proof

V̇ ≤ −
k3

k2
V ⇒ V (t, x(t)) ≤ V (t0, x(t0))e

− k3
k2

(t−t0)

Hence,

‖x‖ ≤
h
V (t,x)
k1

i1/a
≤

24V (t0,x(t0))e
− k3

k2
(t−t0)

k1

351/a

≤

24 k2‖x(t0)‖ae
− k3

k2
(t−t0)

k1

351/a

≤
h
k2
k1

ia
‖x(t0)‖e−

k3
k2a

(t−t0)
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4. Lyapunov Stability

Examples

Example 1

ẋ = −(1 + g(t))x3

where x ∈ R2, g is C0 (continuous) and g(t) ≥ 0,∀t ≥ 0.

Consider

V =
1

2
x2

and so,
V̇ = −(1 + g(t))x4 ≤ −x4

Then, W1(x) = W2(x) = V (x) and W3(x) = x4, thus x = 0 is GUAS.

Note we cannot conclude exponential because is not the same a.
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4. Lyapunov Stability

Example 2
ẋ1 = −x1 − g(t)x2

ẋ2 = x1 − x2

where g is C1, 0 ≤ g(t) ≤ k and ġ(t) ≤ g(t)

Consider
V (t, x) = x2

1 + (1 + g(t))x2
2

Note that,
x2
1 + x2

2 ≤ V (t, x) ≤ x2
1 + (1 + k)x2

2

Thus V (t, x) is positive definite and radially unbounded.

V̇ (t, x) = 2x1ẋ1 + 2x2(1 + g(t))ẋ2 + ġx2
2

= −2x2
1 − 2gx1x2 + 2x2x1 − 2x2

2 + 2x2gx1 − 2x2
2g + ġx2

2

= −2x2
1 + 2x2x1 − [2 + 2g − ġ]x2

2

≤ −2x2
1 + 2x1x2 − 2x2

2

= −
ˆ
x1 x2

˜ » 2 −1
−1 2

– »
x1

x2

–
=: −xTQx

Therefore, W1, W2 and W3 are positive definite quadratic functions (a=2)
(λmin(P )xT x ≤ xTPx ≤ λmax(P )xT x) and so we conclude that x = 0 is GES.
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4. Lyapunov Stability

Linear time-varying systems and linearization

ẋ(t) = A(t)x(t)

the solution can be represented as

x(t) = Φ(t, t0)x(t0)

From linear system theory...

Theorem 4.11

The equilibrium point x = 0 of the linear system ẋ(t) = A(t)x(t) is GUAS if and only
if

‖Φ(t, t0)‖ ≤ ke−λ(t−t0), ∀t ≥ t0 ≥ 0

for some positive constants k and λ.
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4. Lyapunov Stability

Remark that

1. for linear systems GUAS ⇔ Exponential stability

2. for linear time-varying system, GUAS cannot be characterized by the location of
the eigenvalues of A.

Example

A(t) =

»
−1 + 1.5cos2t 1− 1.5 sin t cos t

1− 1.5 sin t cos t −1 + 1.5sin2t

–
For each t, λi(A(t)) = −0.25± 0.25

√
7j. Yet, the origin is unstable. Φ(t, 0) is given

by

Φ (t, 0) =

»
e0.5t cos t e−t sin t
−e0.5t sin t e−t cos t

–
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4. Lyapunov Stability

Theorem 4.12

Let x = 0 be a exponential stable equilibrium point of the linear system
ẋ(t) = A(t)x(t). Suppose A(t) is continuous and bounded. Let Q(t) = QT (t) > 0 be
continuous and bounded. Then, there is a P (t) = PT (t) ∈ C2 bounded matrix that
satisfies

−Ṗ (t) = P (t)A(t) +AT (t)P (t) +Q(t).

Furthermore, V (t, x) = xTP (t)x is a Lyapunov function that satisfies

c1‖x‖22 ≤ xTP (t)x ≤ c2‖x‖22

and
∂V

∂t
+
∂V

∂x
A(t)x ≤ −c3‖x‖22
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4. Lyapunov Stability

We are now ready for the following theorem:

Theorem 4.13/4.15

Let x = 0 be an equilibrium point for the nonlinear system

ẋ = f(t, x) (4)

where f : [0,∞)×D → Rn is C1, D = {x ∈ R2 : ‖x‖2 < r}, and the Jacobian

matrix ∂f
∂x

is bounded and Lipschitz on D, uniformly in t. Let

A(t) =
∂f

∂x
(t, x)

˛̨̨̨
x=0

Then, the origin is an exponentially stable equilibrium point of (4) if and only if it is
an exponentially stable equilibrium point for the linear system ẋ = A(t)x.
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4. Lyapunov Stability

Proof

Since the Jacobian is bounded

‖
∂fi

∂x
(t, x1)−

∂fi

∂x
(t, x2)‖2 ≤ L1‖x1 − x2‖2, ∀x1, x2 ∈ D

By the mean value theorem

fi(t, x) = fi(t, 0) +
∂fi

∂x
(t, zi)x

where fi(t, 0) = 0 and zi is a point of the line segment connecting x to the origin.
Thus,

fi(t, x) =
∂fi

∂x
(t, 0)x+

»
∂fi

∂x
(t, zi)−

∂fi

∂x
(t, 0)

–
x

Hence,
f(x, t) = A(t)x+ g(t, x)

where A(t) = ∂fi
∂x

(t, 0) and g(t, x) =
h
∂fi
∂x

(t, zi)− ∂fi
∂x

(t, 0)
i
x. Thus, we have

‖g(t, x)‖2 ≤
 

nX
i=1

‚‚‚∂fi
∂x

(t, zi)−
∂fi

∂x
(t, 0)

‚‚‚2
2

!1/2

‖x‖2 ≤ L‖x‖2

where L =
√
nL1.
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4. Lyapunov Stability

Proof

V (t, x) = xTP (t)x

V̇ (t, x) = xTP (t)f(t, x) + fT (t, x)P (t)x+ xT Ṗ (t)x

= xT [P (t)A(t) +AT (t)P (t) + Ṗ (t)]x+ 2xTP (t)g(t, x)

= −xTQ(t)x+ 2xTP (t)g(t, x)

≤ −c3‖x‖22 + 2c2L‖x‖32
≤ −(c3 − 2c2Lρ)‖x‖22, ∀‖x‖2 < ρ

Choosing ρ < min{r, c3
2c2L

}, implies that V̇ (t, x) < 0, ∀‖x‖2 < ρ and thus x = 0 is

exponentially stable.
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4. Lyapunov Stability

Converse Theorems
Theorem 4.16

Let x = 0 be an equilibrium point for the nonlinear system

ẋ = f(t, x)

where f : [0,∞)×D → Rn is C1, D = {x ∈ R2 : ‖x‖ < r} and the Jacobian matrix
∂f
∂x

is bounded on D, uniformly in t. Let β ∈ KL and r0 > 0 and that β(r0, 0) < r.
Let D0 = {x ∈ Rn : ‖x‖ < r0}. Suppose that

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0), ∀x(t0) ∈ D0 ∀t ≥ t0 ≥ 0.

Then, there is a C1 function V : [0,∞)×D0 → R that satisfies

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖)
∂V

∂t
+
∂V

∂x
f(t, x) ≤ −α3(‖x‖)‚‚‚∂V
∂x

‚‚‚ ≤ α4(‖x‖),

where α1, α2, α3, α4 are class K functions defined on [0, r0]. If the system is
autonomous, V can be chosen independently of t.
In particular, for β(r, t) = kre−λt we have αi = cir

2, i = 1, 2, 3, α4 = c4r together
with

V (t, x) =

Z t+δ

t
ΦT (τ ; t, x)Φ(τ ; t, x)dτ

where Φ(τ ; t, x) denotes the solution of the system that starts at (t, x).
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4. Lyapunov Stability

Boundedness and Ultimate Boundedness

Until now we have used Lyapunov theory to study the behavior of the system about
the equilibrium point.

What happens when the system does not have any equilibrium point?
We will see that Lyapunov analysis can be used to show boundedness of the solution
of the state equation.

Example
ẋ = −x+ δ sin t, x(t0) = a, a > δ > 0

There are no equilibrium points!

Nevertheless, with

V (x) =
1

2

we obtain
V̇ = −x2 + xδ sin t ≤ −x2 + δ|x|.

Note that V̇ < 0, ∀|x| > δ, which means that the set {x ∈ R : V (x) ≤ c} with c > δ2

2

is an invariant set because V = c→ V̇ < 0.

Hence, the solutions are uniformly bounded.
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4. Lyapunov Stability

Boundedness and Ultimate Boundedness

Moreover

∀ε > 0 :
δ2

2
< ε < c −→ V̇ < −γ

for some γ > 0 in the set ε ≤ V ≤ c which shows that V will reach in finite time ε
and the solution enter the set {V ≤ ε}.
Thus, we can conclude that the solution is uniformly ultimately bounded with ultimate
bound |x| ≤

√
2ε.

Definition
The solutions of ẋ = f(t, x) are

• Uniformly Bounded (UB) if there exists a c > 0, independent of t0 ≥ 0 such that

∀a ∈ (0, c) ∃β = β(a) > 0 : ‖x(t0)‖ ≤ a⇒ ‖x(t)‖ ≤ β, ∀t ≥ t0

• Globally Uniformly Bounded (GUB) if a can be arbitrarily large

• Uniformly Ultimately Bounded (UUB) with ultimate bound b, if there exists
b > 0, c > 0 (independent of t0) such that

∀a ∈ (0, c) ∃T = T (a, b) ≥ 0 : ‖x(t0)‖ ≤ a⇒ ‖x(t)‖ ≤ b, ∀t ≥ t0 + T,

• Globally Uniformly Ultimately Bounded (GUUB) if a can be arbitrarily large.
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4. Lyapunov Stability

Theorem 4.18 (Global)

Let V : [0,∞)× Rn → R be a C1 function such that

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖)

∂V

∂t
+
∂V

∂x
f(t, x) ≤ −W3(x), ∀‖x‖ ≥ µ > 0

∀t ≥ 0 and ∀x ∈ Rn, where α1, α2 ∈ K∞ and W3(x) > 0.

Then, there exists a β ∈ KL and T ≥ 0 such that

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0), ∀t0 ≤ t ≤ t0 + T

and
‖x(t)‖ ≤ α−1

1 (α2(µ)), ∀t ≥ t0 + T

59



4. Lyapunov Stability

Example - Mass-spring system

mÿ + cẏ + ky + ka2y3 = F = A cos(wt)

Taking
x1 = y
x2 = ẏ

and assuming certain numerical values we get

ẋ1 = x2

ẋ2 = −(1 + x2
1)x1 − x2 +M cos(wt)

where M ≥ 0 is proportional to A. Choosing

V = xT
» 3/2

1/2
1/2 1

–
x+ 1/2x

4
1

then

V̇ = −x2
1 − x4

1 − x2
2 + (x1 + 2x2)M cos (wt)

= −‖x‖2 − x4
1 +

ˆ
1 2

˜ » x1

x2

–
M cos (wt)

≤ −‖x‖2 − x4
1 +M

√
5 ‖x‖

≤ − (1− θ) ‖x‖2 − x4
1 − θ ‖x‖

2 +M
√

5 ‖x‖ , 0 < θ < 1
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4. Lyapunov Stability

Example - Mass-spring system

Therefore

V̇ ≤ − (1− θ) ‖x‖2 − x4
1, ∀‖x‖ ≥

M
√

5

θ

which shows that the solutions are GUUB. To compute the ultimate bound, we have
to find α1, α2.

V (x) ≥ xTPx ≥ λmin(P )‖x‖2 → α1(r) = λmin(P )r2

V (x) ≤ xTPx+
1

2
‖x‖4 ≤ λmax(P )‖x‖2 +

1

2
‖x‖4 → α2(r) = λmax(P )r2 +

1

2
r4

Let µ = M
√

5
θ

‖x‖ ≤ µ⇒ V (x) ≤ α2(µ) = ε

which ensures that
Bµ ⊂ Ωε = {x : V (x) ≤ ε}

But
V (x) ≤ ε⇒ α1(‖x‖) ≤ ε⇔ ‖x‖ ≤ α−1

1 (ε)

therefore

x ∈ Ωε ⇒ ‖x‖ ≤ α−1
1 (α2(µ)) =

vuutλmax(P )µ2 + µ4

2

λmin(P )
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4. Lyapunov Stability

Input-to-state stability
For a linear time-invariant system

ẋ = Ax+Bu

with A Hurwitz. The solution is given by

x(t) = eA(t−t0)x(t0) +

Z t

t0

eA(t−τ)Bu(τ)dτ

Using the bound
‖eA(t−t0)‖ ≤ ke−λ(t−t0)

we conclude that

‖x(t)‖ ≤ ke−λ(t−t0)‖x(t0)‖+

Z t

t0

ke−λ(t−τ)‖B‖‖u(τ)‖dτ

≤ ke−λ(t−t0)‖x(t0)‖+
k

λ
(1− e−λ(t−t0))‖B‖ sup

t0≤τ≤t
‖u(τ)‖

≤ ke−λ(t−t0)‖x(t0)‖+
k

λ
‖B‖ sup

t0≤τ≤t
‖u(τ)‖

Does this hold for a general nonlinear system?

ẋ = f(t, x, u)

And in what conditions? Is it sufficient to have GUAS of the unforced system? NO!
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4. Lyapunov Stability

Input-to-state stability

Example

ẋ = −3x+ (1 + 2x2)u

when u = 0, the equilibrium point x = 0 is GAS. Yet, when x(0) = 2 and u(t) = 1,
the solution is given by

x(t) =
3− et

3− 2et

which is unbounded. It even has a finite escape time.

Definition
The system

ẋ = f(t, x, u)

is said to be input-to-state stable (ISS) if there exist β ∈ KL, and γ ∈ K such that for
any initial state x(t0) and any bounded input u(t), the solution x(t) exists for all
t ≥ t0 and satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0) + γ( sup
t0≤τ≤t

‖u(τ)‖)
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4. Lyapunov Stability

Remarks:

1. For any bounded input u(t), the state x(t) will be bounded

2. As t increases, the state x(t) will be ultimately bounded by a class K function of
supt≥t0 ‖u(t)‖

3. If u(t)→ 0 as t→∞ then x(t)→ 0 as t→∞
4. Since for u(t) = 0, ‖x(t)‖ ≤ β(‖x(t0)‖, t− t0)⇔ x = 0 of the unforced system

is GUAS.

Theorem 4.19

Let V : [0,∞)× Rn → R be a C1 function such that

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖)

∂V

∂t
+
∂V

∂x
f(t, x, u) ≤ −W3(x), ∀‖x‖ ≥ ρ(u) > 0

∀(t, x, u) ∈ [0,∞)× Rn × Rn, α1, α2 ∈ K∞, ρ ∈ K, W3(x) > 0 and C0. Then the
system ẋ = f(t, x, u) is ISS with γ = α−1

1 ◦ α2 ◦ ρ.

Proof.
Apply Theorem 4.18.

For autonomous systems the conditions are also necessary, that is, it is if and only if.
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4. Lyapunov Stability

Lemma 4.6

Suppose that f(t, x, u) is C1 and globally Lipschitz in (x, u), uniformly in t. If the
unforced system has a globally exponentially stable equilibrium point at x = 0, then
the system ẋ = f(t, x, u) is ISS

Proof.
From the converse theorem (Theorem 4.14) we conclude that the unforced system has
a Lyapunov function V (t, x). Thus,

V̇ =
∂V

∂t
+
∂V

∂x
f(t, x, 0) +

∂V

∂x
[f(t, x, u)− f(t, x, 0)]

and therefore

V̇ ≤ −c3‖x‖2 + c4‖x‖L‖u‖ ≤ −c3(1− θ)‖x‖2 − c3θ‖x‖2 + c4L‖x‖‖u‖

where 0 < θ < 1. Then,

V̇ ≤ −c3(1− θ)‖x‖2, ∀‖x‖ ≥
c4L‖u‖
c3θ

Apply Theorem 4.19 with

α1(r) = c1r
2, α2(r) = c2r

2, ρ(r) =
c4L

c3θ
r

we conclude that the system is ISS with γ(r) =
q
c2
c1

c4L
c3θ

r
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Example

ẋ = −x3 + u

Choose,

V =
1

2
x2

Then

V̇ = −x4 + xu

= −(1− θ)x4 − θx4 + xu, 0 < θ < 1

≤ −(1− θ)x4, ∀|x| ≥
„
|u|
θ

«1/3

which means that the system is ISS with γ =
`
r
θ

´1/3
and γ = α−1

1 ◦ α2 ◦ ρ.
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Cascade System

Consider the following system

ẋ1 = f1(t, x1, x2) (5)

where the equilibrium point x1 = 0 of ẋ1 = f1(t, x1, 0), is GUAS in cascade with

ẋ2 = f1(t, x2), (6)

where the equilibrium point x2 = 0 of ẋ2 = f1(t, x2), is GUAS.

Under what conditions will the origin x = (x1, x2) = 0 of the cascade system be
GUAS?

Lemma 4.7

If system (5) is ISS with x2 as input, then the origin of the cascade system is GUAS.
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Proof

‖x1(t)‖ ≤ β1(‖x1(s)‖, t− s) + γ1( sup
s≤τ≤t

‖x2(τ)‖) (7)

‖x2(t)‖ ≤ β2(‖x1(s)‖, t− s) (8)

Taking (7) with s = t+t0
2

yields

‖x1(t)‖ ≤ β1(‖x1(
t+ t0

2
)‖,

t− t0
2

) + γ1( sup
t+t0

2 ≤τ≤t
‖x2(τ)‖)

but

‖x1(
t+ t0

2
)‖ ≤ β1(‖x1(t0)‖,

t− t0
2

) + γ1( sup
t0≤τ≤

t+t0
2

‖x2(τ)‖).

From (8)
sup

t0≤τ≤
t+t0

2

‖x2(τ)‖ ≤ β2(‖x2(t0)‖, 0)

sup
t+t0

2 ≤τ≤t
‖x2(τ)‖ ≤ β2(‖x2(t0)‖,

t− t0
2

)

68
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Proof

Thus,

‖x1(t)‖ ≤ β1(β1(‖x1(t0)‖,
t− t0

2
)

+ γ1(β2(‖x2(t0)‖, 0)),
t− t0

2
)

+ γ1(β2(‖x2(t0)‖,
t− t0

2
))

Since ‖x(t)‖ ≤ ‖x1(t)‖+ ‖x2(t)‖ and ‖x1(t0)‖ ≤ ‖x(t0)‖, ‖x2(t0)‖ ≤ ‖x(t0)‖ then

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0),

where

β(r, s) = β1(β1(r, s/2) + γ1(β2(r, 0)), s/2) + γ1(β2(r, s/2)) + β2(r, s)
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ISS Small-Gain Theorem

Consider the interconnected system

ẋ1 = f1(t, x1, x2, w1)

ẋ2 = f2(t, x1, x2, w2)

Assume that f1(t, 0, 0, 0) = f2(t, 0, 0, 0, 0) = 0, ∀t ≥ t0 ≥ 0 where
f1(t, ., ., .), f2(t, ., ., .) are piecewise continuous in t and locally Lipschitz in the rest of
arguments. Suppose that

• x1 subsystem is ISS with respect to state x1 and inputs (x2, w1), that is
∃β1∈KL ∃γ1,γw1∈K such that for all x1(t0) and any bounded (x2, w1)

‖x1(t)‖ ≤ β1(‖x1(t0)‖, t− t0) + γ1( sup
τ∈[t0,t]

‖x2(τ)‖) + γw1 ( sup
τ∈[t0,t]

‖w1(τ)‖)

• x2 subsystem is ISS with respect to state x2 and inputs (x1, w2)

• γ1 ◦ γ2(r) < r ∀r > 0 (contraction condition)

Then, the interconnect system is ISS with respect to state x = [x1 x2]T and input
w = [w1 w2]T
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