Nonlinear Control Systems Homework #3

(Due date: March 21, 2012)

March 14, 2012

1. The Euler equations of a rotating rigid spacecraft are given by

$$J_{1}\dot{\omega}_{1} = (J_{2} - J_{3})\omega_{2}\omega_{3} + u_{1}$$

$$J_{2}\dot{\omega}_{2} = (J_{3} - J_{1})\omega_{3}\omega_{1} + u_{2}$$

$$J_{3}\dot{\omega}_{3} = (J_{1} - J_{2})\omega_{1}\omega_{2} + u_{3}$$
(1)

where ω_1 to ω_3 are the components of the angular velocity vector $\boldsymbol{\omega}$ along the principal axes, u_1 to u_3 are the torque inputs applied about the principal axes, and J_1 to J_3 are the principal moments of inertia.

- a) Show that with $u_1 = u_2 = u_3 = 0$ the origin $\boldsymbol{\omega} = \mathbf{0}$ is stable. Is it asymptotically stable?
- b) Suppose that the torque inputs are given by the feedback control $u_i = -k_i \omega_i$, $k_i > 0$. Show that the close loop system is GAS.
- c) Consider $u_2 = u_3 = 0$, what can you say about the stability of the system?