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3. Fundamental properties

Example

Consider the system
ẋ = f (t, x) , x (t0) = x0

• Does it have a solution over an interval [t0, t1]?

That is, does exist a continuous function x : [t0, t1]→ Rm such that ẋ(t) is
defined and satisfies ẋ(t) = f(t, x(t)), ∀t ∈ [t0, t1]?

• Is it unique? or is possible to have more than one solution?

• ... and if we restrict f(t, x) to be continuous in x and piecewise continuous in t.
Is this sufficient to guarantee existence and uniqueness?

No!, e.g.

ẋ = x
1/3, x(0) = 0

It has solution x(t) =
`

2t
3

´3/2.
But is not unique, since x(t) = 0 is another solution!
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3. Fundamental properties

Lipschitz condition

A function f(x) is said to be locally Lipschitz on a domain (open and connected set)
D ⊂ Rn if each point of D has a neighborhood D0 such that f(.) satisfies

‖f (x)− f (y)‖ ≤ L ‖x− y‖ , ∀x, y ∈ D0

(with the same Lipschitz constant L). The same terminology is extended to a function
f(t, x), provided that the Lipschitz constant holds uniformly in t for all t in a given
interval.

Remark: For f : R→ R, we have

|f (x)− f (y)|
|x− y|

≤ L

which means that a straight line joining any two points of f(.) cannot have a slope
whose absolute value is greater than L.

Example

f(x) = x1/3 is not locally Lipschitz at x = 0 since f ′(x) = 1
3
x−2/3 →∞ as x→ 0.
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3. Fundamental properties

Existence and Uniqueness

Theorem 3.1 - Local Existence and Uniqueness

Let f(t, x) be piecewise continuous in t and satisfy the Lipschitz condition

‖f (t, x)− f (t, y)‖ ≤ L ‖x− y‖

∀x, y ∈ B = {x ∈ Rn : ‖x− x0‖ ≤ r} , ∀t ∈ [t0, t1]. Then, there exists some δ > 0
such that the state equation ẋ = f(t, x) with x(t0) = x0 has a unique solution over
[t0, t0 + δ].

Theorem 3.2 - Global Existence and Uniqueness

Suppose that f(t, x) is piecewise continuous in t and satisfies

‖f (t, x)− f (t, y)‖ ≤ L ‖x− y‖ , ∀x, y ∈ Rn, ∀t ∈ [t0, t1]

Then, the state equation ẋ = f(t, x), with x(t0) = x0, has a unique solution over
[t0, t1].

4



3. Fundamental properties

Existence and Uniqueness

Lemma 3.2

If f(t, x) and
h
∂f
∂x

i
(t,x)

are continuous on [a, b]×D for some domain D ⊂ Rn, then f

is locally Lipschitz in x on [a, b]×D.

Lemma 3.3

If f(t, x) and
h
∂f
∂x

i
(t,x)

are continuous on [a, b]× Rn, then f is globally Lipschitz in x

on [a, b]× Rn if and only if
h
∂f
∂x

i
is uniformly bounded on [a, b]× Rn.
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3. Fundamental properties

Examples

1.
ẋ = A(t)x+ g(t) = f(t, x) (1)

with A(t), g(t) piecewise continuous functions of t.

‖f (t, x)− f (t, y)‖ = ‖A (t)x+ g (t)− (A (t) y + g (t))‖
= ‖A (t) (x− y)‖ ≤ ‖A (t)‖ ‖(x− y)‖

Note that for any finite interval of time [t0, t1], the elements of A(t) are
bounded. Thus ‖A(t)‖ ≤ a for any induced norm and

‖f (t, x)− f (t, y)‖ ≤ a ‖(x− y)‖

Therefore, from Theorem 3.1 we conclude that (1) has a unique solution over
[t0, t1]. Since t1 can be arbitrarily large it follows that the system has a unique
solution ∀t ≥ t0. There is no finite escape time.
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3. Fundamental properties

Examples

2.
ẋ = −x3 = f(x), x ∈ R (2)

Is it globally Lipschitz?
No! From Lemma 3.3, f(x) is continuous but the Jacobian ∂f

∂x
= −3x2 is not

globally bounded. Nevertheless, ∀x(t0) = x0, (2) has the unique solution

x(t) = sgn(x0)

s
x2
0

1 + 2x2
0(t− t0)

3.
ẋ = −x2, x(0) = −1 (3)

From Lemma 3.2 we conclude that is locally Lipschitz in any compact subset of R
because f(x) and ∂f

∂x
are continuos. Hence, there exists a unique solution over

[0, δ] for some δ > 0. In particular the solution is

x(t) =
1

t− 1

and only exists over [0, 1), i.e, there is finite escape time at t = 1!
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3. Fundamental properties

Uniqueness and Existence

Theorem 3.3

Let f(t, x) be piecewise continuous in t and locally Lipschitz in x for all t ≥ t0 and all
x ∈ D ⊂ Rn. Let W be a compact subset of D, x0 ∈W and suppose it is known that
every solution of

ẋ = f(t, x), x(t0) = x0

lies entirely in W . Then, there is a unique solution that is defined for all t ≥ t0.

Proof.
By Theorem 3.1, there is a unique solution over [t0, t0 + δ]. Let [t0, T ) be its
maximum interval of existence. We would like to show that T =∞. Suppose that is
not, i.e., T is finite. Then the solution must leave any compact subset of D. But this
is a contradiction, becuase x never leaves the compact set W . Thus we can conclude
that T =∞.
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3. Fundamental properties

Example

Returning to the example
ẋ = −x3

It is locally Lipschitz in R. For any initial condition x(0) = x0 ∈ R, the solution cannot
leave the compact set W = {x ∈ R : |x| ≤ x0} because for any instant of time

• if x > 0 then ẋ < 0

• if x < 0 then ẋ > 0

Thus, without computing explicitly the solution we can conclude from Theorem 3.3
that the system has a unique solution for all t ≥ 0.
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3. Fundamental properties

Continuous dependence on initial conditions and parameters

Consider the following nominal model

ẋ = f(t, x, λ0) (4)

where λ0 ∈ Rp denotes the nominal vector of constant parameters of the model and
x ∈ Rn is the state.

• Let y(t) be a solution of (4) that starts at y(t0) = y0 and is defined on the
interval [t0, t1].

• Let z(t) be a solution of ẋ = f(t, x, λ) defined on [t0, t1] with z(t0) = z0.

When does z(t) remains close to y(t)?
Or in other words, is the solution continuous dependent on the initial condition and
parameter λ? That is,

∀ε>0∃δ>0 : ‖z0 − y0‖ < δ, ‖λ− λ0‖ < δ ⇒ ‖z (t)− y (t)‖ < ε, ∀t∈[t0,t1]
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3. Fundamental properties

Continuous dependence on initial conditions and parameters

Theorem 3.4

Let f(t, x) be piecewise continuous in t and Lipschitz in x (with a Lipschits constant
L) on [t0, t1]×W , where W ⊂ Rn is an open connected set. Let y(t) and z(t) be
solutions of

ẏ = f (t, y) , y (t0) = y0

ż = f (t, z) + g (t, z) , z (t0) = z0

such that y(t), z(t) ∈W, ∀t ∈ [t0, t1]. Suppose that

‖g (t, z)‖ ≤ µ, ∀ (t, x) ∈ [t0, t1]×W

for some µ > 0. Then

‖y (t)− z (t)‖ ≤ ‖y0 − z0‖ eL(t−t0) +
µ

L

“
eL(t−t0) − 1

”
, ∀t ∈ [t0, t1]
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Proof

y (t) = y0 +

tZ
t0

f (τ, y (τ)) dτ

z (t) = z0 +

tZ
t0

[f (τ, z (τ)) + g (τ, z (τ))] dτ

Subtracting and taking norms yields

‖y (t)− z (t)‖ ≤ ‖y0 − z0‖+

tZ
t0

‖f (τ, y (τ))− f (τ, z (τ))‖ dτ +

tZ
t0

‖g (τ, z (τ))‖ dτ

≤ ‖y0 − z0‖| {z }
γ

+

tZ
t0

L ‖y (τ)− z (τ)‖ dτ + µ (t− t0)

12



3. Fundamental properties

Applying the Gronwall-Bellman inequality, yields

‖y (t)− z (t)‖ ≤ γ + µ (t− t0) +

tZ
t0

L [γ + µ (τ − t0)] eL(t−τ)dτ

Integrating the right-hand side by parts (
R
uv′ = uv −

R
vu′) we obtain

‖y (t)− z (t)‖ ≤ γ + µ(t− t0)− γ − µ(t− t0) + γeL(t−t0) +

tZ
t0

µeL(t−s) ds

= γeL(t−t0) +
µ

L

“
eL(t−t0) − 1

”
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Theorem 3.5 - Continuity of solutions

Let f(t, x, λ) be continuous in (t, x, λ) and locally Lipschitz in x on
[t0, t1]×D × {‖λ− λ0‖ ≤ c}, where D ⊂ Rn is an open connected set. Let y(t, λ0)
be a solution of

ẋ = f(t, x, λ0),

with y(t0, λ0) = y0 ∈ D. Suppose y(t, λ0) is defined and belongs to D for all
t ∈ [t0, t1]. Then, given ε > 0, there is δ > 0 such that if

‖z0 − y0‖ < δ, ‖λ− λ0‖ < δ

then there is a unique solution z(t, λ) of ẋ = f(t, x, λ) defined on [t0, t1], with
z(t0, λ) = z0 such that ‖z(t, λ)− y(t, λ0)‖ < ε, ∀t ∈ [t0, t1]

Proof.

ż = f(t, z, λ0) + f(t, z, λ)− f(t, z, λ0)| {z }
g(t,z)

By continuity ∀µ > 0, ∃δ > 0:

‖λ− λ0‖ < δ ⇒ ‖g(t, z)‖ ≤ µ

Therefore, using Theorem 3.4 we conclude Theorem 3.5 by noticing that ‖y0 − z0‖
and µ can be chosen arbitrarily small.
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3. Fundamental properties

Comparison Principle

Quite often when we study the state equation ẋ = f(t, x) we need to compute bounds
on the solution x(t). For that we have

• Gronwall-Bellman inequality

• The comparison Lemma → Compares the solution of the differential inequality
v̇(t) ≤ f(t, v(t)) with the solution of u̇(t) = f(t, u). Moreover, v(t) is not needed
to be differentiable.

Definition
Upper right-hand derivative

D+v(t) = lim sup
h→0+

v(t+ h)− v(t)
h

The following properties hold:

• if v(t) is differentiable at t then D+v(t) = v̇(t)

• if 1
h
|v(t+ h)− v(t)| ≤ g(t, h) and limh→0+ g(t, h) = g0(t), then

D+v(t) ≤ g0(t)
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Comparison Principle

Lemma 3.4 - Comparison Lemma

Let
u̇ = f(t, u), u(t0) = u0, µ ∈ R

where f(t, u) is continuous in t and locally Lipschitz in u, for all t ≥ 0 and u ∈ J ⊂ R.
Let [t0, T ) (T can be ∞) be the maximal interval of existence of the solution
u(t) ∈ J . Let v(t) be a continuous function that satisfies

D+v(t) ≤ f(t, v), v(t0) ≤ u0

with v(t) ∈ J for all t ∈ [t0, T ). Then, v(t) ≤ u(t), ∀t ∈ [t0, T )
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Example

Show that the solution of

ẋ = f(x) = −(1 + x2)x, x(0) = a

is unique and defined for all t ≥ 0.

Because f(x) is locally Lipschitz it has a unique solution on [0, t1] for some t1 > 0.
Let v(t) = x2(t). Then

v̇(t) ≤ −2v(t), v(0) = a2

Let u(t) be the solution of

u̇ = −2u, u(0) = a2 −→ u(t) = a2e−2t

Then, by comparison lemma the solution x(t) is defined ∀t ≥ 0 and satisfies

|x(t)| =
p
v(t) ≤ |a| e−t, ∀t ≥ 0

By Theorem 3.3 it follows that the solution is unique and defined for all t ≥ 0.
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