Nonlinear Control Systems

António Pedro Aguiar
pedro@isr.ist.utl.pt

3. Fundamental properties

IST-DEEC PhD Course

http://users.isr.ist.utl.pt/\~pedro/NCS2012/

Example

Consider the system

$$
\dot{x}=f(t, x), \quad x\left(t_{0}\right)=x_{0}
$$

- Does it have a solution over an interval $\left[t_{0}, t_{1}\right]$?

That is, does exist a continuous function $x:\left[t_{0}, t_{1}\right] \rightarrow \mathbb{R}^{m}$ such that $\dot{x}(t)$ is defined and satisfies $\dot{x}(t)=f(t, x(t)), \forall t \in\left[t_{0}, t_{1}\right]$?

- Is it unique? or is possible to have more than one solution?
- ... and if we restrict $f(t, x)$ to be continuous in x and piecewise continuous in t. Is this sufficient to guarantee existence and uniqueness?
No!, e.g.

$$
\dot{x}=x^{1 / 3}, \quad x(0)=0
$$

It has solution $x(t)=\left(\frac{2 t}{3}\right)^{3 / 2}$.
But is not unique, since $x(t)=0$ is another solution!

Lipschitz condition

A function $f(x)$ is said to be locally Lipschitz on a domain (open and connected set) $D \subset \mathbb{R}^{n}$ if each point of D has a neighborhood D_{0} such that $f($.$) satisfies$

$$
\|f(x)-f(y)\| \leq L\|x-y\|, \quad \forall x, y \in D_{0}
$$

(with the same Lipschitz constant L). The same terminology is extended to a function $f(t, x)$, provided that the Lipschitz constant holds uniformly in t for all t in a given interval.

Remark: For $f: \mathbb{R} \rightarrow \mathbb{R}$, we have

$$
\frac{|f(x)-f(y)|}{|x-y|} \leq L
$$

which means that a straight line joining any two points of $f($.$) cannot have a slope$ whose absolute value is greater than L.

Example

$f(x)=x^{1 / 3}$ is not locally Lipschitz at $x=0$ since $f^{\prime}(x)=\frac{1}{3} x^{-2 / 3} \rightarrow \infty$ as $x \rightarrow 0$.

Existence and Uniqueness

Theorem 3.1 - Local Existence and Uniqueness
Let $f(t, x)$ be piecewise continuous in t and satisfy the Lipschitz condition

$$
\|f(t, x)-f(t, y)\| \leq L\|x-y\|
$$

$\forall x, y \in B=\left\{x \in \mathbb{R}^{n}:\left\|x-x_{0}\right\| \leq r\right\}, \forall t \in\left[t_{0}, t_{1}\right]$. Then, there exists some $\delta>0$ such that the state equation $\dot{x}=f(t, x)$ with $x\left(t_{0}\right)=x_{0}$ has a unique solution over $\left[t_{0}, t_{0}+\delta\right]$.

Theorem 3.2-Global Existence and Uniqueness

Suppose that $f(t, x)$ is piecewise continuous in t and satisfies

$$
\|f(t, x)-f(t, y)\| \leq L\|x-y\|, \quad \forall x, y \in \mathbb{R}^{n}, \forall t \in\left[t_{0}, t_{1}\right]
$$

Then, the state equation $\dot{x}=f(t, x)$, with $x\left(t_{0}\right)=x_{0}$, has a unique solution over $\left[t_{0}, t_{1}\right]$.

Existence and Uniqueness

Lemma 3.2
If $f(t, x)$ and $\left[\frac{\partial f}{\partial x}\right]_{(t, x)}$ are continuous on $[a, b] \times D$ for some domain $D \subset \mathbb{R}^{n}$, then f is locally Lipschitz in x on $[a, b] \times D$.

Lemma 3.3

If $f(t, x)$ and $\left[\frac{\partial f}{\partial x}\right]_{(t, x)}$ are continuous on $[a, b] \times \mathbb{R}^{n}$, then f is globally Lipschitz in x on $[a, b] \times \mathbb{R}^{n}$ if and only if $\left[\frac{\partial f}{\partial x}\right]$ is uniformly bounded on $[a, b] \times \mathbb{R}^{n}$.

Examples

1.

$$
\begin{equation*}
\dot{x}=A(t) x+g(t)=f(t, x) \tag{1}
\end{equation*}
$$

with $A(t), g(t)$ piecewise continuous functions of t.

$$
\begin{aligned}
\|f(t, x)-f(t, y)\| & =\|A(t) x+g(t)-(A(t) y+g(t))\| \\
& =\|A(t)(x-y)\| \leq\|A(t)\|\|(x-y)\|
\end{aligned}
$$

Note that for any finite interval of time $\left[t_{0}, t_{1}\right]$, the elements of $A(t)$ are bounded. Thus $\|A(t)\| \leq a$ for any induced norm and

$$
\|f(t, x)-f(t, y)\| \leq a\|(x-y)\|
$$

Therefore, from Theorem 3.1 we conclude that (1) has a unique solution over [$\left.t_{0}, t_{1}\right]$. Since t_{1} can be arbitrarily large it follows that the system has a unique solution $\forall t \geq t_{0}$. There is no finite escape time.

Examples

2.

$$
\begin{equation*}
\dot{x}=-x^{3}=f(x), \quad x \in \mathbb{R} \tag{2}
\end{equation*}
$$

Is it globally Lipschitz?
No! From Lemma 3.3, $f(x)$ is continuous but the Jacobian $\frac{\partial f}{\partial x}=-3 x^{2}$ is not globally bounded. Nevertheless, $\forall x\left(t_{0}\right)=x_{0}$, (2) has the unique solution

$$
x(t)=\operatorname{sgn}\left(x_{0}\right) \sqrt{\frac{x_{0}^{2}}{1+2 x_{0}^{2}\left(t-t_{0}\right)}}
$$

3.

$$
\begin{equation*}
\dot{x}=-x^{2}, \quad x(0)=-1 \tag{3}
\end{equation*}
$$

From Lemma 3.2 we conclude that is locally Lipschitz in any compact subset of \mathbb{R} because $f(x)$ and $\frac{\partial f}{\partial x}$ are continuos. Hence, there exists a unique solution over $[0, \delta]$ for some $\delta>0$. In particular the solution is

$$
x(t)=\frac{1}{t-1}
$$

and only exists over $[0,1)$, i.e, there is finite escape time at $t=1$!

Uniqueness and Existence

Theorem 3.3
Let $f(t, x)$ be piecewise continuous in t and locally Lipschitz in x for all $t \geq t_{0}$ and all $x \in D \subset \mathbb{R}^{n}$. Let W be a compact subset of $D, x_{0} \in W$ and suppose it is known that every solution of

$$
\dot{x}=f(t, x), \quad x\left(t_{0}\right)=x_{0}
$$

lies entirely in W. Then, there is a unique solution that is defined for all $t \geq t_{0}$.

Proof.

By Theorem 3.1, there is a unique solution over $\left[t_{0}, t_{0}+\delta\right]$. Let $\left[t_{0}, T\right)$ be its maximum interval of existence. We would like to show that $T=\infty$. Suppose that is not, i.e., T is finite. Then the solution must leave any compact subset of D. But this is a contradiction, becuase x never leaves the compact set W. Thus we can conclude that $T=\infty$.

Example

Returning to the example

$$
\dot{x}=-x^{3}
$$

It is locally Lipschitz in \mathbb{R}. For any initial condition $x(0)=x_{0} \in \mathbb{R}$, the solution cannot leave the compact set $W=\left\{x \in \mathbb{R}:|x| \leq x_{0}\right\}$ because for any instant of time

- if $x>0$ then $\dot{x}<0$
- if $x<0$ then $\dot{x}>0$

Thus, without computing explicitly the solution we can conclude from Theorem 3.3 that the system has a unique solution for all $t \geq 0$.

Continuous dependence on initial conditions and parameters

Consider the following nominal model

$$
\begin{equation*}
\dot{x}=f\left(t, x, \lambda_{0}\right) \tag{4}
\end{equation*}
$$

where $\lambda_{0} \in \mathbb{R}^{p}$ denotes the nominal vector of constant parameters of the model and $x \in \mathbb{R}^{n}$ is the state.

- Let $y(t)$ be a solution of (4) that starts at $y\left(t_{0}\right)=y_{0}$ and is defined on the interval $\left[t_{0}, t_{1}\right]$.
- Let $z(t)$ be a solution of $\dot{x}=f(t, x, \lambda)$ defined on $\left[t_{0}, t_{1}\right]$ with $z\left(t_{0}\right)=z_{0}$.

When does $z(t)$ remains close to $y(t)$?
Or in other words, is the solution continuous dependent on the initial condition and parameter λ ? That is,

$$
\forall_{\varepsilon>0} \exists_{\delta>0}:\left\|z_{0}-y_{0}\right\|<\delta,\left\|\lambda-\lambda_{0}\right\|<\delta \Rightarrow\|z(t)-y(t)\|<\varepsilon, \forall_{t \in\left[t_{0}, t_{1}\right]}
$$

Continuous dependence on initial conditions and parameters

Theorem 3.4
Let $f(t, x)$ be piecewise continuous in t and Lipschitz in x (with a Lipschits constant L) on $\left[t_{0}, t_{1}\right] \times W$, where $W \subset \mathbb{R}^{n}$ is an open connected set. Let $y(t)$ and $z(t)$ be solutions of

$$
\begin{array}{ll}
\dot{y}=f(t, y), & y\left(t_{0}\right)=y_{0} \\
\dot{z}=f(t, z)+g(t, z), & \\
z\left(t_{0}\right)=z_{0}
\end{array}
$$

such that $y(t), z(t) \in W, \forall t \in\left[t_{0}, t_{1}\right]$. Suppose that

$$
\|g(t, z)\| \leq \mu, \quad \forall(t, x) \in\left[t_{0}, t_{1}\right] \times W
$$

for some $\mu>0$. Then

$$
\|y(t)-z(t)\| \leq\left\|y_{0}-z_{0}\right\| e^{L\left(t-t_{0}\right)}+\frac{\mu}{L}\left(e^{L\left(t-t_{0}\right)}-1\right), \quad \forall t \in\left[t_{0}, t_{1}\right]
$$

Proof

$$
\begin{aligned}
& y(t)=y_{0}+\int_{t_{0}}^{t} f(\tau, y(\tau)) d \tau \\
& z(t)=z_{0}+\int_{t_{0}}^{t}[f(\tau, z(\tau))+g(\tau, z(\tau))] d \tau
\end{aligned}
$$

Subtracting and taking norms yields

$$
\begin{aligned}
\|y(t)-z(t)\| & \leq\left\|y_{0}-z_{0}\right\|+\int_{t_{0}}^{t}\|f(\tau, y(\tau))-f(\tau, z(\tau))\| d \tau+\int_{t_{0}}^{t}\|g(\tau, z(\tau))\| d \tau \\
& \leq \underbrace{\left\|y_{0}-z_{0}\right\|}_{\gamma}+\int_{t_{0}}^{t} L\|y(\tau)-z(\tau)\| d \tau+\mu\left(t-t_{0}\right)
\end{aligned}
$$

Applying the Gronwall-Bellman inequality, yields

$$
\|y(t)-z(t)\| \leq \gamma+\mu\left(t-t_{0}\right)+\int_{t_{0}}^{t} L\left[\gamma+\mu\left(\tau-t_{0}\right)\right] e^{L(t-\tau)} d \tau
$$

Integrating the right-hand side by parts $\left(\int u v^{\prime}=u v-\int v u^{\prime}\right)$ we obtain

$$
\begin{aligned}
\|y(t)-z(t)\| & \leq \gamma+\mu\left(t-t_{0}\right)-\gamma-\mu\left(t-t_{0}\right)+\gamma e^{L\left(t-t_{0}\right)}+\int_{t_{0}}^{t} \mu e^{L(t-s) d s} \\
& =\gamma e^{L\left(t-t_{0}\right)}+\frac{\mu}{L}\left(e^{L\left(t-t_{0}\right)}-1\right)
\end{aligned}
$$

Theorem 3.5-Continuity of solutions

Let $f(t, x, \lambda)$ be continuous in (t, x, λ) and locally Lipschitz in x on $\left[t_{0}, t_{1}\right] \times D \times\left\{\left\|\lambda-\lambda_{0}\right\| \leq c\right\}$, where $D \subset \mathbb{R}^{n}$ is an open connected set. Let $y\left(t, \lambda_{0}\right)$ be a solution of

$$
\dot{x}=f\left(t, x, \lambda_{0}\right),
$$

with $y\left(t_{0}, \lambda_{0}\right)=y_{0} \in D$. Suppose $y\left(t, \lambda_{0}\right)$ is defined and belongs to D for all $t \in\left[t_{0}, t_{1}\right]$. Then, given $\epsilon>0$, there is $\delta>0$ such that if

$$
\left\|z_{0}-y_{0}\right\|<\delta,\left\|\lambda-\lambda_{0}\right\|<\delta
$$

then there is a unique solution $z(t, \lambda)$ of $\dot{x}=f(t, x, \lambda)$ defined on $\left[t_{0}, t_{1}\right]$, with $z\left(t_{0}, \lambda\right)=z_{0}$ such that $\left\|z(t, \lambda)-y\left(t, \lambda_{0}\right)\right\|<\epsilon, \forall t \in\left[t_{0}, t_{1}\right]$
Proof.

$$
\dot{z}=f\left(t, z, \lambda_{0}\right)+\underbrace{f(t, z, \lambda)-f\left(t, z, \lambda_{0}\right)}_{g(t, z)}
$$

By continuity $\forall \mu>0, \exists \delta>0$:

$$
\left\|\lambda-\lambda_{0}\right\|<\delta \Rightarrow\|g(t, z)\| \leq \mu
$$

Therefore, using Theorem 3.4 we conclude Theorem 3.5 by noticing that $\left\|y_{0}-z_{0}\right\|$ and μ can be chosen arbitrarily small.

Comparison Principle

Quite often when we study the state equation $\dot{x}=f(t, x)$ we need to compute bounds on the solution $x(t)$. For that we have

- Gronwall-Bellman inequality
- The comparison Lemma \rightarrow Compares the solution of the differential inequality $\dot{v}(t) \leq f(t, v(t))$ with the solution of $\dot{u}(t)=f(t, u)$. Moreover, $v(t)$ is not needed to be differentiable.

Definition

Upper right-hand derivative

$$
D^{+} v(t)=\lim \sup _{h \rightarrow 0^{+}} \frac{v(t+h)-v(t)}{h}
$$

The following properties hold:

- if $v(t)$ is differentiable at t then $D^{+} v(t)=\dot{v}(t)$
- if $\frac{1}{h}|v(t+h)-v(t)| \leq g(t, h)$ and $\lim _{h \rightarrow 0^{+}} g(t, h)=g_{0}(t)$, then
$D^{+} v(t) \leq g_{0}(t)$

Comparison Principle

Lemma 3.4 - Comparison Lemma
Let

$$
\dot{u}=f(t, u), \quad u\left(t_{0}\right)=u_{0}, \mu \in \mathbb{R}
$$

where $f(t, u)$ is continuous in t and locally Lipschitz in u, for all $t \geq 0$ and $u \in J \subset \mathbb{R}$. Let $\left[t_{0}, T\right)(T$ can be $\infty)$ be the maximal interval of existence of the solution $u(t) \in J$. Let $v(t)$ be a continuous function that satisfies

$$
D^{+} v(t) \leq f(t, v), \quad v\left(t_{0}\right) \leq u_{0}
$$

with $v(t) \in J$ for all $t \in\left[t_{0}, T\right)$. Then, $v(t) \leq u(t), \forall t \in\left[t_{0}, T\right)$

Example

Show that the solution of

$$
\dot{x}=f(x)=-\left(1+x^{2}\right) x, \quad x(0)=a
$$

is unique and defined for all $t \geq 0$.
Because $f(x)$ is locally Lipschitz it has a unique solution on [$0, t_{1}$] for some $t_{1}>0$. Let $v(t)=x^{2}(t)$. Then

$$
\dot{v}(t) \leq-2 v(t), \quad v(0)=a^{2}
$$

Let $u(t)$ be the solution of

$$
\dot{u}=-2 u, u(0)=a^{2} \longrightarrow u(t)=a^{2} e^{-2 t}
$$

Then, by comparison lemma the solution $x(t)$ is defined $\forall t \geq 0$ and satisfies

$$
|x(t)|=\sqrt{v(t)} \leq|a| e^{-t}, \forall t \geq 0
$$

By Theorem 3.3 it follows that the solution is unique and defined for all $t \geq 0$.

