Nonlinear Control Systems

António Pedro Aguiar

pedro@isr.ist.utl.pt

2. Mathematical review

IST-DEEC PhD Course

http://users.isr.ist.utl.pt/%7Epedro/NCS2012/

2011/2012

Vector and matrix norms

The norm ||x|| of a vector $x \in \mathbb{R}^n$ is a real valued function with the properties

1.
$$||x||, \forall x \in \mathbb{R}^n$$
, with $||x|| = 0$ if and only if $x = 0$,

2. $||x + y|| \le ||x|| + ||y||$, $\forall x, y \in \mathbb{R}^n$ (Triangular inequality)

3. $\|\alpha x\| = |\alpha| \|x\|$, $\forall \alpha \in \mathbb{R}$ and $\forall x \in \mathbb{R}^n$.

p-norm

$$||x||_p = (|x_1|^p + |x_2|^p + \ldots + |x_n|^p)^{1/p}, \qquad 1 \le p < \infty$$

∞ -norm

$$\left\|x\right\|_{\infty} = \max_{i} \left|x_{i}\right|$$

The three most commonly used norms are $\left\|x\right\|_{1},\left\|x\right\|_{\infty}$ and the Euclidean norm

$$||x||_2 = (|x_1|^2 + |x_2|^2 + \ldots + |x_n|^2)^{1/2}$$

Properties

- For $\|.\|_{\alpha}$, $\|.\|_{\beta}$, with $\alpha \neq \beta$ there exist positive constants c_1 , c_2 such that $c_1 \|x\|_{\alpha} \leq \|x\|_{\beta} \leq c_2 \|x\|_{\alpha}$, $\forall x \in \mathbb{R}^n$. In particular
 - $\bullet \ \left\| x \right\|_2 \leq \left\| x \right\|_1 \leq \sqrt{n} \left\| x \right\|_2$
 - $\bullet \ \left\| x \right\|_{\infty} \leq \left\| x \right\|_{2} \leq \sqrt{n} \left\| x \right\|_{\infty}$
 - $\bullet \ \left\|x\right\|_{\infty} \leq \left\|x\right\|_{1} \leq n \left\|x\right\|_{\infty}$
- Hölder inequality

$$\left|x^{T}y\right| \leq \left\|x\right\|_{p}\left\|y\right\|_{q}, \quad \frac{1}{p} + \frac{1}{q} = 1, \forall x, y \in \mathbb{R}^{n}$$

Matrix norms The induced p-norm of $A \in \mathbb{R}^{m \times n}$

$$\|A\|_p = \sup_{x \neq 0} \frac{\|Ax\|_p}{\|x\|_p} = \sup_{\|x\|_p = 1} \|Ax\|_p$$

 $|a_{ij}|$

In particular

• p

$$= 1$$

$$\|A\|_1 = \max_j \sum_{i=1}^m$$

(The maximum by columns)

•
$$p = 2$$

$$\|A\|_2 = \lambda_{\max} \left(A^T A\right)^{\frac{1}{2}}$$

where $\lambda_{\max}(A^T A)$ is the maximum eigenvalue of $A^T A$.

•
$$p = \infty$$

$$\|A\|_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|$$

(The maximum by rows)

Some useful properties. Let $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times l}$

1.

$$\frac{1}{\sqrt{n}} \|A\|_{\infty} \le \|A\|_{2} \le \sqrt{m} \|A\|_{\infty}$$
2.

$$\frac{1}{\sqrt{m}} \|A\|_{1} \le \|A\|_{2} \le \sqrt{n} \|A\|_{1}$$
3.

$$\|A\|_{2} \le \sqrt{\|A\|_{1} \|A\|_{\infty}}$$
4.

$$\|AB\|_{p} \le \|A\|_{p} \|B\|_{p}$$

Topological concepts in \mathbb{R}^n

Convergence of sequences

• A sequence of vectors $x_0,x_1,...,x_k,...\in\mathbb{R}^n$ denoted by $\{x_k\},$ is said to converge to a limit vector x if

$$\|x_k - x\| \to 0$$

as $k \to \infty,$ which is equivalent to

$$\forall_{\varepsilon>0} \exists_N : \|x_k - x\| < \varepsilon, \ \forall_{k\geq N}$$

- A vector x is an accumulation point of a sequence {xk} if there is a subsequence of {xk} that converges to x. That is, if there is an infinite subset K of the nonnegative integers such that {xk}_{k∈K} converges to x.
- A bounded sequence $\{x_k\} \in \mathbb{R}^n$ has at least one accumulation point in \mathbb{R}^n .
- Increasing sequence: $\{x_k\} \in \mathbb{R}^n$, $x_k \leq x_{k+1}$, $\forall k$. If $\{x_k\} \in \mathbb{R}^n$, $x_k < x_{k+1}$, $\forall k$ it is said to be *strictly increasing*.
- Decreasing sequence $\{x_k\} \in \mathbb{R}^n$, $x_k \ge x_{k+1}$, $\forall k$. If $\{x_k\} \in \mathbb{R}^n$, $x_k > x_{k+1}$, $\forall k$ it is said to be *strictly decreasing*.
- An increasing sequence $\{x_k\} \in \mathbb{R}^n$ that is bounded from above converges to a real number.
- Similarly, a decreasing sequence that is bounded from below converges to a real number.

Topological concepts in \mathbb{R}^n

Sets Let $S \subset \mathbb{R}^n$

• Open set: $\forall x \in S$, one can find an ϵ -neighborhood of x

$$N(x,\epsilon) = \{z \in \mathbb{R}^n : ||z - x|| < \epsilon\}$$

such that $N(x,\epsilon) \subset S$

- Closed set: Every convergent sequence $\{x_k\}$ with elements in S converges to a point in S.
- Bounded set: S is bounded if there is r > 0 such that $||x|| < r, \forall x \in S$
- Compact set: If it is closed and bounded.
- Boundary point: A point p is a boundary point of a set S if every neighborhood of p contains at least one point of S and one point not belonging to S.

The set of all boundary points of S is denoted by ∂S , the interior of a set by $S - \partial S$ and the closure of a set $\bar{S} = S \cup \partial S$.

Continuous functions

A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is said to be continuous at a point x if $f(x_k) \to f(x)$ whenever $x_k \to x$. Equivalently, if

$$\forall_{\varepsilon > 0} \exists_{\delta > 0} : \|x - y\| < \delta \Rightarrow \|f(x) - f(y)\| < \varepsilon$$

Differentiable functions

A function $f:\mathbb{R}\to\mathbb{R}$ is said to be differentiable at x if the limit

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

exists. A function $f : \mathbb{R}^n \to \mathbb{R}^m$ is said to be *continuously differentiable* (denoted as $f \in C^1$) at a point x_0 if the partial derivatives $\frac{\partial f_i}{\partial x_j}$ exist and are continuous at x_0 for $1 \le i \le m, \ 1 \le j \le n$.

Gradient vector

For a continuously differentiable function $f:\mathbb{R}^n\to\mathbb{R}$

$$abla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1} & \frac{\partial f}{\partial x_2} & \cdots & \frac{\partial f}{\partial x_n} \end{bmatrix}^T$$

Jacobian Matrix

For a continuous differentiable function $f:\mathbb{R}^n\to\mathbb{R}^m$

$$J(x) = \begin{bmatrix} \frac{\partial f}{\partial x} \end{bmatrix} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Chain rule

Let h(x)=g(f(x)) be a continuously differentiable function at $x_0.$ Then the Jacobian matrix is given by the chain rule

$$\left. \frac{\partial h}{\partial x} \right|_{x=x_0} = \left. \frac{\partial g}{\partial f} \right|_{f=f(x_0)} \left. \frac{\partial f}{\partial x} \right|_{x=x_0}$$

Mean value theorem

Let $f: \mathbb{R}^n \to \mathbb{R}$ be a continuously differentiable function at each point x of an open set $S \subset \mathbb{R}^n$. Let x and y be two points of S such that the line segment $L(x,y) = \{z: z = \theta x + (1-\theta)y, \ 0 \le \theta \le 1\}$ belongs to S. Then exists a point z of L(x,y) such that

$$f(y) - f(x) = \left. \frac{\partial f}{\partial x} \right|_{x=z} (y-x)$$

Implicit Function Theorem

Let $f: \mathbb{R}^n \to \mathbb{R}^m$ be continuously differentiable at each point (x, y) of an open set $S \subset \mathbb{R}^n \times \mathbb{R}^m$. Let $(x_0, y_0) \in S$ be a point such that $f(x_0, y_0) = 0$ and for which the Jacobian matrix $\frac{\partial f}{\partial x}(x_0, y_0)$ is nonsingular. Then there exist neighborhoods $U \subset \mathbb{R}^n$ of x_0 and $V \subset \mathbb{R}^m$ of y_0 such that for each $y \in V$ the equation f(x, y) = 0 has a unique solution $x \in U$. Moreover, this solution can be given as x = g(y), where g is continuously differentiable at $y = y_0$.

Mathematical review

Grownwall-Bellman Inequality

Let $\lambda:[a,b]\to\mathbb{R}$ be continuous and $\mu:[a,b]\to\mathbb{R}$ be continuous and nonnegative. If a continuous function $y:[a,b]\to\mathbb{R}$ satisfies

$$y(t) \le \lambda(t) + \int_{a}^{t} \mu(s) y(s) ds, \quad a \le t \le b$$

then

$$y\left(t\right) \leq \lambda\left(t\right) + \int\limits_{a}^{t} \lambda\left(s\right) \mu\left(s\right) e^{\int\limits_{s}^{t} \mu(\tau) d\tau} ds$$

In particular, if $\lambda(t)=\lambda$ is a constant, then

$$y\left(t\right) \leq \lambda \, e^{\int\limits_{a}^{t} \mu\left(\tau\right) d\tau}$$

If in addition, $\mu(t)=\mu>0$ is a constant, then

 $y\left(t\right) \leq \lambda \, e^{\mu\left(t-a\right)}$